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summary

Missing data are common in many clinical studies. When missingness is non-
ignorable, a full likelihood analysis of the data requires incorporating a missing
data model into the observed data likelihood function. In this article, we study
the bias of the ML estimator when the corresponding maximum likelihood is ob-
tained under a misspecified missing data model. We further explore a likelihood
ratio statistic for testing the missing data mechanism in binary longitudinal data.
The empirical level and power of the test are investigated in small simulations.
We also present an example using some real data obtained from a longitudinal
study.
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1 Introduction

We encounter missing data problems in many experimental studies, including surveys and
clinical trials. Little and Rubin (2002) discuss various missing data patterns or mechanisms,
which concern the relationship between missingness and the values of the variables in the
data. If missingness does not depend on the values of the data, missing or observed, then the
data are called missing completely at random (MCAR). A less restrictive assumption is that
missingness depends only on the observed values of the variables in the data, and not on the
values that are missing. In this case, the missing data mechanism is called missing at random
(MAR). When the data are MAR, the likelihood-based inference does not depend on the
missing data mechanism (Rubin, 1976). If missingness depends on the values of the missing
variables, then the missing data are called nonignorable. In the case of nonignorable missing
data, it is necessary to model the distribution of the missing data mechanism. Little (1995)
reviews methods for modelling the data and the missing data mechanism simultaneously,
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and presents a number of examples to illustrate likelihood-based inferences via maximum
likelihood or Bayesian methods.

For the analysis of binary longitudinal outcomes, multivariate logistic regression models
have been extensively studied in the literature (see, for example, Zeger et al., 1988; Liang et
al., 1992; Glonek and McCullagh, 1995; Fitzmaurice et al., 1996). In this article, we explore
a multivariate logistic regression model for analyzing incomplete binary longitudinal data.
We consider estimating the model parameters by maximizing the observed data likelihood
function for nonignorable missing responses.

The paper is organized as follows. Section 2 introduces the likelihood method for analyz-
ing incomplete binary data. Section 3 investigates the asymptotic bias of the ML estimators
when the likelihood is derived under a misspecified missing data model. Section 4 explores
the likelihood ratio statistic for testing the missing data mechanism. Section 5 presents an
application of the likelihood ratio test using some real data obtained from a longitudinal
study. Section 6 gives the conclusions of the paper.

2 Model and Notation

Suppose k individuals are observed at a fixed set of n time points, t = 1, . . . , n. For the
ith individual (i = 1, . . . , k), the response yi is a vector of n binary outcomes (yi1, . . . , yin),
which may be partially observed. The ith individual is assumed to have a p × 1 vector of
covariates, xit, at time t, and we assume that all the covariates are fully observed.

The marginal distribution of the tth binary outcome, yit, is Bernoulli with success prob-
ability pit = E[yit|xit,β] = P (yit = 1|xit,β), which is assumed to follow the logistic regres-
sion model

log
(

pit

1− pit

)
= xt

itβ. (2.1)

We are interested in making inferences about the regression parameters, β, as well as the
association parameters, α, of the joint distribution of yit and yil, where the joint probability
of success is

pitl = P (yit = 1, yil = 1|xit,xil,β,α). (2.2)

We consider modelling this joint probability using a Bahadur type (Bahadur, 1961) multi-
variate binary distribution.

To model bivariate and higher-order correlations in binary data, the Bahadur multi-
variate binary distribution has been extensively studied in the literature (see, for example,
Davidson and Bradley, 1971; Bahadur and Gupta, 1986; Prentice and Zhao, 1991; Sutradhar
and Sinha, 2002). When n = 3, the Bahadur multivariate density has the form

f(yi1, yi2, yi3|xi1,xi2,xi3,β,α) =

{
3∏

t=1

pyit

it (1− pit)(1−yit)

}{
1 + ρ12zi1zi2 + ρ13zi1zi3

+ ρ23zi2zi3 + ρ123zi1zi2zi3

}
, (2.3)
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where

zit =
yit − pit√
pit(1− pit)

,

ρtl = Corr(yit, yil) =
E{(yit − pit)(yil − pil)|xit,xil}√

pit(1− pit)pil(1− pil)
,

ρ123 =
E{(yi1 − pi1)(yi2 − pi2)(yi3 − pi3)|xi1,xi2,xi3}√

pi1(1− pi1)pi2(1− pi2)pi3(1− pi3)
,

for t = 1, 2, 3.

