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summary

This study investigates whether the bootstrap via minimum norm quadratic es-
timation procedure offers improved accuracy in the estimation of the parameters
and their standard errors for a two-level hierarchical linear model when the ob-
servations follow a χ

2

1 distribution. Through Monte Carlo simulations, the im-
portance of this assumption for the accuracy of multilevel parameter estimates
and their standard errors is assessed using the accuracy index of absolute rela-
tive bias and by observing the coverage percentages of 95% confidence intervals
constructed for both estimation procedures. Study results show that while both
the restricted maximum likelihood and the bootstrap via MINQUE estimates of
the fixed effects were accurate, the efficiencies of the estimates were affected by
the distribution of errors with both procedures producing less efficient estimators
under the χ

2

1 distribution, particularly for the variance-covariance component
estimates.
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1 Introduction

Hierarchical liner models (HLM) are often used in fields such as educational and organi-

zational research, economics, and biology. The models are also referred to as variance or

covariance components models (Dempster et al., 1981), random coefficients models (Rosen-

berg, 1973), multilevel linear models (Mason et al., 1983), mixed-effects and random-effects

models (Laird & Ware, 1982), and mixed linear models (Goldstein, 1986). Hierarchical lin-

ear models are subsumed under the rubric of the mixed linear models (Davidian & Giltinan,

1995) and can be considered as extensions of standard linear regression models (Paterson &

Goldstein, 1991). Like the ordinary multiple regression model, the underlying assumptions

for a hierarchical linear model are linearity, normality of the residuals and homoscedasticity.
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In hierarchical linear models, the maximum likelihood and the restricted maximum like-

lihood estimation procedures are often used for estimation–both of which rely on the as-

sumptions of normality and large-sample theory. It is known that data analyzed by way of

procedures that depend on normality, such as the maximum likelihood approaches, can have

serious implications for the conclusions reached from (mis)using such inferential techniques.

An alternative estimator to the maximum likelihood procedures is Rao’s (1971) minimum

norm quadratic unbiased estimator (MINQUE). The MINQUE is an attractive estimator

mainly because the theory is developed without reference to normality. The drawback to

the procedure however, is that no formulae exist for the computation of the standard errors

of the MINQUE estimators (Bagakas, 1992). Thus the MINQUE can not be used directly

to perform traditional statistical inference. In such situations, the bootstrap procedure is

useful.

The bootstrap is a resampling approach in which the sampling properties of a statistic

are examined by recomputing its value based on resamples from the original sample (Efron

& Stein, 1981). The bootstrap can be carried out either parametrically or nonparametrically

via estimation techniques such as maximum likelihood or MINQUE to estimate parameters

and their corresponding standard errors, construct confidence intervals, and obtain the

sampling distribution of the statistic. The nonparametric bootstrap is used in particular

when one cannot rely on the assumption of normality. The bootstrapping of the MINQUE

estimator is thus an estimation method that does not rely on the normality assumption.

Throughout the paper this partnership will be referred to as the bootstrap via MINQUE

procedure.

The purpose of the study is to investigate the relative performance of two estimation

procedures, the restricted maximum likelihood and the bootstrap via MINQUE, for a two-

level hierarchical linear model when normality conditions are not met. Specific focus lies

on observing whether the bootstrap via MINQUE procedure offers improved accuracy in

the estimation of the model parameters and their standard errors under the χ2
1 distribution.

The χ2
1 distribution is a markedly skewed distribution and thus represents a large departure

from normality.

2 The Two-level Hierarchical Linear Model

We begin by specifying the level-1 model. Assume that we have N subjects naturally

grouped into J units. Within each unit j, there are nj subjects with
∑J

j=1 nj = N . Assume

further that for the J units, the response nj-vector is modeled with

Y j = Xjβj + ǫj, (2.1)

where Y j is an nj × 1 vector of outcomes, Xj is an nj × q matrix of predictor variables,

βj is a q × 1 vector of unknown parameters and ǫj is the error of prediction of Y j by the

X’s. Also assume ǫj ∼ N(0, σ2
j Rj) where Rj is a positive definite matrix known up to a
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parameter ρj . For simplicity, homoscedasticity is often assumed; that is, Rj = Inj
with Inj

an nj × nj identity matrix.

The variation of each regression coefficient in βj from one unit to another is modeled at

level-2. Assume that information on the jth unit which is relevant to the kth element of βj

is denoted ωjk. Then

βjk = ω′

jkγj + δjk.

Since such an equation may be formulated for each of the q elements of β, by writing

W j =















ω′

j1 0 · · · 0

0 ω′

j2 · · · 0
... 0

. . .
...

