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summary

The purpose of this paper is to determine an appropriate variance function
(mean-variance relationship) which can be used in the semi-parametric analy-
sis of over-dispersed count data (for example, for analysis of count data by ex-
tended quasi-likelihood and double extended quasi-likelihood). We use hypothesis
testing approach through a broader class of models and data analytic approach.
The models considered are the three parameter negative binomial distribution
and the extended quasi-likelihood. Wide analysis involving tests, data analysis
and simulations indicate that the three parameter generalized negative binomial
distribution does not improve in fit to count data over the simpler negative bi-
nomial distribution. Further data analysis and simulations using the extended
quasi-likelihood indicate that the negative binomial variance function µ+ cµ2 is
preferable over a simpler variance function c3µ

2 for data with small mean and
small over-dispersion. Otherwise c3µ

2 is a preferable variance function over the
negative binomial variance function.

Keywords and phrases: Dispersion parameter; Extended quasi-likelihood; Ex-
tended quasi-likelihood estimator; Negative binomial model; Three parameter
negative binomial model; Variance function.

1 Introduction

Count data with over-dispersion arise in many diverse fields, including biostatistics, radioim-
munoassay, econometrics, pharmacokinetics modelling, enzyme kinetics, chemical kinetics,
quality control among others. For example, Bliss and Fisher (1953) present a set of count
data (see Table 3) consisting of the number of European red mites on apple leaves for which
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the mean and the variance are 1.15 and 2.27 respectively showing that the variance exceeds
the mean. The embryonic death counts data set by McCaughran and Arnold (1976), given
in Table 1 have similar properties having mean 1.20 and variance 1.733.

These data are often modelled using a negative binomial distribution. See, for example,
Anscombe (1949), Bliss and Fisher (1953), Bliss and Owen (1958), McCaughran and Arnold,
(1976). Different authors have expressed the negative binomial distribution in different
forms; see, for example, Bliss and Fisher (1953), Johnson and Kotz (1969), Bliss and Owen
(1958) and Collings and Margolin (1985). The most convenient is that proposed by Bliss
and Owen (1958) and used by Collings and Margolin (1985), Barnwal and Paul (1988), Paul
and Banerjee (1998) and others in which the random variable Y follows a negative binomial
distribution with mean µ and coefficient c, denoted by Y ∼ NB(µ, c), if

Pr(Y = y) =
Γ(y + c−1)
y! Γ(c−1)

( 1
1 + cµ

)c−1( cµ

1 + cµ

)y
(1.1)

for y = 0, 1, . . ., 0 < µ <∞, 0 < c <∞. Here E(y) = µ and V ar(y) = µ(1 + cµ). Evidently
the NB(µ, c) distribution becomes the Poisson distribution in the limit when c→ 0. Further
properties of NB(µ, c) are given in Paul and Plackett(1978).

However, in many practical data analysis situations, sometimes, a full distributional
assumption becomes restrictive. More robust analysis are performed using some semi-
parametric model, such as the extended quasi-likelihood (Nelder and Pregibon, 1987) and
the double extended quasi-likelihood (Lee and Nelder, 2001) (these are semi-parametric
models as these require assumption of only the first two moments). Intrinsic in the semi-
parametric analysis of count data is the assumption of the variance function. The most pop-
ular variance function is that given by the Negative binomial, namely V ar(Y ) = µ(1+cµ) =
µ + cµ2 (see, for example, Paul and Banerjee, 1998). Other variance functions can also be
used. For example, Bartlet (1936) uses a variance function V ar(Y ) = c1µ+ c2µ

2 to analyze
counts for field experiments, where c1 and c2 are parameters to be estimated from the data.
A similar expression is V ar(Y ) = c3µ

b. Both Armitage (1957) and Finney (1976) find by
study of examples that 1 < b < 2. The variance function V ar(Y ) = c3µ

b with b = 2,
that is, V ar(Y ) = c3µ

2 is identical to the second part of the negative binomial variance
function, although, in practical data analysis, the value of c in V ar(Y ) = µ+ cµ2 and c3 in
V ar(Y ) = c3µ