2.1 Missing Data Mechanism

In a typical longitudinal study, individuals are not observed at all n occasions on account of
some stochastic missing data mechanism. Nonignorable models are needed when the missing
data mechanism depends on the missing observations. Examples of outcome-dependent
dropout are given in Little and Rubin (2002). Diggle and Kenward (1994) and Ibrahim et
al. (2001) also discuss nonignorable models with outcome-dependent dropout.

To describe a missing data mechanism, we introduce n binary random variables, rit,
(t = 1, . . . , n), with rit equal to 1 if yit is observed, and 0 if yit is missing. A possible model
for the vector ri = (ri1, . . . , rin)t of missing data indicators is the binomial model:

f(ri|yi,Xi,γ) =
n∏

t=1

πrit
it (1− πit)1−rit , (2.4)

where Xi is the design matrix for individual i, and πit is the probability of response at time
t, which may be modeled by a logistic regression in the form

πit = P (rit = 1|yit,xit,γ) =
exp(γ0 + γ1yit + γt

2xit)
1 + exp(γ0 + γ1yit + γt

2xit)
. (2.5)

Note that if γ1 6= 0, then the missing data mechanism is nonignorable, since the probability
of missingness depends on possibly unobserved data yit.

Model (2.4) assumes independence between the elements in ri. For a more general form
of the missing data mechanism involving multinomial model, see Little (1995) and Little
and Rubin (2002). Ibrahim et al. (1999) consider modelling the missing data mechanism
f(ri|yi,Xi,γ) as the product of a sequence of one-dimensional conditional distributions as

f(ri1, . . . , rin|yi,Xi,γ) = f(rin|ri1, . . . , ri,n−1,yi,Xi,γn)

× f(ri,n−1|ri1, . . . , ri,n−2,yi,Xi,γn−1)× · · ·
× f(ri2|ri1,yi,Xi,γ2) f(ri1|yi,Xi,γ1), (2.6)

where γ = (γt
1, . . . ,γ

t
n)t in which the tth element γt represents a vector of parameters for

the tth conditional distribution. As rit is binary, one can consider a sequence of logistic
regression models for the conditional distributions in (2.6).
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Note that the modeling strategy (2.6) allows flexibility in the specification of the missing
data mechanism, and provides a natural way to specify the joint distribution of the miss-
ing data indicators when the knowledge about missingness of one variable influences the
probability of missingness of others. Since each of the univariate distributions on the right
side of (2.6) can be modeled as a logistic regression, each objective function is log-concave
in the parameters. This property of log-concavity eases the computations of the maximum
likelihood estimates.

The choice of appropriate covariates for the missing data model is also an important
issue in missing data problems. To compare various models, we can use the likelihood ratio
or Akaike information criterion for the fitted models. However, as indicated by Baker and
Laird (1988) and Ibrahim et al. (1999), we need to be careful not to build a vary large
model for the missing data mechanism, since the model can easily become unidentifiable
due to overparameterization. Baker and Laird (1988) also point out that the issue of es-
timability can often arise in nonignorable missing data mechanism and it is not clear how
to characterize the set of estimable parameters for a given class of models.

2.2 Likelihood Function for Nonignorable Missing Data

Let {(yi,Xi); i = 1, . . . , k} denote the data that would occur in the absence of missing values.
Also let yobs,i denote the observed values and ymis,i the missing values of yi. Assuming
arbitrary, nonmonotone patterns of missing data in yi, some permutation of the indices of
yi can be written as yi = (yobs,i,ymis,i), where ymis,i is the ni×1 vector of missing values of
yi. We assume that the missing data mechanism is nonignorable. We consider a parametric
model for the missing data mechanism as described in the previous section.

