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summary

In this study, we have employed the GSK and the non-standard log-linear model
approaches to fit the class of distance sub-symmetry models to square contingency
tables having ordered categories. SAS PROCs CATMOD and GENMOD were
employed to implement our models. A macro generates the factor variables to
implement models in the latter approach. Except for the DCS-k where no maxi-
mum likelihood closed form exists, all other models are easily implemented with
the non standard log-linear model approach. The GSK on the other hand readily
fits all the models considered in this study. These models are applied to the 5×5
British generational data as well as the 4× 4 unaided distance vision data. Both
data have received considerable attention and analyses in the literature. Results
obtained where applicable agree with those published in previous literature on
the subject. The approaches suggest here eliminate any programming that might
be required in order to apply these class of models to square contingency tables.
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1 Introduction

Tomizawa, Miyamoto and Ouchi (2006) decomposed the symmetry model in a square con-

tingency table having ordinal categories into marginal symmetry and distance subsymmetry

models. Decomposed symmetry models are needed to explain and discover why the symme-

try models fits poorly the given data. There has been a lot of literature on interpretations of
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decomposed symmetry models and our goal in this paper is to fit the models considered in

Tomizawa et al. (2006) paper using the non-standard log-linear model approach discussed

in various works in Lawal (2002, 2004) and Lawal and Sundheim (2004) as well as the GSK

approach discussed in Grizzle, Starmer and Koch (1969) and Shuster and von Eye (1998). It

is hoped that this will make the models considered here more easily and readily applicable

by researchers and social scientists working in this area.

For an I × I square contingency table with ordered categories, if we let πij to be the

joint probability in the i-th row and j-th column respectively, for, 1 ≤ (i, j) ≤ I, then, the

model of complete symmetry (S) has the model formulation:

πij = πji, for 1 ≤ i ≤ j ≤ I (1.1)

Following closely the notation employed in Tomizawa et al., let Y1 and Y2 relate to the

row and column variables respectively. Then, the marginal homogeneity model (MH) is

defined as:

Pr(Y1 = i) = Pr(Y2 = i) for i = 1, 2, . . . , I

In this case, we have

πi+ = π+i, for i = 1, 2, . . . , I

where πi+ =

I
∑

j=1

πij and π+j =

I
∑

i=1

πij .

Further, for i < j, define

Gij = Pr(Y1 ≤ i, Y2 ≥ j)=
i

∑

s=1

I
∑

t=j

πst (1.2)

Similarly, for i > j, again define,

G∗

ij = Pr(Y1 ≥ i, Y2 ≤ j)=

I
∑

s=i

j
∑

t=1

πst (1.3)

With the above formulations in (1.2) and (1.3), the symmetry model (S) is equivalent to:

Gij = G∗

ji for i < j (1.4)

Similarly, the marginal homogeneity model (MH) can be reformulated as:

Gi,i+1 = G∗

i+1,i for i = 1, 2, . . . , I − 1 (1.5)

We know that MH ⊂ S, that is, model S implies the MH model, thus, S −→ MH . Con-

sequently, Tomizawa et al. sought decompositions for (1.4) and (1.5) having the structure:

Gij = G∗

ji for j − i = 2, 3, . . . , I − 1; i < j.

The following decompositions are therefore considered by Tomizawa et al. (2006).
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2 The Distance Cumulative Subsymmetry Model

Following Tomizawa et al. (2006), this model has

Gij = G∗

ji for j − i = 2, 3, . . . , I − 1; i < j (2.1)

which is equivalent to:

πij = πji for j − i = 2, 3, . . . , I − 1; i < j

Model (2.1) is referred by Tomizawa et al. (2006) as the subsymmetry (SS) model,

which indicates that the probability of an observation falling in cell (i, j), which is one of

cells such that the probability from the main diagonal is greater or equal to 2, is equal to

the probability that the observation falls in cell (j, i).

If we now consider for fixed k (k = 2, 3, . . . , I − 1), the model defined by

Gi,i+k = G∗

i+k,i for i = 1, 2, . . . , I − k (2.2)

then, the model in (2.2) is referred to as the distance cumulative subsymmetry model with

the difference k between the diagonal containing the cut point [i and i + k] and the main

diagonal. The model is denoted by Tomizawa et al. as the DCS-k model.