0 0 · · · ω′

jq















= ω′

j1 ⊕ ω′

j2 ⊕ · · · ⊕ ω′

jq

γ = (γ ′

1, γ
′

2, · · · , γ′

q)
′

δj = (δj1, δj2, · · · , δjq)
′

we obtain the level-2 model

βj = W jγ + δj , (2.2)

where W j is a q × p matrix of predictors, γ is a p × 1 vector of fixed effects and δj is a

q×1 vector of level-2 errors or random effects which is normally distributed with E(δj) = 0,

and Cov(δj) = ∆j = σ2
jD. We also impose that Cov(δj , δj′ ) = 0, Cov(ǫj , ǫj′) = 0, and

Cov(δj , ǫj′′) = 0, for any j, j′, and j′′ with j 6= j′. By substituting Equation (2.2) into

Equation (2.1), the full multilevel regression model equation can be specified as

Y j = XjW jγ + Xjδj + ǫj . (2.3)

2.1 Model Assumptions

Two levels of distributional assumptions can be specified for the two-level model as described

in Equation (2.3). At level-1, as presented in Equation (2.1), each ǫj is assumed to be

independently and normally distributed with mean vector 0 and variance σ2Inj
for j =

1, . . . , J assumed common across groups; that is, ǫij ∼ N(0, σ2Inj
). The level-1 predictors,

Xj , are also assumed independent of the level-1 random effects; that is, Cov(Xqj , ǫqj) = 0

for all q.

At the second level of the model, as presented in Equation (2.2), it is assumed that

δj = (δj1, δj2, . . . , δjq)
′ iid
∼ N(0, T ).
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For a model with one predictor at each level, the level-2 random errors can thus be

specified by

δj =





δ0j

δ1j



 with T =





τ00 τ01

τ10 τ11



 ,

where τ00 is the variance of the level-2 intercept δ0j , τ11 is the variance of the level-2 slope

δ1j , and the covariances between the two denoted are τ01 and τ10.

Similar to the level-1 assumption, the level-2 predictors, W j , are assumed independent

of the level-2 random errors, δj [i.e., Cov(W j , δj) = 0]. The general model also assumes

that the level 1 errors, ǫj , are independent of the level 2 errors, δj [i.e., Cov(ǫj , δj) = 0],

and that no correlation exists between the predictors at one level and the random errors at

another.

2.2 Robustness

In 1986, Raudenbush & Bryk wrote:

There has been little empirical work on the consequences of violating normal distribu-

tion assumptions in HLM, but we suspect that problems are most likely to occur in

estimates of the model variances, σ
2 and T , and in hypothesis testing. This suggests

that one should be very cautious in making substantive inferences on the basis of these

statistics. (p. 14)

Their suspicions were in fact correct. Since then the effects of the violation of the nor-

mality assumption have been addressed and it is known that while the regression coefficients

and their standard errors are relatively unbiased, the variance coefficients and their stan-

dard errors are not. Raudenbush & Bryk’s caution concerning inference has not been heeded

however, and many researchers still proceed with computations even when normality may

not be guaranteed.

In classical ANOVA, non-normality can have devastating effects on the power particularly

when sampling from a heavy-tailed distribution (Wilcox, 1990). The reduction in power is

due to the fact that heavy-tailed distributions inflate the variance. Many robustness studies

in hierarchical linear modeling of educational research data have focused on distributions

such as the t distribution. The researcher found few studies investigating the effects of heavy-

tailed distributions on multilevel parameter estimation and inference. Seltzer et al. (2002)

used a Markov Chain Monte Carlo algorithm to investigate the robustness of the bayesian

formulation of the one-way ANOVA model with random effects (the simplest of hierarchical

models) to violations of normality employing t level-1 assumptions in the presence of outliers.

In 1993, Seltzer similarly detailed the recalculation of the posterior distribution of fixed

effects using Gibbs Sampling approach under t level-2 distributional assumptions. Seltzer

reported that under heavy-tailed level-2 assumptions, estimation accuracy was less affected

by outliers compared with level-2 normality assumptions.
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Additionally, when sample sizes are small, the accuracy of the estimates obtained us-

ing asymptotic methods such as maximum likelihood estimation is questioned. Snijders &

Bosker (1999, p. 140) offer the following observation:

Requirements on the sample size at the highest level, for a hierarchical linear model

with q explanatory variables at this level, are at least as stringent as requirements on

the sample size in a single level design with q explanatory variables.