For the ith individual, the actual observed data consist of the values (yobs,i,Xi, ri). The
distribution of the observed data is obtained by summing ymis,i out of the joint density of
(yi, ri). That is,

f(yobs,i, ri|Xi,β,α,γ) =
∑
ymis,i

f(yobs,i,ymis,i|Xi,β,α)f(ri|yobs,i,ymis,i,Xi,γ). (2.7)

The full likelihood of θ = (β,α,γ) is any function of (β,α,γ) proportional to the products
of (2.7) for all k individuals:

Lfull(β,α,γ|yobs,X, r) ∝
k∏

i=1

f(yobs,i, ri|Xi,β,α,γ), (2.8)

where yobs = {yobs,i; i = 1, . . . , k}, r = {ri; i = 1, . . . , k}, and X = {Xi; i = 1, . . . , k} is the
design matrix for all k individuals. The above likelihood function cannot be evaluated in a
closed form, and numerical methods can be used to maximize the observed data likelihood
function.

When the density f(yobs,i, ri|Xi,β,α,γ) is in the form (2.7), the ML estimating equa-
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tions for β, α, and γ can be expressed in the form:

k∑
i=1

E

{
∂ log f(yobs,i,ymis,i|Xi,β,α)

∂β

∣∣∣∣yobs,i, ri

}
= 0, (2.9)

k∑
i=1

E

{
∂ log f(yobs,i,ymis,i|Xi,β,α)

∂α

∣∣∣∣yobs,i, ri

}
= 0, (2.10)

and
k∑

i=1

E

{
∂ log f(ri|yobs,i,ymis,i,Xi,γ)

∂γ

∣∣∣∣yobs,i, ri

}
= 0, (2.11)

where the conditional expectations are obtained with respect to ymis,i, given the actual
observed data (yobs,i, ri).

The above equations can be solved iteratively using some numerical algorithm. For ex-
ample, the Newton-Raphson iterative method can be used to solve the above three equations
simultaneously for the ML estimates. The initial values of the estimates of the regression
parameter β and the association parameter α may be obtained from the observed likeli-
hood for the “complete” data, for which the likelihood function has a simple form and it
is relatively easy to maximize the likelihood. The initial value of the parameter γ of the
missing data mechanism may be chosen as the null vector 0. However, this initial value for
γ may not always lead to convergence in the iterative method, and different sets of initial
values should be investigated in such cases. Unfortunately, no software package is readily
available to obtain the ML estimates. We used the R programming language to write small
programmes for our numerical computation discussed later.

The asymptotic variance of the ML estimator of θ = (β,α,γ) can be obtained from the
observed Fisher information, which can be expressed in the form:

Io(θ) = −
k∑

i=1

E
{
∂U(θ)/∂θt

∣∣yobs,i, ri

}
−

k∑
i=1

E
{
U(θ)Ut(θ)

∣∣yobs,i, ri

}
+

k∑
i=1

E {U(θ)|yobs,i, ri}E
{
Ut(θ)

∣∣yobs,i, ri

}
, (2.12)

where U(θ) is the likelihood score function: U(θ) = ∂ log f(yobs,i,ymis,i, ri|Xi,θ)/∂θ, by
treating (yobs,i,ymis,i, ri) as complete data. In a typical longitudinal study, the main interest
is in the estimation of β, with α and γ being viewed as nuisance parameters.

3 Asymptotic Bias Under Misspecified Models

A natural question raised by a missing data analysis concerns the potential bias in the ML
estimators for maximizing the observed data likelihood with a misspecified missing data
mechanism. In this section, we investigate the asymptotic bias of the regression estimators
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obtained by fitting a model under a misspecified MAR assumption, when the “true” model
involves a nonignorable missing data mechanism.