2 would probably be different. Finney (1976) provide reference to Rodbard
and Hutt (1974) who commented from personal experience that for immunoradiometric as-
says the linear term in V ar(Y ) = c1µ+ c2µ

2 can be omitted, therefore proving support for
the variance function V ar(Y ) = c3µ

2.
A more generalized variance function is V ar(Y ) = µ(1 + cµb) obtained from a three

parameter generalization of the negative binomial distribution developed by Cameron and
Trivedi(1986). The probability function of this distribution, denoted by NB(µ, c, b), is

Pr(Y = y) =
Γ(y + c−1µ1−b)
y! Γ(c−1µ1−b)

( 1
1 + cµb

)c−1µ1−b( cµb

1 + cµb

)y
. (1.2)
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Note that the NB(µ, c, b) distribution reduces to the NB(µ, c) distribution for b=1. There-
fore the three parameter generalized model can be used to test the goodness of fit of the
negative binomial distribution, that is, to test the variance function V ar(Y ) = µ + cµ2

against V ar(Y ) = µ(1 + cµb).
The purpose of this paper is to choose an appropriate variance function (mean-variance

relationship) which can be used in the semi-parametric analysis of count data.
Relationship between mean and variance, in count data, data in the form of proportions

and also for some continuous data, has been of interest in many fields. For instance ecologists
use power function relationship between the variance and mean number of organisms that
reflects the spatial heterogeneity of a population within it’s habitat (Kendal, 2004). The
mean-variance relationship is helpful in finding the underlying distributions, for instance, if
the variance seems to be proportional to the square of the mean, then the family consisting of
gamma, log normal or the Weibull distributions might be interest and if the variance seems
to be proportional to the cubic power of the mean then an inverse Gaussian model may
be appropriate. A proper specification of the mean variance relationship helps in reliable
inferences. Kilpatrick and Ives (2003) explains the relationship between mean and variance
by means of probabilistic models based on negative interactions among species and spatial
heterogeneity. Recently, Gaffeo, et al. (2008) extended the concept to a national industrial
system that is, a single taxonomic group and discussed mean variance relationship of the
firm size distribution. The mean-variance relationship is also of interest in binomial data
(see Williams 1982).

We use hypothesis testing approach through a broader class of models, data analytic
approach and some simulations. The models considered are the three parameter negative
binomial distribution and the extended quasi-likelihood. In this context some theoretical and
computational problems of the three parameter negative binomial distribution are discussed
and some insights are given.

In Section 2 we discuss some variance functions. In Section 3 inference procedures for
the parameters of the NB(µ, c, b) distribution are discussed. A score test statistic and a
likelihood ratio statistic to test the fit of a two parameter negative binomial distribution
N(m, c) against its three parameter generalization NB(µ, c, b) are derived in Section 4.
Some simulations and data analysis are performed in Section 5 to choose between these two
models. Section 6 is devoted to extended quasi-likelihood analysis to choose an appropriate
variance function. A Discussion follows in Section 7.

2 The Variance Functions

The Variance functions discussed in Section 1 are:

(a) V ar(Y ) = µ(1 + cµ), (b) V ar(Y ) = c1µ+ c2µ
2,

(c) V ar(Y ) = c3µ
2 and (d) V ar(Y ) = µ(1 + cµb).
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Note that Variance function (a) is that of the negative binomial distribution and Variance
function (d) is that of the three parameter generalized negative binomial distribution. The
negative binomial variance function (a) is the most popular (Collings, 1981 and Fisher, 1941
) which is a special case of the variance function (d). Variance function (b) is also a special
case of the variance function (d) with c1 = 1, c2 = c, b = 2.

3 Inference for the NB(µ, c, b) Model Parameters

Suppose Y1, . . . , Yn is a random sample of size n from the three parameter negative binomial
model NB(µ, c, b). Now, the kernel of the log-likelihood, after simplification, can be written
as

l = nȳ log(µ) +
n∑
i=1

yi∑
j=1

log(1 + (j − 1)cµb−1)− n(ȳ + c−1µ1−b) log(1 + cµb).