3 The Distance Subsymmetry Model

Tomizawa et al. (2006) described the distance subsymmetry model with distance k (denoted

DS-k) as satisfying for fixed k:

πij = πji for j − i = k; i < j (3.1)

Which Tomizawa et al. (2006) describes as “this model indicates that the probability that

an observation will fall in cell (i, j) with the distance k from the main diagonal, is equal to

the probability that the observation falls in cell (j, i) with the same distance.

Just as Tomizawa et al. observed, the following models {S, MH, SS, DCS-k, DS-k }

which are equivalent are fitted in this paper. Models S, MH, SS, DCS-k and DS-k have,

I(I − 1)/2, (I − 1), (I − 1)(I − 2)/2, (I − k) and (I − k) degrees of freedom, respectively.

4 Model Implementation in SAS

We have employed in this paper the two data set employed in Tomizawa et al. (2006),

namely, the 5 × 5 occupational mobility data of British fathers and sons (Goodman, 1981)

as well as the 4 × 4 unaided distant vision data of 7477 women aged 30-39 employed in the

Royal Ordnance factories in Britain from 1943 to 1946. (Stuart, 1955).

The models discussed in this paper will be implemented via SAS with the GSK and

non-standard log-linear modeling approaches. As observed in Tomizawa et al. (2006), while
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Table 1: Occupational Status for British father-son pairs

Son’s Status

Father’s Status (1) (2) (3) (4) (5) Total

(1) 50 45 8 18 8 129

(2) 28 174 84 154 55 495

(3) 11 78 110 223 96 518

(4) 14 150 185 714 447 1510

(5) 3 42 72 320 411 848

Total 106 489 459 1429 1017 3500

Table 2: Un-aided distant vision as reported in Kendall (1955)

Left Eye Grade

Best Second Third Worst

Right Eye Grade Best (1) Second (2) Third (3) Worst (4) Total

Best (1) 1520 266 124 66 1976

Second (2) 234 1512 432 78 2256

Third (3) 117 362 1772 205 2456

Worst (4) 36 82 179 492 789

Total 1907 2222 2507 841 7477

MLE estimates exist in closed forms for the S, SS and the DS-k models, such do not exist

for the DCS-k models for k < (I−1). However, both DC-k and DCS-k if k = (I −1) models

are equivalent and thus closed form MLE solutions exist for these models.For instance, for

a 5× 5 table, DC-4 ≡ DCS-4. We present the two approaches employed in this paper in the

following sections:

4.1 The GSK Approach

The GSK (which refers to the first names of the authors) was first developed by Grizzle,

Starmer and Koch (1969) and uses a weighted least-squares approach which allows vector-

valued functions of the type G(π) = 0 to be tested. A fuller description of this methodology

as it applies to our particular application in this paper can be found in Shuster and von Eye

(1998). The test statistic for evaluating the hypothesis G(π) = 0 has been shown, Shuster

and von Eye (1998) to be asymptotically distributed χ2 with the degrees of freedom equal

to the number q of real-valued functions of G(π).

To implement the GSK methodology to our data set, we apply this to the 5 × 5 table
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and display how the Symmetry, marginal symmetry, SS, DCS-k and DC-k models are imple-

mented with this approach using PROC CATMOD in SAS. We discuss below the application

of the GSK method to fitting each of the models outlined above. However, to illustrate the

GSK approach, we present for example, the fitting of the SS model first.

4.1.1 The SS Model:

This is the model in (2.1) defined as:

Gij = G∗

ji for j − i = 2, 3, . . . , I − 1; i < j

The above for 5 × 5 tables implies that for j − i = 2, we have:

G13 = G∗

31, G24 = G∗

42, G35 = G∗

53 (4.1)

The constraints in (4.1) lead to the following equations:

π13 + π14 + π15 = π31 + π41 + π51 (4.2a)

π14 + π15 + π24 + π25 = π41 + π51 + π42 + π52 (4.2b)

π15 + π25 + π35 = π51 + π52 + π53 (4.2c)