Like Kreft (1996), they suggest 30 as the optimal minimum number of groups and group

size required to obtain precise estimates, particularly of the standard errors of the variance

components. These findings were also supported by Basiri (1988) who concluded that it

was indeed more important to have a large number of groups rather than a large number

of individuals per group. His study found that not only did a larger number of groups

result in increased accuracy of level-2 estimates but also that another factor, the intraclass

correlation, exerted a significant effect on the accuracy of the error estimates.

The intraclass correlation coefficient (ICC), ρ, expresses the amount of relatedness of

the observations within a group, such as a school (Goldstein, 1995), and is defined as the

ratio of the variance component due to groups to the total variance. According to Turner in

Shackman (2001, p. 2), the intraclass correlation “represents the likelihood that two elements

in the same [group] have the same value, for a given statistic, relative to two elements chosen

completely at random in the population . . . A value of 0.05 . . . is interpreted, therefore, to

mean that the elements in the [group] are about 5% more likely to have the same value

than if the two elements were chosen at random in the survey. The smaller the value,

the better the overall reliability of the sample estimate will be”. In the presence of such

dependencies, Pedhazur (1997) found that the standard errors of the level-1 coefficients were

often underestimated even when the intraclass correlation was very small.

Based on these cautions, the minimum sample size used for this study was 30 at each

level, and the ICC was set to 0.20 since most ICCs were found to have values below 0.20 in

multilevel research (Gulliford et al., 1999).

3 Estimation

In multilevel estimation, full maximum likelihood (FML) and restricted maximum likelihood

(REML) estimation are the most commonly used procedures for estimation. Even though

both these methods rely on classical asymptotic theory and assume normally distributed

errors, their estimation results are often different.

3.1 Maximum Likelihood Estimation: FML versus REML

Maximum likelihood estimators for mixed models were first discussed by Hartley & Rao

(1967) with later computational developments often based on Dempster et al.’s (1977)

expectation-maximization (EM) algorithm. Other algorithms proposed for obtaining the
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maximum likelihood estimates include Longford’s (1987) Fisher scoring methods and Gold-

stein’s (1986) iterative generalized least-squares (IGLS) algorithms.

Maximum likelihood estimators are those estimates for which the likelihood of observing

the data Y is a maximum (Raudenbush & Bryk, 2002). Consider the combined single

equation model provided in Equation (2.3) which is repeated here for convenience:

Yj = XjW jγ + Xjδj + ǫj

with ǫj ∼ N(0, σ2Inj
) and δj ∼ N(0, T ). This model may be viewed as a special case of

the mixed linear model with fixed effects γ and random effects δj . E(Y j) = XjW jγ and

V j = XjTX ′

j + σ2I where V j is the dispersion matrix and T is the variance-covariance

matrix. As detailed in Afshartous & de Leeuw (2004), the full log-likelihood for the jth unit

of the general two-level hierarchical linear model is

Lj(σ
2, T , γ) = −

nj

2
log(2π) −

1

2
log|V j | −

1

2
d′

jV
−1
j dj, (3.1)

where dj = Y j − XjW jγ.

The log-likelihood for the entire model can be written as

L(σ2, T , γ) =
J

∑

j=1

Lj(σ
2, T , γ), (3.2)

where the log-likelihood is expressed as a sum of unit log-likelihoods in view of the fact

that the J units are independent. If the model is not approximately true and the sample

size is not very large, maximizing this likelihood function for a 2-level hierarchical linear

model is very difficult since in most cases the maximizer of the likelihood cannot be written

in a closed form (Eliason, 1993; Raudenbush & Bryk, 2002)—hence the need for iterative

schemes such as the EM-algorithm, Fisher scoring and IGLS mentioned previously.

In multilevel estimation, full maximum likelihood (FML) and restricted maximum likeli-

hood (REML) functions are commonly used for variance component analysis. The difference

in the two approaches lies primarily in the treatment of the likelihood—the variance compo-

nents are estimated by the values that maximize the likelihood function over the parameter

space in the full maximum likelihood procedure, while restricted maximum likelihood parti-

tions the likelihood into pieces and maximizes the portion which is free of the fixed effects.

Although the full maximum likelihood estimators of the fixed regression coefficients for a

general class of regression models, including multilevel models, were proved to be unbiased

(Magnus, 1978), simulation studies by Busing (1993) revealed that the variance compo-

nents estimates in the hierarchical linear model obtained via this method are downward

biased—this can often suggest more precision to the researcher than actually exists.

Through Monte Carlo simulations van der Leeden et al. (1997) found that although

the standard errors of the variance components are generally estimated too small for both

full maximum likelihood and restricted maximum likelihood, the restricted maximum like-

lihood estimates were more accurate. These results were confirmed by Browne (1998) who
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concluded that the restricted maximum likelihood estimator is almost always at least as

good as the full maximum likelihood and sometimes better, especially in estimating vari-

ance components, and Harville (1977) who recommended the use of restricted maximum

likelihood estimating equations when one cannot rely on the assumption of normality. Thus

the restricted maximum likelihood estimation procedure was used in this study.