We consider a simple binary outcome, yit, observed at three occasions, t = 1, 2, 3, which
may be only partially observed for a given individual, and a single binary covariate xi. In a
clinical study, such a binary covariate xi may represent individuals in treatment and control
groups. The marginal mean function, E(yit|xi,β) = P (yit = 1|xi,β) = pit, of the outcome
variable yit is assumed to follow the logistic regression model

logit(pit) = log
(

pit

1− pit

)
= β0 + β1xi + β2(t− 1), (3.1)

for t = 1, 2, 3. The correlation between the outcomes yit and yil is assumed to be exchange-
able: ρ12 = ρ13 = ρ23 = ρ. We also assume ρ123 = 0, for simplicity. In this setting,
the bivariate density of (yi1, yi2, yi3) may be described in a particular form of the Bahadur
(1961) distribution

f(yi1, yi2, yi3|xi,β, ρ) =

{
3∏

t=1

pyit

it (1− pit)(1−yit)

}
{1 + ρzi1zi2 + ρzi1zi3 + ρzi2zi3}, (3.2)

where zit = (yit − pit)/
√
pit(1− pit), for t = 1, 2, 3.

Further, to define a missing data mechanism, we consider a binary random variable rit,
which is 1 if the value of the corresponding outcome yit is observed, and 0 if yit is missing.
We assume that given yit, rit is independent with a nonignorable missing data mechanism,
and follows the simple logistic regression model

logit{E(rit|yit,γ)} = logit(πit) = γ0 + γ1yit. (3.3)

The parameters (β, ρ,γ) in models (3.1)–(3.3) can be estimated by maximizing the cor-
responding likelihood function. The inverse of the Hessian matrix can be used to obtain
asymptotic variances of the ML estimators. Note that when γ1 = 0 in (3.3), the missing
data mechanism becomes ignorable, and there is no need to incorporate the missing data
model into the likelihood function.

Here we explore the bias of the ML estimators arising from fitting a model under the
misspecified MAR assumption, γ1 = 0, where the “true” model involves a non-zero γ1.
Without loss of generality, we consider that all individuals are observed at the first time
point t = 1, that is, ri1 = 1 for all i. Since the variables (yi1, yi2, yi3, xi, ri2, ri3) considered
are all binary, we can find the asymptotic bias of the ML estimators by taking all 26 = 64
combinations of the possible values of these binary variables, and their associated weights
for a given set of parameter values. We consider the weights as functions of the “true” joint
density obtained under models (3.1)–(3.3). The values of the regression parameters were
fixed at (β0, β1, β2) = (−0.5, 0.5,−0.2), the exchangeable correlation at ρ = 0.4, and the
parameters of the missing data model at (γ0, γ1) = (0.5, γ1).

Figure 1 presents the asymptotic biases of the ML estimators of the regression parameters
(β0, β1, β2) obtained under the MAR assumption. Note that when the true value of γ1 is
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Figure 1: Asymptotic biases of regression estimators under misspecified missing data model.
Regression parameters fixed at (β0, β1, β2) = (−0.5, 0.5,−0.2).

0, the missing data mechanism is ignorable, and the fitted model is correctly specified. In
this case, it is clear from the figure that the regression estimators are unbiased, as expected.
For a non-zero γ1, all estimators are found to be biased to some extent. In particular, the
estimator of the time coefficient, β2, produces huge bias when the value of γ1 is large in
magnitude. The bias of the estimator of β2 appears to be more severe for a negative value
of γ1 as compared to a positive value of the same magnitude. The estimators of β0 and β1

are also found to be biased, but not to the same extent as we observe in the case of the time
coefficient, β2.

From the above simple analysis, it is clear that the ML method is sensitive to a misspec-
ified missing data mechanism. In the next section, we explore a formal hypothesis test for
testing the significance of nonignorable missingness in binary longitudinal data.

4 Likelihood Ratio Test of Missing Data Mechanism

Recall model (2.5) for the missing data mechanism. Under the null hypothesis of ignorable
missingness, H0 : γ1 = 0, model (2.5) reduces to

πit = P (rit = 1|yit,xit,γ) =
exp(γ0 + γt

2xit)
1 + exp(γ0 + γt

2xit)
. (4.1)

In this case, the observed data likelihood function takes a simpler form since it does not
require modeling the missing data mechanism.
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Given the observed data (yobs,X, r), suppose L0 is the likelihood of (β,α,γ) evaluated
at the ML estimators (β̃, α̃, γ̃) obtained under the null hypothesis H0 : γ1 = 0, and L1 is the
likelihood evaluated at the ML estimators (β̂, α̂, γ̂) obtained under the full likelihood (2.8).
Then the likelihood ratio statistic −2 log(L0/L1) is asymptotically distributed as chi-square
with one degree of freedom. In the next section, we explore the empirical level and power
of this likelihood ratio test in a small simulation study.