Similarly, when j − i = 3, we have,

G14 = G∗

41, G25 = G∗

52 (4.3)

which again lead to the constraint equations:

π14 + π15 = π41 + π51 (4.4a)

π15 + π25 = π51 + π52 (4.4b)

Finally, when j − i = 4, we have only the constraint:

G15 = G∗

51

which leads to the constraint equation:

π15 = π51 (4.5)

Thus, the constraint equation in (4.2a) for instance can be written in form of a contrast as:

π13 + π14 + π15 − π31 − π41 − π51 = 0
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The six constraint equations which constitute our hypothesis relating to G(π) = 0 can be

presented in matrix form as in (4.6).

G(π) =



























G1(π)

G2(π)

G3(π)

G4(π)

G5(π)

G6(π)



























=



























π13 + π14 + π15 − π31 − π41 − π51

π14 + π15 + π24 + π25 − π41 − π51 − π42 − π52

π15 + π25 + π35 − π51 − π52 − π53

π14 + π15 − π41 − π51

π15 + π25 − π51 − π52

π15 − π51



























=



























0

0

0

0

0

0



























(4.6)

Again in terms of the 5 × 5 table, the above six generated contrasts lead to the following

implementation in SAS PROC CATMOD:

data dps;

do r=1 to 5;

do c=1 to 5;

INPUT COUNT @@;

output;

end; end;

datalines;

50 45 8 18 8 28 174 84 154 55 11 78 110

223 96 14 150 185 714 447 3 42 72 320 411

;

run;

proc catmod data=dps;

weight count;

response

0 0 1 1 1 0 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0,

0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 -1 -1 0 0 0 -1 -1 0 0 0,

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 -1 -1 -1 0 0,

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0,

0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0,

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0;

model r*c =/noint;

run;

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

------------------------------------------

Residual 6 8.49 0.2043

The model is based on 6 d.f. because there are six real-valued functions in G(π).
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4.1.2 The Symmetry Model

For implementing the full symmetry model, we again note that for symmetry, we πij = πji,

which leads for i 6= j to I(I − 1)/2 = 10 constraints and subsequently ten contrasts for the

5 × 5 table. These contrasts are employed in the SAS PROC CATMOD procedure and the

results are very consistent with those obtained with the likelihood ratio test statistic

G2 = 2

I
∑

i=1

I
∑

j=1

nij log

(

nij

m̂ij

)

where nij are the observed frequencies and m̂ij are the expected frequencies under some

model. The model gives a Wald’s test statistic 37.62 on 10 d.f.

4.1.3 The Marginal Homogeneity Model

For marginal homogeneity, we have:

πi+ = π+i for i = 1, 2, . . . , I − 1 (4.7)

That is,

π1i + π2i + π3i + π4i + π5i =πi1 + πi2 + πi3 + πi4 + πi5 i = 1, 2, 3, 4 (4.8)

Thus for a 5 × 5 table,(4.8) becomes for i = 1, 2, 3, 4 respectively:

π21 + π31 + π41 + π51 = π12 + π13 + π14 + π15 (4.9a)

π12 + π32 + π42 + π52 = π21 + π23 + π24 + π25 (4.9b)

π13 + π23 + π43 + π53 = π31 + π32 + π34 + π35 (4.9c)

π14 + π24 + π34 + π54 = π41 + π42 + π43 + π45 (4.9d)

We can re-write (4.9a) for instance as:

π21 + π31 + π41 + π51 − π12 − π13 − π14 − π15 = 0 (4.10)

The above is a contrast and we can write this in terms of the 5 × 5 = 25 cells as:

0 -1 -1 -1 -1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Similar results can be written for the other three subequations and leads to the implemen-

tation in PROC CATMOD of the form:

proc catmod data=dps;

weight count;

response

0 -1 -1 -1 -1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0,

0 1 0 0 0 -1 0 -1 -1 -1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0,
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0 0 1 0 0 0 0 1 0 0 -1 -1 0 -1 -1 0 0 1 0 0 0 0 1 0 0,

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 -1 -1 -1 0 -1 0 0 0 1 0;

model r*c =/noint ml;

run;