It is crucial to note that the restricted maximum likelihood estimation procedure still

relies on the normality assumption which may not be guaranteed in most multilevel data

applications—an assumption which is not required for estimation using Rao’s MINQUE

(1970, 1971a, 1971b).

3.2 MINQUE in HLM

Rao (1970, 1971a, 1971b) proposed the minimum norm quadratic unbiased estimator (MINQUE)

whose theory was developed without reference to normality or variance of the estimators.

In practice, the estimator is often used with estimated generalized least squares estimators

(EGLS) to obtain estimates of the fixed model parameters (Swallow & Monahan, 1984). The

MINQUE technique involves estimating a linear function of the variance components,P ′σ,

using a quadratic function of the observations Y ′AY assumed to possess the properties of

unbiasedness, translation invariance and minimum norm for the vector of observations Y

and a symmetric matrix, A (Searle, 1979).

Bagakas (1992)detailed Rao’s general MINQUE estimators and the derivation for hier-

archical linear models as follows. Begin by recalling the combined two-level model presented

in Equation (2.3). With Z = XjW j , we can rewrite the equation as

Y = Zγ + Xδ + ǫ, (3.3)

where:

Y is an (n × 1) vector of n observations;

Z is an (n × P ) known matrix of rank r(Z) < n;

γ is a (P × 1) vector of P fixed effects parameters;

X is an (n × J) known matrix;

δ is a (J × 1) vector of J unobservable random effects parameters;

ǫ is a (n × 1) vector of random error terms;

The vector δ is partitioned as

δ′ = [δ′

1 . . .δ′

k . . . δ′

c] (3.4)

in order to identify the variance components for each random effect, δ. Similarly, the matrix

X is partitioned as

X = [X1 . . . Xk . . . Xc] (3.5)
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such that Equation (3.3) can be rewritten in a form similar to Rao’s (1971a) equation 5.3

as

Y = Zγ +

c
∑

k=0

Xkδk, (3.6)

where ǫ is written as δ0 with corresponding X0 = In.

Using this formulation, Bagakas (1992) derived the multilevel form of the vector of

MINQUE estimators of the variance and covariance components as:

σ̂ = {tr(P wZkZ ′

kP wZk′Z ′

k′ )}−1{Y ′P wZkZ ′

kP wY } (3.7)

with the projector operator, P w, on the space generated by the columns of Z defined simi-

larly to Rao’s (1971b) equation 1.2 as

P w = V −1
w − V −1

w Z(Z ′V −1
w Z)

−1
Z ′V −1

w , (3.8)

where V w = XDwX ′ and Dw = diag{w0In, w1Ij} is a matrix of δ weights w0 and w1 in

the norm given by w0 = 1 − ρ and w1 = ρ for the intraclass correlation, ρ.

After mathematical manipulations, Bagakas (1992) also showed that the fixed effects

parameters of the model can be estimated using

γ̂ = KZ ′V −1
w Y , (3.9)

which eventually is shown to have simplified form

γ̂ = w
∑

(KZ ′

jY j − cjrjKSj), (3.10)

where w = 1/(1 − w1) and cj = w1/(1 + (nj − 1)w1) for j = 1, 2, . . . , J ; Zj is the nj rows

of the matrix Z associated with fixed effects in the jth group; rj = X ′

1jY j is the sum of Y

elements in group j; Sj = Z ′

jXij is a (P × 1) vector of column sums of Zj and K defined

as

K = w
∑

(Z ′

jZj − cjSjS
′

j). (3.11)

For complete details on the derivation of the above formulae, the reader is referred to

Bagakas (1992) and Rao (1970, 1971a, 1971b).

Although the MINQUE procedure has been mentioned as a potential alternative to the

maximum likelihood procedure (Rao & Kleffe, 1989; Swallow & Searle, 1978; Kreft et al.,

1990), after an exhaustive search of the literature, few studies were found that investigate

the estimator’s use in multilevel modeling. In an unpublished dissertation, Bagakas (1992)

compared the usual MINQUE estimates to bootstrapped estimates for a two-level random

intercepts model. Using a Monte Carlo simulation study, he observed the performance of the

two procedures under various conditions—normal versus Laplace errors; unbalanced group

sizes and the intraclass correlation observed at three levels: 0.01, 0.05 and 0.20. He found

that the bootstrap via MINQUE technique produced lower standard errors with minimal bias

and allowed for the generation of bootstrap confidence intervals. Based largely on Bagakas’s

(1992) findings and on the bootstrap’s unreliance on the distributional assumptions, the

bootstrap via MINQUE procedure was adopted for this study.
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4 Method

A series of Monte Carlo simulations were conducted on a two-level hierarchical linear model

with one explanatory variable at each level to examine the performance of the parameter

estimates and their standard errors obtained from two estimation procedures—restricted

maximum likelihood and bootstrap via MINQUE. SAS and SAS/IML programs (2003)

were used to generate the data, implement estimation techniques, fit the specified model

and compute estimation accuracy indices for both approaches.

