
Journal of Statistical Research ISSN 0256 - 422 X

2009, Vol. 43, No. 1, pp. 117-125

Bangladesh

GENE SELECTION WITH JOHNSON’S DISTRIBUTION

Florence George

Florida International University

Department of Statistics, Miami, Florida, USA

Email: fgeorge@fiu.edu

K.M. Ramachandran

University of South Florida

Department of Mathematics and Statistics, Tampa, Florida, USA

Email: ram@cas.usf.edu

Li Lihua

Institute for Biomedical Engineering and Instrumentation,

Hangzhou Dianzi University, China

Email: lilh@hdu.edu.cn

summary

Microarrays have become increasingly common in biological and medical research.

A major goal of microarray experiments is to determine which genes are differen-

tially expressed between samples. A new approach using the Johnson’s system of

distributions is proposed in this paper to make simultaneous inference concerning

which genes are differentially expressed, in which no specific parametric distribu-

tion is assumed for the gene expression levels. The simulation study shows that

the new approach has better results compared to many existing methods.
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1 Introduction

Microarrays are devices for measuring gene expression levels, that is, how active a particular

gene is in the working of a given cell. Microarrays provide the expression levels of thousands

of genes simultaneously. Microarray technology can provide important insights about the

underlying genetic causes of many important biological questions. One of the major goals

of microarray data analysis is the identification of genes that are differentially expressed

across two or more samples under different experimental conditions. Genes that show dif-

ferential expression under different experimental conditions will allow for the identification

of biomarkers for disease class predictions as well as the ability to fine-scale predictions of
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drug responses. A large number of methods have been developed for the selection of dif-

ferentially expressed genes. Many methods that have been proposed to assess differential

analysis are based on using the two-sample t-test or a minor variation of the t-statistic, but

they differ in how to associate a statistical significance level (p−value) to the corresponding

summary statistic (13). The p − value is calculated based on the distribution of the test

statistic under the null hypothesis. Differences in how a significance level is assigned could

lead to possibly large differences in the numbers of genes detected and the number of false

positives and false negatives.

A straight forward method for the selection of differentially expressed genes is the tra-

ditional t-test (2). Under the normality assumption of the expression levels, the t-statistic

follows a t-distribution in a standard t-test. Tusher et al. (15) proposed the Significance

Analysis of Microarrays(SAM) version of the t-tests. In SAM (15), instead of regular t-

statistic, modified-t is used where the denominator is variance plus a fudge factor (see the

original paper for details). There is no parametric assumption like normality on expres-

sion levels. Essentially SAM identifies genes with statistically significant changes in expres-

sions by assimilating information from a set of gene-specific modified-t statistic and deciding

whether this statistic is significant based on permutations of the available experimental data.

The size of the data set should be large enough to allow for a sufficient number of distinct

permutations to be obtained. The Wilcoxon rank sum test has also been used as alternative

to the t-test in the two-sample comparison of microarray data (11). As it is non-parametric,

there are no parametric assumptions but it assumes the two samples are derived from

identical distributions, with the only difference being their location parameters. Parametric

Empirical Bayes(EBarrays) approach developed by Kendziorski et al computes the posterior

probability under one of the two proposed hierarchical model assumption of the expression

levels, one based on the assumption of Gamma distributed measurements(EBarrays-GG)

and the other based on log-normally distributed measurements (EBarrays-LNN) (9), (12).

In addition to the assumption of specific parametric model, a constant coefficient of variation

of expression levels is also assumed in EBarrays.

This paper discusses a new approach to identify differentially expressed genes using the

Johnson’s system of distributions and compare the results with some commonly used meth-

ods. We use Johnson’s distribution to estimate the null distribution without any parametric

assumption of gene expression levels.

2 Method

2.1 Data

Ovarian cancer is the fifth leading cause of cancer death among women in the United

States and Western Europe, and has the highest mortality rate of all gynaecologic cancers.

Currently, the standard treatment protocol used in the initial management of advanced-

stage ovarian cancer is primary cytoreductive surgery followed by primary platinum-based

chemotherapy. However, approximately 30% of patients with advanced stage disease do
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not demonstrate a complete response to primary platinum-based therapy. Identifying genes

which are expressed significantly differently in the two groups, could provide some insight

for the precise diagnosis of response to the treatment and help the medical specialists to

choose an alternate therapy when needed. The ovarian cancer tissue samples involved in

this study are collected from the tumor banks at the H.Lee Moffitt Cancer Centre & Re-

search Institute and Duke University Medical center. Affymetrix U133A Gene Chip arrays

were used to measure expression of 22,283 genes in advanced stage serous ovarian cancers

from 55 patients who underwent primary surgery followed by platinum-based chemother-

apy. Expression values are calculated using the robust multi-array (RMA) algorithm (6)

implemented in the Bioconductor (http:\\www.bioconductor.org) extensions to the R

statistical programming environment (5). Gene expressions were compared between pa-

tients who demonstrated a complete response to platinum-based therapy and those who did

not to identify differentially expressed genes.