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

------------------------------------------

Residual 4 32.95 <.0001

4.1.4 The Quasi-Symmetry Model

The quasi-symmetry model implies (Agresti,1990),

πij

πiIπIj

=
πji

πIiπjI

, for (i, j) = 1, 2, . . . , I (4.11)

Since the model is based on (I−1)(I−2)/2 d.f., then the corresponding constraints in terms

of (4.11) are:

π12

π15π52
=

π21

π51π25
(4.12a)

π13

π15π53
=

π31

π51π35
(4.12b)

π14

π15π54
=

π41

π51π45
(4.12c)

π23

π25π53
=

π32

π52π35
(4.12d)

π24

π25π54
=

π42

π52π45
(4.12e)

π34

π35π54
=

π43

π53π45
(4.12f)

Taking logarithms of the of both sides and equation to zero, we have respectively:

log π12 − log π15 − log π52 − log π21 + log π51 + log π25 = 0 (4.13a)

log π13 − log π15 − log π53 − log π31 + log π51 + log π35 = 0 (4.13b)

log π14 − log π15 − log π54 − log π41 + log π51 + log π45 = 0 (4.13c)

log π23 − log π25 − log π53 − log π32 + log π52 + log π35 = 0 (4.13d)

log π24 − log π25 − log π54 − log π42 + log π52 + log π45 = 0 (4.13e)

log π34 − log π35 − log π54 − log π43 + log π53 + log π45 = 0 (4.13f)

proc catmod data=dps;

weight count;

response

0 1 0 0 -1 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0,
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0 0 1 0 -1 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 1 0 -1 0 0,

0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 1 0 0 -1 0,

0 0 0 0 0 0 0 1 0 -1 0 -1 0 0 1 0 0 0 0 0 0 1 -1 0 0,

0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 -1 0 0 1 0 1 0 -1 0,

0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 -1 0 1 0 0 1 -1 0

log ;

model r*c =/noint ml;

run;

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

------------------------------------------

Residual 6 4.63 0.5926

4.1.5 The DCS-k Models

The DCS-k models are as described in (2.2) where k = 2, . . . , (I − k), we have,

Gi,i+k = G∗

i+k,i for i = 1, 2, . . . , I − k

The above leads for a fixed k = 2 and i = 1, 2, 3 to the three relationships designated as (i)
to (iii) respectively in the following:

(i) G13 = G∗

31 (ii) G24 = G∗

42, and (iii) G35 = G∗

53

Again these lead to the following constraint equations on the cell probabilities,viz,

π13 + π14 + π15 = π31 + π41 + π51 (4.14a)

π14 + π15 + π24 + π25 = π41 + π51 + π42 + π52 (4.14b)

π15 + π25 + π35 = π51 + π52 + π53 (4.14c)

Thus DCS-2 model when implemented with PROC CATMOD has a Wald test statistic
value of 6.83 and is based on 3 d.f. with a corresponding p-value of 0.0774.

For the case when k = 3, again we have,

(i) G14 = G∗

41, and (iii) G25 = G∗

52 (4.15)

which again lead to the constraint equations:

π14 + π15 = π41 + π51 (4.16a)

π15 + π25 = π51 + π52 (4.16b)

Implementation of the DCS-3 with PROC CATMOD gives a Wald test statistic of 4.23 on
2 d.f. with a p-value of 0.1205.

The DCS-4 model has k = 4 and is given by the model,

G15 = G∗

51 (4.17)
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which leads to the single constraint equation,

π15 = π51

and similar implementation in SAS gives a Wald test statistic value of 2.27 on 1 d.f with a
p-value of 0.1315.

4.2 The Non-standard log-linear Model Approach:

The non-standard log-linear approach has been used mostly in recent years by Lawal (2001);
Lawal (2004); Lawal and Sundheim (2002); and von Eye and Spiel (1996) amongst others. A
non-standard log-linear formulation of the above models can be written in the form (Lawal,
2001):

ℓ = X λ (4.18)

where ℓij = ln(mij), the log of expected values under some model,and X is the design
matrix consisting of 0s and 1s, which are derived from the indicator or regression variable
representing the levels of the factor or regression variable (Lawal and Sundheim, 2002).