Then, the maximum likelihood estimates of the parameters µ, c and b can be obtained by
solving the following likelihood score equations

∂`

∂µ
=
nȳ

µ
+ c(b− 1)µb−1

n∑
i=1

yi∑
j=1

(j − 1)
µ (1 + (j − 1) cµb−1)

− nȳcbµb

µ (1 + cµb)

+
n(b− 1)µ−b ln

(
1 + cµb

)
c

− nb

(1 + cµb)
= 0, (3.1)

∂`

∂c
=

n∑
i=1

yi∑
j=1

(j − 1)µb−1

1 + (j − 1) cµb−1
− nµb(cȳ + µ1−b)

c(1 + cµb)
+
nµ−b+1 ln

(
1 + cµb

)
c2

= 0. (3.2)

and

∂`

∂b
=

n∑
i=1

yi∑
j=1

(j − 1) cµb−1 ln (µ)
1 + (j − 1) cµb−1

−
cµb ln (µ)

∑n
i=1 yi

1 + cµb
+
nµ−b+1 ln (µ) ln

(
1 + cµb

)
c

− nµ−b+1µb ln (µ)
1 + cµb

= 0 (3.3)

which, after taking c log(µ) common, can be further written as

∂`

∂b
= c log(µ)

[ n∑
i=1

yi∑
j=1

(j − 1)µb−1

1 + (j − 1) cµb−1
− nµb(cȳ + µ1−b)

c(1 + cµb)
+
nµ−b+1 ln

(
1 + cµb

)
c2

]
= c log(µ)

∂`

∂c
(3.4)

However, there is a problem in solving these equations. It is clear that ∂`/∂b = 0 and
∂`/∂c = 0 produce the same estimating equation. Thus all three parameters can not be
estimated simultaneously. It seems that the parameters c and b can not be distinguished.
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However, for fixed value of b the parameters µ and c can be estimated by solving ∂`
∂µ = 0

and ∂`
∂c = 0 and the three parameter model NB(µ, c, b) can still be used to test goodness of

fit of the two parameter negative binomial model NB(µ, c). For further insight see Section
5.

4 The Test Statistics

In this section we develop a score test and a likelihood ratio test for testing the negative
binomial variance function (a) against the generalized negative binomial variance function
(d), that is, for testing H0 : b = 1 against H1 : b 6= 1.

4.1 The Score Test

With the kernel of the log-likelihood l given in Section 3 define ψ = ∂`
∂b |b=1, D = E[− ∂

2`
∂b2 ]b=1,

A = (E[− ∂2`
∂b∂c ]b=1, E[− ∂2`

∂b∂µ ]b=1) and

B =

 E[− ∂2`
∂µ2 ]b=1 E[− ∂2`

∂µ∂c ]b=1

E[− ∂2`
∂c∂µ ]b=1 E(−−∂

2`
∂c2 ]b=1

 .

Then, if, in ψ, A, B and D, the parameters µ and c of the negative binomial NB(µ, c)
model are replaced by their maximum likelihood estimates µ̂ and ĉ the score test statistic
(Rao, 1947) for testing H0 : b = 1 against HA : b 6= 1, is S = ψ2

V ar(ψ) , where V ar(ψ) =

D−AB−1A
′
. The statistic S has asymptotically, as n→∞, a chi-square distribution with

one degree of freedom. Detailed calculations and simplification in Appendix A show that
µ̂ = ȳ, S = ψ̂2(â1 − â2

2
â3

)−1, where, ψ̂ = n log(ȳ) log(1+ĉȳ)
ĉ + ĉ log(ȳ)(

∑n
i=1

∑yi

j=1
(j−1)

(1+(j−1)ĉ) −

ĉ
∑n
i=1

(yi+ĉ
−1)

1+ĉȳ ), â1 = 2n log(ȳ){ log(1+ĉȳ)
ĉ − ȳ

1+ĉȳ− ĉH}, â2 = n log(ȳ)
ĉ { log(1+ĉȳ)

ĉ − ȳ
1+ĉȳ− ĉH}

, â3 = n
ȳ(1+ĉȳ) and H = E{

∑n
i=1

∑yi

j=1
(j−1)

(1+(j−1)ĉ)2 }. The maximum likelihood estimate ĉ

of c is obtained by solving the estimating equation
∑n
i=1

∑yi

j=1
j−1

c(1+(j−1)c) + n log(1+cȳ)
c2 −

n(cȳ+1)ȳ
c(1+cȳ) = 0 or more simply by solving

∑n
i=1

∑yi

j=1
1

1+(j−1)c −
log(1+cȳ)

c = 0.