4.1 The Simulation Model

The two-level random coefficients model represented a reasonable model that, in the interest

of parsimony, relies on a small number of variables. Formally the model is as follows:

Level − 1 : Yij = β0j + β1jXij + ǫij (4.1)

Level − 2 : β0j = γ00 + γ01Wj + δ0j

β1j = γ10 + γ11Wj + δ1j , (4.2)

where ǫij ∼ N(0, σ2), and a covariance matrix T consists of τ00, the variance of the level-2

intercept δ0j ; τ11, the variance of the level-2 slope δ1j ; and the covariance between the two

denoted τ01 and τ10.

An observed value Yij was generated through the combined model:

Yij = γ00 + γ01Wj + γ10Xij + γ11WjXij + (δ1jXij + δ0j + ǫij). (4.3)

The following parameters are estimated based on Equation (4.3):

• Fixed-effect coefficients: γ00, γ10, γ01, γ11

• The level-1 variance component: σ2

• The level-2 variance-covariance components: τ00, τ11, τ01

Following Cohen (1998), the intercept coefficient was set to 1.00, and a medium sized

effect of 0.30 was used for the slopes. The level-1 variance component, σ2, was set to 0.5

while the level-2 variance-covariance component, τ00 and τ01, followed from the specification

of σ2 and the intraclass correlation coefficient, ρ. For ρ = 0.20, τ00 = 0.125 and τ01 = 0.0625.

Finally, the value for the slope variance, τ11, was equated to that of the intercept variance,

τ00, since a 1993 study by Busing showed that the effects for these coefficients were similar.

Number of Groups

Various simulation studies performed (c.f., Mok, 1995; Maas & Hox, 2005) suggest that the

number of groups (J) at level-2 affects the estimation accuracy more than the group sizes

(nj) at level-1. Maas & Hox (2005) also found that having balanced or unbalanced groups
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had no influence on the maximum likelihood estimates and their standard errors. Attention

is thus restricted to the balanced case nj = n with a value of 30 chosen based on simulation

results from researchers such as Kreft (1996) and Kreft & de Leeuw (1998) who proposed a

30–30 rule—30 as the minimum required sample size at both level-1 and level-2 to ensure

accurate parameter estimation.

There were two levels used for the number of groups factor (NG) with the choice based

on the literature and practice. The lowest level, 30, is the smallest number of allowable

groups proposed by Kreft’s (1996) 30–30 rule, while 100 is sufficiently large based on results

by researchers such as Swaminathan (2001) and van de Leeden et al. (1997). Thus while

the level-1 or group size was fixed at 30, the level-2 size (number of groups) was varied to

observe the performance of the estimators.

Intraclass Correlation

The intraclass correlation coefficient (ICC), ρ, represents the correlation between pairs of

values within the J groups and measures the degree of dependence among observations

(Raudenbush & Bryk, 2002). The function is given by the ratio of the level-2 variance (the

variance component due to groups) to the total variance in the null representation of the

model. By setting all the coefficients of the explanatory variables of Equation (4.3) to zero,

we obtain the null (one-way ANOVA with random effects) representation of the model:

Yij = γ00 + δ0j + ǫij .

The intraclass correlation based on the one-way ANOVA with random effects model is

specified as

ρ =
τ00

τ00 + σ2
, (4.4)

where σ2 is the variance of the level-1 residuals and τ00 is the variance of the level-2 intercept

errors. Gulliford et al. (1999) found that most ICCs were found to have values below 0.20

in multilevel research, so this value was used for the present study. With specified σ2 = 0.5

and ρ = 0.20, we obtain τ00 = τ11 = 0.125,and τ01 = 0.0625.

The preceding simulation decisions are summarized in Table (1) below.