The symmetry (S) model in this case is implemented with the non-standard log-linear
(NLL) model defined by:

lij = µ + λS

ij (4.19)

where S relates to the factor variable (a vector) required to fit the symmetry model and
proposed in (Lawal, 2001) which has entries that are generated with the following expressions
for all (i, j) (Lawal and Sundheim, 2002).

Sij =











(k + 1) − (i + 1)(1
2 i + 1) + (I + 3)(i + 1) − 3 − 2I if i ≤ j

(k + 1) − (j + 1)(1
2j + 1) + (I + 3)(j + 1) − 3 − 2I if i > j

(4.20)

Thus, for a 5 × 5 table for instance, the factor variable S becomes:

S =





















1 2 3 4 5

2 6 7 8 9

3 7 10 11 12

4 8 11 13 14

5 9 12 14 15





















A similar set of entries can be obtained for the 4×4 Table. The (MH) model is implemented
by using the fact that the corresponding conditional marginal homogeneity (CMH) model
is related to both the symmetry and quasi-symmetry by the following relation:

S = QS ∩ CMH (4.21)
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Hence, a conditional test of marginal homogeneity (CMH) assuming that QS holds is
provided by examining the quantity G2

(S)−G2
(QS) which is distributed χ2 with I −1 degrees

of freedom. The quasi-symmetry model has the NLL model formulation:

lij = µ + λR
i + λC

j + λS

ij

and it is based on (I − 1)(I − 2)/2 degrees of freedom.

4.2.1 Implementing the SS Model

The (SS) model is implemented with the NLL model formulation:

lij = µ + λS
ij + γ

ψ
ij (4.22)

where ψ is a factor variable defined for a general I × I table as:

ψij =























1 if i = j

aij = aji if i < j and |i − j| 6= 1

bij elsewhere

(4.23)

where aij take values {2, 3, . . . , (I2 − 3I + 4)/2}. The remaining 2I − 2 cells are filled with
integers ranging from (I2 − 3I + 6)/2 to I(I + 1)/2.

Thus, for a 5 × 5 table, we have from (4.23), the {aij = 2, 3, 4, 5, 6, 7}, and hence the
aji = aij for all i < j provided |i−j| 6= 1. The remaining 2I−2 = 8, bij cells designated with

dashes − in ψ
′

are filled with integers ranging from (I2 − 3I + 6)/2 = 8 to I(I + 1)/2 = 15.
Completing the dashes therefore, we have, the factor variable ψ defined as:

ψ
′

=





















1 − 2 5 7

− 1 − 3 6

2 − 1 − 4

5 3 − 1 −

7 6 4 − 1





















, ψ =





















1 8 2 5 7

12 1 9 3 6

2 13 1 10 4

5 3 14 1 11

7 6 4 15 1





















4.2.2 The DS-k Models

Again for the 5 × 5 table, to implement the general (DS-k) Model, the corresponding NLL
model formulation is:

lij = µ + λS
ij + δDSk

ij (4.24)
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Where the DSk is a factor variable generated from the following expression for a general
I × I square table with corresponding k = 1, 2, . . . , (I − 1). That is,

DS-k =



































1 if i = j

i + 1 if (j − i) = k

j + 1 if (i − j) = k

ah elsewhere

(4.25)

and the remaining (I2 − 3I + 2k) entries {ah} are randomly filled with consecutive integers
ranging from (I − k + 2) to (I − 1)2 + k. We display below, the generated factor variables
for a 5 × 5 table for k = 1, 2, 3, 4.

DS-1 =





















1 2 6 7 8

2 1 3 9 10

11 3 1 4 12

13 14 4 1 5

15 16 17 5 1





















, DS-2 =





















1 5 2 6 7

8 1 9 3 10

2 11 1 12 4

13 3 14 1 15

16 17 4 18 1





















DS-3 =





















1 4 5 2 6

7 1 8 9 3

10 11 1 12 13

2 14 15 1 16

17 3 18 19 1





















, DS-4 =





















1 3 4 5 2

6 1 7 8 9

10 11 1 12 13

14 15 16 1 17

2 18 19 20 1





















For example, when k = 2, then from (4.25) we have DS-2 entries generated above are
obtained as:

DS-2 =





















1 − 2 − −

− 1 − 3 −

2 − 1 − 4

− 3 − 1 −

− − 4 − 1





















where the remaining (I2 − 3I + 4) = 14 cell entries designated with dashes − are randomly
filled with consecutive integers ranging from a = 5 to a = (I2 − 2I + 3) = 18.
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Similarly, for the 4 × 4 table, we have,

DS-1 =















1 2 5 6

2 1 3 7

8 3 1 4

9 10 4 1















, DS-2 =















1 4 2 5

6 1 7 3

2 8 1 9

10 3 11 1















, DS-3 =















1 3 4 2

5 1 6 7

8 9 1 10

2 11 12 1















The DS-k factor variables are generated with a SAS macro and can generate such for any
sized square ordinal contingency table.

5 Results

We present in Tables 3 and 4, the results of fitting each of the models described above
using both the non-standard log-linear model (NLL) approach that are based on the factor
variables described in the preceding section and the GSK approach to the 5 × 5 and 4 × 4
Tables 1 and 2 respectively. For each of the models fitted, the likelihood ratio test statistic
G2 defined earlier was computed. While the fits for the GSK are based on Wald’s test
statistic Q (Lawal, 2003), however, conclusions or inferences from the use of both statistics
in this case are the same.

Table 3: Results for the 5 × 5 data in Table 1

Applied Degrees of NLL GSK

models freedom LRT (G2) Wald’s (W)

S 10 37.4632 37.62

QS 6 4.6641 4.63

MH 4 32.7991* 32.95

SS 6 8.5757 8.49

DCS-2 3 na 6.83

DCS-3 2 na 4.23

DCS-4 1 2.3583 2.27

DS-1 4 28.8880 28.99

DS-2 3 3.9686 3.96

DS-3 2 2.2488 2.24

DS-4 1 2.3583 2.27

Where the results indicate ’na’, it means that no closed form exists for that model and
the NLL is not applicable. However, the GSK method was applicable to fitting the DCS-k
models. The values obtained are very close to those obtained in Tomizawa et al. (2006),
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Table 4: Results for the 4 × 4 data in Table 2

Applied Degrees of NLL GSK

models freedom LRT (G2) Wald’s (W)

S 6 19.2492 19.16

QS 3 7.2708* 7.22

MH 3 11.9784 11.98

SS 3 9.2587 9.14

DCS-2 2 na 4.97

DCS-3 1 8.9554 8.83

DS-1 3 9.9905 9.99

DS-2 2 0.3034 0.30

DS-3 1 8.9554 8.83

but this observation should not surprise us as the GSK is not maximum likelihood based,
but rather on the weighted least-squares (WLS) approach and thus the results are bound
to be slightly different. Where closed form MLE exists, the results obtained from the NLL
approach agree with those published in Tomizawa et al.. The marginal symmetry model
results presented in this paper are the conditional marginal symmetry fits (which assume
that the QS model fits), and are asymptotically equivalent to the unconditional test for the
MH model (Tomizawa and Tahata (2007). We present in Figure 1, the relationships between
the models discussed in this paper.

6 Conclusions

Results obtained in this paper using the non-standard log-linear model approach are con-
sistent with those obtained in Tomizawa et al. (2006). The approach does not work for the
DCS-k models because they do not have closed form solutions. The exception to this being
the DCS-(I-1) which is equivalent to its DS-(I-1) counterpart. We have shown therefore that
the class of models in Tomizawa et al. can be implemented in SAS PROC GENMOD or
PROC CATMOD. We can extend the use to other software such as SPSS PROC GENLOG
or GLIM (Katari,1993). The advantage here is that there is no need for extensive program-
ming to obtain the maximum likelihood estimates and hence the expected frequencies under
our various models. The symmetry, quasi-symmetry and marginal homogeneity models have
received considerable attention and all can easily be implemented in SAS or SPSS (Lawal,
2003, 2004). The macro %DSK makes it possible to generate the factor variables needed to
implement the DS-k models.

SAS programs and the macro for implementing all the models in this article are available
from the authors.
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Figure 1: Relationships between the models

A −→ B indicates that model A implies model B
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