4.2 The likelihood Ratio Test

The likelihood ratio test statistic for testing H0 : b = 1 against H1 : b 6= 1 is given by
G2 = 2(l̂1 − l̂0), where

l̂0 = nȳ log(ȳ) +
n∑
i=1

yi∑
j=1

log(1 + (j − 1)ĉ)− n(ȳ + ĉ−1) log(1 + ĉŷ)

and

l̂1 = nȳ log(µ̃) +
n∑
i=1

yi∑
j=1

log(1 + (j − 1)c̃µ̃b−1)− n(ȳ + c̃−1µ̃1−b) log(1 + c̃µ̃b),
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where µ̃ and c̃ are the maximum likelihood estimates of the NB(µ, c, b) model obtained by
solving the estimating equations (3.1) and (3.2) for given b. Note that, as we discussed
earlier, there are theoretical as well as computational difficulties in obtaining maximum
likelihood estimates for all three parameters. See details of the likelihood ratio test in the
context of data analysis in the next section.

5 Analysis Using the Score Test and the Likelihood Ra-
tio Statistic

In this section we analyze five data sets using the score test statistic and the likelihood
ratio statistic discussed in section 4. Conclusion from all five data sets were similar, so
we present results of analysis of only two data sets. The details of the first two data sets
are given here. Further details of the other three datasets analyzed can be obtained from
the following references: Bohing, Dietz and Schlattmann(1999) for decayed, missing and
filled tooth (DMFT) index data, Sellar, Stoll and Chavas (1985) for the data on number
of recreational boating trips to Lake Somerville, Texas in 1980 and Leroux and Puterman
(1992) for the data on the number of movements made by a fetal lamb in each of 240
consecutive five second intervals. Note that as discussed in section 4.2 the likelihood ratio
test can be performed only for fixed values of the parameter b. Results of a simulation study
is also reported here.

Embryonic Death Count Data: McCaughran and Arnold (1976), modelled data in which
they referred to counts of embryonic deaths in a control group and two treatment groups.
Here we consider data for one dose level which refers to the number of embryonic deaths
in the treatment group related to dose level 2. The counts are summarized in Table 1. For
this data set the value of the score test statistic S = 0.00013 and the value of likelihood
ratio statistic is 1 for all values of b (0 ≤ b ≤ 2) given in Table 2. In Table 2, for different
values of the parameter, we present values of −l̂, estimates µ̃ and c̃ with their standard
errors in parenthesis; and an estimate of the variance function with its standard error in
parenthesis. We have chosen values of b with these limits as previous studies have found
that for count data these limits are reasonable. The value of b = 0 represents a model in
which the variance is proportional to the mean. Armitage (1957) and Finney (1976) found
by study of examples that 1 ≤ b ≤ 2. Other values of b within 1 ≤ b ≤ 2 were chosen to see
whether property of any of these quantities remain the same.

European Red Mites Data: Bliss and Fisher (1953) presented data which concerned
counts of the number of European red mites on apple leaves from Garman (1951) of the
Connecticut Agricultural Experiment Station. This dataset was also analyzed by Clark
and Perry (1949). There were six Macintosh apple trees which were given the same spray
treatment in a single orchard. Garman (1951) selected 25 leaves at random from each of
the six trees and counted the number of adult female mites on each leaf. The data in the
form of frequencies of mites on the 150 leaves, are given in Table 3. For this dataset the
value of the score test statistic is S = 0.0104 and the value of likelihood ratio is 1 for all
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values of b (0 ≤ b ≤ 2) given in Table 4. In Table 4 we give, for different values of b, values
of −l̂, estimates of µ̃ and c̃ with their standard error in parenthesis and an estimate of the
variance function with its standard error in parenthesis.