2.2 Johnson’s System of Distributions

In 1949, Johnson derived a system of curves (7),(8) that has the flexibility of covering a

wide variety of shapes. The Johnson’s system has the practical and theoretical advantages

of being able to transform to the normal distribution (7). The Johnson system is able to

closely approximate many of the standard continuous distributions through one of the three

functional forms and is thus highly flexible. The Johnson system provides one distribution

corresponding to each pair of mathematically possible values of skewness and kurtosis.

The significant flexibility of Johnson system of distributions is very useful in charac-

terizing the complicated data set like microarray data. In all parametric approaches of

identifying significant genes, there is a distributional assumption for gene expression like

Normal, log-normal, Gamma etc. The advantage of using Johnson system of distributions

is that many, if not all, of the commonly used continuous distributions such as Normal, log-

normal, Gamma, Beta, Exponential are special cases of Johnson system (4). The Johnson

system give a variety of shapes of curve as wide as that provided by the systems of fre-

quency curves in general use (7). Any continuous distribution with finite moments can be

approximated by a member of the Johnson’s system (7). This motivated us using Johnson

system for the analysis of microarray data.

Given a continuous random variable X whose distribution is unknown and is to be

approximated, Johnson proposed three normalizing transformations having the general form

Z = γ + δf
(

(X − ξ)/λ
)

,

where f(.) denotes the transformation function, Z is a standard normal random variable, γ

and δ are shape parameters, λ is a scale parameter and ξ is a location parameter. Without

loss of generality, it is assumed that δ > 0 and λ > 0. The first transformation proposed by
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Johnson defines the lognormal system of distributions denoted by SL:

Z = γ + δ ln
(

(X − ξ)/λ
)

, X > ξ

= γ∗ + δ ln(X − ξ), X > ξ.

SL curves cover the lognormal family.

The bounded system of distributions SB is defined by

Z = γ + δ ln
(

(X − ξ)/(ξ + λ − X)
)

, ξ < X < ξ + λ.

SB curves cover bounded distributions. The distributions can be bounded on either lower

end, the upper end, or both. This family covers gamma distributions, beta distributions

and many others.

The SU curves are unbounded and cover the t and normal distributions, among others.

The unbounded system of distributions SU is defined by

Z = γ + δ ln





(

X − ξ

λ

)

+

{

(

X − ξ

λ

)2

+ 1

}1/2


 , −∞ < X < ∞

= γ + δ sinh−1

(

X − ξ

λ

)

,

where γ, η, ǫ, λ are the parameters to be estimated using data values. In a plot of the third

and fourth standardized moments, β1(measure of skewness) and β2(measure of kurtosis),

the SL distribution form a curve which divides the (β1, β2) plane into two regions. The SB

distribution lie in one of the regions and the SU lie in the other. When using the Johnson

system, the first step is to determine which of the three families should be used. The usual

procedure is to compute the sample estimates of the standardized moments and choose the

distribution according to which of the two regions the computed point falls into (7). A

method for the selection of Johnson’s system and estimation of parameters by using sample

quantiles (16) is introduced by Wheeler. Slifker and Shapiro introduced another selection

rule which is a function of four percentiles for selecting one of the three families and to give

estimates of the parameters (14).

2.3 Johnson’s Distributions for Gene Selection

We are interested in determining which genes show a statistically significant difference in

gene expression between two conditions. Consider the situation where there are n1 replicate

samples for condition-1 and n2 replications of condition-2. Summarize the information on

gene j to the m-value defined by

mj = {(x̄j2 − x̄j1)/(sj + a0)}, (2.1)

where sj =
√

{var(xj1)/n1} + {var(xj2)/n2} and a0 is a shrinkage parameter which de-

pends on the sj values. The constant a0 in the denominator of Equation 2.1 can lead to the
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reduction of the overall variance of mj , giving the tests more power. This has the added

effect of dampening large values of the statistic that may arise from small variance of genes.

We have taken a0 as the median of the sj values. The idea of modifying estimators of vari-

ance has been presented by others in similar contexts. The SAM t-test (15) adds a small

constant to the gene-specific variance estimate in order to stabilize the small variances. In

SAM, the fudge factor s0 is chosen as the value which minimizes the coefficient of variation

of the SAM statistic di. The regularized t-test proposed by Baldi and Long (1) replaces the

usual variance estimate with a Bayesian estimator based on hierarchical prior distribution.