Parametric Assumption

A pilot study performed on a double exponential (Laplace) distribution revealed little to no

significant difference between the estimates obtained from the restricted maximum likelihood

procedure and those from the bootstrap via MINQUE procedure. The double exponential

distribution represented the case where the distribution was still symmetric although the

tails are longer and thinner than those of the normal distribution. It appeared to the

researcher that the Laplace distribution did not differ enough from the normal distribution

to unambiguously show the benefits of the bootstrap procedures. The χ2
1 distribution was

then adopted since it represents a markedly skewed departure from normality.
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Table 1: Simulation Conditions & Population Parameters

Sample Size

Level-2 Sample Size, J 30, 100

Level-1 Sample Size, nj 30

Fixed Components

Intercept, γ00 1.00

Slopes, γ01, γ10, γ11 0.30

Random Components

Level-1 variance, σ2 0.50

Level-2 variances, τ00 = τ11 0.125

Covariance, τ01 0.0625

Intraclass correlation, ρ 0.20

Distributions χ2
1

4.1.1 Procedure

Following Kendall & Stout, in Busing (1993), who reported that between 100 and 500 Monte

Carlo replicates are adequate to be considered large enough to ensure stability of results,

500 replicates were used in each condition of this study. This resulted in 1000 trials being

performed across the two condition models (χ2
1 with NG= 30 versus χ2

1 with NG= 100). The

analyses were carried out twice—once with the restricted maximum likelihood estimation

procedure and once using the bootstrap via MINQUE procedure.

Computer segments were coded to generate χ2
1 variates and the χ2

1 residuals were gen-

erated in part using the following steps:

1. Draw (aj0, aj1) from a bivariate normal distribution.

2. Set δ0j = (a2
j0 − 1)/ki and δ1j = (a2

j1 − 1)/ki where ki are chosen so as to produce the

τ values mentioned above.

4.2 Implementing the Bootstrap

The nonparametric cases bootstrap involves resampling from the original sample and as-

sumes only that the original sample is a random sample from the parent population. For

the Monte Carlo simulation study performed for this paper, the bootstrap was implemented

in the following steps:
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1. Construct the empirical distribution F̂J by assigning mass 1
J

to each of the level-2

units in the original sample.

2. Randomly sample with replacement from the J level-2 units.

3. For each of the selected level-2 units containing nj level-1 units, construct distributions

Fnj
by assigning mass 1

nj
to the jth level-2 unit, for j = 1, 2, . . . , J .

4. For each selected level-2 unit whose distribution was constructed in step 3 above, draw

nj level-1 units with replacement. This produced the bootstrap data set with a vector

of observations denoted by Y ∗.

5. Determine the MINQUE estimate of the parameters of the model using the bootstrap

replicated sample.

6. Repeat a large number B times to obtain a sequence of MINQUE estimates of the

parameters of the model for b = 1, 2, . . . , B.

7. Observe the distribution of the bootstrap parameter values. The empirical expectation

of the bootstrap estimate of any given parameter in the model, say θ̂∗(.), is then found

by averaging the θ̂∗b obtained bootstrap replicated estimates over all replications. That

is,

θ̂∗(.) =
1

B

B
∑

b=1

θ̂∗b . (4.5)

Additionally, the standard error of the bootstrap estimate of the parameter, denoted

s.e.(θ̂∗), can be computed as

s.e.(θ̂∗) =

[

1

B − 1

B
∑

b=1

(θ̂∗b − θ̂∗(.))
2

]

1

2

. (4.6)

For the bootstrap procedure, estimation is performed at each of b replications for b =

1, . . . , B, large. A pilot study performed revealed that there was little improvement in the

confidence intervals past B = 1000 so this number of replications was used in the present

study.

Thus while one restricted maximum likelihood estimate (REML) will be obtained at

each of the 1000 trials in the Monte Carlo simulation study, the bootstrap estimate at each

trial of any given parameter in the model specified in Equation (4.3) will be the average of

1000 bootstrap replicated estimates.

4.3 Estimation Accuracy Indices and Analysis

Parameter estimates and their corresponding standard errors were obtained for each fixed-

effect parameter (γ00, γ10, γ01, γ11) and variance-covariance component estimate (σ2, τ00, τ01, τ11).
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The index of absolute relative bias was used in this study to compare the degree of bias in the

estimation of parameter values. For the REML-estimates, absolute relative bias was com-

puted as the absolute proportion of the theoretical value from which the estimate departs

from the theoretical value. That is,

Absolute Relative Bias =

∣

∣

∣

∣

∣

(θ̂ − θ)

θ

∣

∣

∣

∣

∣

,

where θ̂ is the estimate of θ.