4.1 Simulation Study

To investigate the finite-sample properties of the likelihood ratio test, we ran a series of
simulations using a multivariate logistic regression model for incomplete longitudinal data.
Specifically, we generated the data {(yi1, yi2, yi3); i = 1, . . . , k} from the multivariate binary
logistic model (3.2), with

pit = P (yit = 1|xi,β) =
exp{β0 + β1xi + β2(t− 1)}

1 + exp{β0 + β1xi + β2(t− 1)}
, (4.2)

for t = 1, 2, 3. The values of the regression coefficients were fixed at (β0, β1, β2) = (0.5, 0.5,
−0.2), and the exchangeable correlation at ρ = 0.40. The missing data indicators (ri1, ri2, ri3)
were assumed to follow the joint density

f(ri1, ri2, ri3|yi1, yi2, yi3, γ0, γ1) =
3∏

t=1

πrit
it (1− πit)1−rit , (4.3)

where πit = P (rit = 1) = 1 for t = 1, and for t = 2, 3,

πit = P (rit = 1|yit, γ0, γ1) =
exp(γ0 + γ1yit)

1 + exp(γ0 + γ1yit)
. (4.4)

The value of the intercept coefficient γ0 was fixed at 0. For each combination of k = 150, 250
individuals, with each individual being observed at t = 1, 2, 3 time points, we performed a
simulation study based on 500 replicates of data sets. We set γ1 = 0 to examine the level
of significance of the likelihood ratio test for nonignorable missingness. The empirical level
of significance was obtained as the proportion of samples in which a given p-value was less
than α = 0.05.

To examine the power of the likelihood ratio test, we used the same simulation config-
urations as above. We calculated the empirical power of the test for each combination of
the values γ1 = −0.5,−1.0,−2.0. As before, we used 500 replicates of data sets for each
simulation configuration, and found the p-value of the tests.

Table 1 presents the empirical levels of the likelihood ratio tests for all simulation con-
figurations considered. Approximate standard errors of the empirical levels are shown in
parentheses. It is clear from the table that the empirical level of significance of the test is
generally close to the nominal 0.05 level of significance. The level gets closer to the nominal
0.05 level when the number of individuals, k, increases, as expected. For example, when
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Table 1: Empirical power of likelihood ratio test for nonignorable missingness (standard
error in parenthesis).

Parameter k = 150 k = 250

γ1 = 0 0.042(0.0090) 0.050(0.0097)

γ1 = −0.5 0.168(0.0167) 0.304(0.0206)

γ1 = −1.0 0.592(0.0220) 0.770(0.0188)

γ1 = −2.0 0.956(0.0092) 0.996(0.0028)

k = 250, the empirical level appears to be exactly equal to 0.05. For non-zero γ1’s, the
empirical powers and their approximate standard errors are also shown in Table 1. The
power of the test is found to increase with the increased value of γ1, as expected. Also,
the power increases with the sample size. For example, at γ1 = −1.0, the empirical power
increased from 0.592 to 0.770 when the value of k increased from 150 to 250.

5 Example: AIDS Data

Kahn et al. (1992) and Gallant et al. (1992) analyzed a data set from two longitudinal
clinical trials of HIV-infected patients. Among N = 1528 patients considered in the study,
431 patients were diagnosed with AIDS or AIDS-related complex. The two AIDS clinical
trials are randomized phase III double-blind trials, designed to compare two therapeutic
treatments, zidovudine (AZT) and didanosine (DDI). The outcome of interest at time (in
weeks) t = 0, 1, . . . , 14 is the patient’s CD4 count sufficiency, with yit = 1 if the CD4
count for patient i exceeds 200, and 0 otherwise. The goal was to investigate the effect of
treatment on changes in CD4 cell count sufficiency over time. In this study, nonmonotone
missing data occurred in the responses since some patients were not available at some follow-
up time points. For example, about 79% of the patients have outcomes measured at the
first three occasions.