For each gene we calculate the m-value using Equation 2.1. To make a decision about the

significance of the summarized value of any gene, we need to know the null distribution f0 of

m, when genes are equally expressed. For this purpose we make use of permutation technique

and Johnson’s distribution as follows. Randomly select n1 units from the combined pool

of n = n1 + n2 sample units and label them as group 1. The remaining n2 units will

be labeled as group 2. Now calculate the m-value using Equation 2.1. This procedure is

repeated a sufficient number of times. For each permutation, compute the m-values defined

in Equation 2.1 and this can be considered as realizations of the m-values when the genes

are equally expressed. The null hypothesis H0 for a microarray study states that none of

the genes is differentially expressed. Under this H0, it is plausible to assume that the m-

values derived from permutations of group labels are drawn independently from a common

distribution with some probability density function, say, f0. Johnson in his paper claims

that, the Johnson’s system of curves include most, if not all, continuous distributions that

encountered in any collected data (7). Therefore to estimate the distribution f0 we can

assume that f0 is a member of Johnson’s system. Wheeler’s quantile method is used for

fitting the Johnson system. When we apply this method to the ovarian cancer data, an

unbounded Johnson’s distribution is fitted to form the common null distribution of the m-

statistic, with parameters γ̂ = 0.1059, δ̂ = 2.6907, ξ̂ = 0.05775 and λ̂ = 1.3014. Now the

p-values of the calculated m-values can be obtained using this estimated distribution f0.

We have to fix a cut-off point for the p-values to select the differentially expressed genes.

There were 442 genes in the ovarian cancer data with p − value < 0.01.

2.4 Data Simulation

Simulation studies were done in order to assess the effectiveness of the proposed methodology

and to obtain a quantitative evaluation of gene selection methods.

The ovarian cancer data is used as the target model for simulation. We use the approach

discussed in (9) for data simulation. Given the parameters, gene expression are generated

randomly from a gamma distribution. But for each gene, the parameters are generated

randomly. The means of gene expressions are generated from a normal distribution N(µ, σ)

and standard deviations from a gamma distribution Gamma(α, β). The hyperparameters

µ, σ, α and β are chosen to fit the ovarian cancer data. These values are µ = 6.7, σ =

1.68, α = 8.76 and β = 9.386. Gene expressions for 2,000 genes were simulated. Five

data sets are simulated with (1)15 replication in the first group, 10 replications in the
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second group; (2)33 replication in the first group, 22 replications in the second group; (3)20

replications in each group; (4)30 replications in each group and (5)40 replications in each

group. We choose 5% of the genes to be differentially expressed.

2.5 Results and Discussion

The merit of the method depends on the ability to successfully identify differentially ex-

pressed genes while avoiding to classify unchanged genes as differentially expressed or ex-

pressed genes as unchanged. The ROC curves displays the false positive rate (rate of non-

Differentially Expressed Genes(non-DEGs) included) versus the false negative rate (rate of

DEGs not included). The false positive rate is the proportion of number of Equally expressed

genes that were erroneously reported as Differentially Expressed. Hence

False positive rate =
Number of false positives

Number of Equally Expressed genes
.

This is the same as the probability of Type I error denoted by α. The false negative rate is

the proportion of Differentially Expressed genes that were erroneously reported as Equally

Expressed. More specifically,

False Negative Rate =
Number of false negatives

Number of Differentially expressed genes
.

This is the same as the probability of type II error.

A method whose ROC curve lies below another one is preferred (10),(3) as the curve

represents the Type I and Type II errors. A method which has a better ROC curve, in

this sense, will produce top lists with more differentially expressed genes(DEGs), fewer non-

DEGs and consequently, will leave out fewer DEGs. The ROC curves of the methods we

discussed are given in Figures 1 to 3. It can be observed that the ROC curve of the proposed

method using Johnson distribution lies below the ROC curves of the other methods showing

that the proposed method is better than the other methods. Better performance can also

be observed as the sample size increases. Figure 3 (right panel) shows, how the ROC curves

behave with the changes in shrinkage parameter,a0 defined in equation 2.1. As can be seen

from this figure ROC curve is better when a0 is a non-zero value. Also, ROC curves behave

equally good when a0 is first quartile, median, third quartile or maximum, To be in safer

side we took median, which is free from outliers, as the shrinkage parameter in our method.

3 Conclusion

A new approach is proposed for the selection of differentially expressed genes based on John-

son’s system of distributions. No specific parametric form is assumed for the distribution

of the expression levels. The empirical distribution is used as the common null distribution

of the test statistics. The Johnson’s system of distributions is used to estimate the null

distribution. The simulation study shows better performance of the proposed method as

compared to the conventional gene selection methods.
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Figure 1: Receiver Operating Characteristic curve; Sample sizes - 15 vs 10 (left panel) and
33 vs 22 (right panel)
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Figure 2: Receiver Operating Characteristic curve; Sample size - 20 vs 20 (left panel) and
30 vs 30 (right panel)
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Figure 3: Receiver Operating Characteristic curve; Sample size - 40 vs 40 (left panel) and
15 vs 10 (right panel)
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