The bootstrap estimate of relative bias has the form

B̂IAS =
1

B

B
∑

b=1

(θ̂∗b − θ̂)

= θ̂∗(.) − θ̂. (4.7)

The bootstrap estimate of bias allows for the construction of a bias-corrected estimator

of the parameter of interest, θ̂Boot, which in most cases simply corrects for scale (Schenker,

1985). The absolute bias-corrected form of θ̂ is given by

θ̂Boot = |θ̂ − B̂IAS|

= |2θ̂ − θ̂∗(.)|. (4.8)

Chen & Hall (2003) showed that the estimator, θ̂Boot given in Equation (4.8) above cor-

rects for biases of order n−1 thus satisfying E(θ̂Boot) = O(n−2). The use of bias-corrected

point estimates of the parameter θ, referred to as pivoting in the literature, has been ad-

vocated by researchers such as Hall (1990) and for use in the construction of bootstrap

confidence intervals. Following Shieh & Fouladi (2003), the bias criterion were defined as

follows: small to negligible when relative bias was less than 5%, moderate or medium bias

when relative bias was between 5% to 20% and large bias when relative bias was greater

than 20%.

To investigate the accuracy of the standard errors, 95% confidence intervals were also

computed for each parameter in each replication for both estimation procedures. The per-

centage of replications in which the interval contained the true parameter was recorded and

analyzed to investigate the degree to which the observed and nominal coverage percentages

agreed. Confidence intervals are preferred to standard deviations as an indication of preci-

sion particularly when the underlying distribution is skewed or strongly non-normal, as is

the case with the χ2
1 distribution. In such cases, the standard error is not a good indica-

tion of the precision of the point estimate. Confidence intervals for the estimates obtained

via restricted maximum likelihood were based on the usual large-sample approach, while

bootstrap confidence intervals were constructed using the percentile method.
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5 Results

The restricted maximum likelihood estimation procedure relies on the assumption that the

observations are normally and independently distributed. However, as previously mentioned,

the normality of the population distribution can not be guaranteed especially when modeling

situations such as with school effects data. Unfortunately, in application many researchers

proceed with computations under the normality assumption regardless of whether or not

they are met—even when there is little doubt of the data’s non-normality. The aim of

this study is not to yet again outline methods for assessing non-normality, but rather to

investigate the behavior of the restricted maximum likelihood estimators and the bootstrap

via MINQUE procedure in a case where the normality assumption is known to not hold.

The χ2
1 distribution is a markedly skewed distribution and thus represents a large departure

from normality.

5.1 Parameter Estimates and Relative Bias

Table(2) shows the mean absolute relative biases of the fixed and random parameter es-

timates. Overall the fixed effects parameter estimates were almost consistently unbiased

with the REML estimates competing with those obtained via the bootstrap procedure, on

average. Mean relative biases for all fixed effect estimates were negligible (magnitude <5%)

with the largest fixed effect mean relative bias magnitude observed at 0.5% for the γ10 pa-

rameter under REML, while the largest bias under the bootstrap procedure was 0.1%. The

largest biases were noted in conditions with the low level of the number of groups factor.

Table 2: Mean absolute relative bias of the fixed & random parameter estimates

Fixed γ00 γ10 γ01 γ11

NG=30 REML 0.003 0.005 0.002 0.004

BOOT 0.001 0.001 0.000 0.001

NG=100 REML 0.001 0.001 0.001 0.001

BOOT 0.000 0.000 0.000 0.000

Var-Covariance τ00 τ11 τ01 σ2

NG=30 REML 0.047 0.048 0.045 0.003

BOOT 0.007 0.009 0.006 0.001

NG=100 REML 0.014 0.019 0.010 0.001

BOOT 0.004 0.004 0.003 0.000

Although for both the REML and bootstrap procedures as number of groups increased
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the bias decreased in magnitude, this increase had no statistically significant effect on the

absolute relative bias of the fixed parameter estimates (p-values < 0.001).When NG = 30,

the difference in the mean absolute relative bias of the estimates obtained from the two

methods is greater than when the number of groups is increased to 100. Wilcoxon signed

rank tests of the pairwise differences in the mean absolute relative biases for the two methods

revealed no statistically significant differences between the performance of the REML and

the bootstrap procedure in the estimation of the fixed effect parameters for the χ2
1 data at

either level of the group condition (p-values = 0.1250).

Like the fixed effects, both estimation procedures produced negligible biases on average

for all variance-covariance component parameter estimates. The largest random effects

bias under REML had magnitude of approximately 5% corresponding to the τ11 parameter

estimate when NG = 30, while the largest mean relative bias of the variance-covariance

components observed for the bootstrap procedure was 0.9% corresponding to τ11 when

NG = 30. As observed with the fixed effects, the magnitude of the mean absolute relative

bias of the variance-covariance component estimates decreased as the number of groups

increased for both procedures. The decrease in the absolute relative bias was larger on

average for the level-2 variance-covariance parameter estimates than for the level-1 variance

σ2 for both procedures.