Several predictors were considered in the analysis. The predictor AZT is an indicator
variable for treatment AZT, with AZT = 1 if a patient was randomized to AZT and AZT = 0
if he/she was randomized to DDI. AIDS is also an indicator variable, with AIDS = 1 if a
patient was diagnosed with AIDS, and AIDS = 0, otherwise. The predictor AGE is defined
to be an indicator variable, with AGE = 1 if a patient was 35 or older at baseline period,
and AGE = 0, otherwise. The predictor TIME represents the time points t.

We revisit the data to explore the missing data mechanism in the longitudinal outcomes.
For illustrative purposes, we just consider the first three time points, and analyze the data
with the multivariate logistic regression model discussed earlier. Specifically, we model the
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Table 2: Analysis of AIDS data.

Variable Estimate Std error z value

Regression model

INTERCEPT –0.8923 0.0724 –12.32

AIDS –1.1013 0.1207 –9.12

AGE 0.1438 0.0852 1.69

TIME 0.0798 0.0321 2.49

AZT * TIME –0.0184 0.0476 –0.39

Exchangeable correlation

ρ 0.4687 0.0119 39.39

Missing data model

INTERCEPT 1.7669 0.0686 25.76

y 0.8816 0.2952 2.99

logit of pit = P (yit = 1|xit), the probability that CD4 count ≥ 200 at a given time t, as

logit(pit) = β0 + β1AIDSi + β2AGEi + β3TIMEt + β4AZTi ∗ TIMEt, (5.1)

for t = 0, 1, 2, with an exchangeable correlation structure, Corr(yit, yil) = ρ. Note that
model (5.1) does not include the main effects of treatment AZT since the mean number
of CD4 counts can be assumed to be equal in the two treatment groups at baseline period
t = 0. To model the missing data mechanism, we assume that given the outcomes yit, the
missing data indicators rit are independent and follow a simple logistic regression model in
the form

logit(πit) = logit{P (rit = 1|yit, γ0, γ1)} = γ0 + γ1yit, (5.2)

where πit is the probability of response from patient i at time t. The model becomes
ignorable under the null hypothesis H0 : γ1 = 0.

Here to assess the significance of the coefficient γ1, we apply the likelihood ratio test
described earlier. The likelihood ratio statistic produced a large value of 12.83. The p-value
of the test based on the chi-square distribution with one degree of freedom is obtained as
0.00034. Clearly, the test indicates strong evidence against the null hypothesis H0 : γ1 = 0,
that is, the missing data mechanism is nonignorable.

Since γ1 is significant, we consider fitting the multivariate regression model (5.1) with
the nonignorable missing data model (5.2). The ML estimates of the model parameters, and
their corresponding standard errors are presented in Table 2. It is clear that the patients
who were diagnosed with AIDS had lower CD4 counts, as expected. The CD4 counts tend
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to increase over time. But there is no evidence of interaction effects between treatment AZT
and TIME, which indicates that the effects of the two treatments AZT and DDI are not
significantly different.

6 Conclusions

We have explored the asymptotic bias of regression estimators obtained by maximizing the
observed data likelihood function derived under an incorrectly specified missing data model.
The ML estimators generally produced large biases under the misspecified MAR assumption.
It is, therefore, important to conduct a formal hypothesis test for assessing the significance
of nonignorable missingness when analyzing incomplete longitudinal data.

We have studied the performance of the likelihood ratio statistic for testing the missing
data mechanism in small simulations. The likelihood ratio test has been found to produce
approximately the correct level of significance for moderate to large sample sizes. The power
of the test has been found to be consistent in the simulations – the power increased with
larger sample size as well as with larger value of the parameter indicating nonignorable
missingness.
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