A comparison of the estimation procedures was then conducted using a Wilcoxon signed

rank test of the pairs across conditions and revealed that there was a statistically significant

difference between the estimates of the variance-covariance components obtained via the two

estimation procedures with an observed p-values of 0.0078. However results suggest that

both estimation procedures performed satisfactorily for the estimation of the fixed effects

and the variance-covariance components.

Results thus suggest that both estimation procedures performed satisfactorily for the

estimation of the fixed effects and the variance-covariance components.

5.2 Standard Errors and Coverage Probabilities

To investigate the accuracy of the standard errors under the χ2
1 distribution, 95% confi-

dence intervals were constructed for each parameter in each replication for both estimation

procedures. Confidence intervals are preferred to standard errors as an indication of pre-

cision particularly when the underlying distribution is skewed or strongly non-normal, as

is the case with the χ2
1 distribution, so the bootstrap confidence intervals were expected

to excel where the REML-intervals usually fail. The coverage rates of the 95% confidence

intervals are given in Table (3) and suggest that overall the bootstrap intervals achieved

better coverage rates, particularly for the variance-covariance components.

For the fixed effects parameters, the bootstrap produced coverage rates were higher than

those obtained from the REML technique over simulated conditions (p-value = 0.0048). The

lowest coverage rate observed under REML was approximately 91% for γ10 when NG = 30

compared to the lowest bootstrap rate of about 93%. For the variance-covariance param-

eters, as expected, the confidence intervals based on REML estimates provided insufficient
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Table 3: Coverage of the 95% confidence interval for the fixed & random effects

Fixed γ00 γ10 γ01 γ11

NG=30 REML 0.920 0.909 0.937 0.951

BOOT 0.943 0.944 0.947 0.944

NG=100 REML 0.940 0.934 0.946 0.948

BOOT 0.948 0.949 0.949 0.950

Var-Covariance τ00 τ11 τ01 σ2

NG=30 REML 0.600 0.611 0.687 0.943

BOOT 0.944 0.945 0.945 0.948

NG=100 REML 0.682 0.652 0.725 0.948

BOOT 0.948 0.949 0.949 0.950

coverage for the estimates of the level-2 parameters with coverage rates ranging from ap-

proximately 60% for τ00 when NG = 30, to approximately 73% for τ01 when NG = 100. In

contrast, the coverage percentages obtained by the bootstrap generated confidence intervals

for the level-2 parameter estimates performed well with coverage rates ranging from 94.4%

for τ00 when NG = 30 and to 94.9% for τ11 and τ01 when NG = 100. The level-1 variance,

σ2 performed similarly for both methods across all conditions with adequate coverage rates

attained.

6 Summary and Discussion

Based on the analysis of the mean relative biases, the skewness of the underlying distribu-

tion had little to no effect on the estimates of the fixed effects obtained via the restricted

maximum likelihood estimation procedure, with negligible(< 5%) relative biases obtained.

The bootstrap procedure also produced unbiased estimates of the fixed parameters. On

average, the fixed effects parameter estimates based on the bootstrap procedure performed

better than those obtained via restricted maximum likelihood estimation. The coverage per-

centages for the fixed parameters based on the usual large-sample approach of the REML-

intervals did not perform as well as the bootstrap confidence intervals.

For the variance-covariance components, the estimates from both procedures produced

negligible biases. Across all conditions, estimated confidence intervals for the level-2 variance-

covariance parameters produced via REML-estimation were unacceptable. Thus when nor-

mality is violated (particularly when the data are highly skewed), the REML-estimates of

the standard errors should not be used for inference. These findings support Raudenbush

& Bryk’s (1986, p. 14) conjecture that:
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on the consequences of violating normal distribution assumptions in HLM, . . . problems

are most likely to occur in estimates of the model variances, σ
2 and T , and in hypothesis

testing. This suggests that one should be very cautious in making substantive inferences

on the basis of these statistics.

Based on the results of this study, the bootstrap via MINQUE appears to be an attractive

alternative to estimation in cases where normality is not guaranteed. Maas & Hox (2004, p.

439) suggest that if the normality assumption is violated, “a different approach that merits

the analysts’ attention is the non-parametric bootstrap”. It is hoped that the nonparametric

cases bootstrap via MINQUE presented in this paper will offer another useful alternative

to maximum likelihood estimation procedures in hierarchical linear modeling particularly

when the underlying distribution is non-normal or the sample size at level-2 is small.
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