Results in Table 2 and Table 4 show that values of −l, µ̂, its standard error, the estimate
of the variance function and its standard error are the same for all values of b. The only
thing that changes is the estimate of c which does not show any impact on anything else.
The reason is that in the variance function V ar(Y ) = µ(1 + cµb) of the generalized negative
binomial model, the parameters c and b are confounded, meaning that both these parameters
are over-dispersion parameters. For the same amount of over-dispersion in the data, if the
value of one of these parameters changes, then the value of the other parameter also changes,
keeping the overall variance the same.

We also did an extensive simulation study with the score test and we found that, as in
the analysis of the five data sets above, the value of S is very small indicating that the three
parameter generalization of the negative binomial distribution dose not improve over its two
parameter counterpart namely, the negative binomial distribution. Also, as we indicated
earlier the three parameter generalized negative binomial model has theoretical as well as
computational problems.

6 Semi-parametric Analysis Using the Extended Quasi-
likelihood

6.1 The Extended Quasi-likelihood

The score test statistic and the likelihood ratio statistic analyze only tests H0 : b = 1
against H1 : b 6= 1 using the parametric model (1.2). As such we can not test other variance
functions using this model. However, for comparing certain variance functions we can use
the extended quasi likelihood. The extended quasi-likelihood was proposed by Nelder and
Pregibon (1987) and Godambe and Thompson (1989), as an extension of the quasi-likelihood
to incorporate the extra variation. For any variance function V (Y ) and data y1, y2, . . . , yn,
the extended quasi-likelihood is defined as

Q†(y;µ, φ) = −
n∑
i=1

{1
2

log{2πV (yi)} −
1
2
D(yi;µ)}, (6.1)

where D(yi;µ) is the deviance and is given by

D(yi;µ) = −2
n∑
i=1

{
∫ µ

yi

yi − u
V (u)

du}. (6.2)

The extended quasi-likelihoods for the variance functions (a) to (c) are given in Table 5.
The extended quasi-likelihood for the variance function (d), that is, the variance function of
the NB(µ, c, b) distribution, does not have a closed form. So, this is omitted from further
consideration.
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6.2 Evaluation of the Variance Functions Using Data Analysis

Using data analysis and simulations in section 5 we reported that a test of goodness of fit
of the negative binomial distribution NB(µ, c) against its three parameter generalization
NB(µ, c, b) either by a score test or a likelihood ratio analysis produces very insignificant
values of the test statistics. This indicates that in practical data analysis the three parameter
generalization does not improve in fit over the two parameter negative binomial model
NB(µ, c).

Here we compare the variance functions (a) to (c) using the extended quasi-likelihood
through data analysis. As in Section 5 we analyzed five published data sets. However,
conclusion was found to be the same for all data sets, so here we present an analysis for
two data sets. Through these data analysis we find that only one of the parameters of the
variance function c1µ+ c2µ

2 is estimable using the extended quasi-likelihood given in Table
5. The theoretical reason for this is unknown to us and will be investigated in a future
study. So, we omit this variance function from further consideration.

Results of the extended quasi-likelihood analysis for the data sets in Table 1 and Table 3
are given in Table 6 and Table 7, respectively, for the remaining variance functions µ+ cµ2

and c3µ
2. In both tables we give values of −q̂, where q̂ is the estimated extended quasi

log-likelihood, with estimates of parameters µ, c and c3 along with their standard errors in
parenthesis.

A common theme that is seen from the semi-parametric analysis of these real data sets
(including those that are not shown here) is that the extended quasi likelihood is larger for
the variance function c3µ

2 than that for the negative binomial variance function. To see
whether this is a general phenomenon we did some further simulations.

6.3 Simulations

We now conduct a simulation study to compare the negative binomial likelihood with the
extended quasi likelihood values for the variance functions µ+ cµ2 and c3µ2. Efficiencies of
the estimates of µ and those of the two variance functions are also evaluated. Simulations are
conducted by taking 10000 repeated samples of sizes n= 20, 30 and 50 from the Negative
binomial (µ, c) distribution. We use all combinations of n = 20, 30, 50 , µ = 2, 5, 10, 20
and c = 0.1, 0.2, 0.4, 0.6 in our simulations. Results for c = 0.4 and 0.6 are similar, so,
to save space, these for c = 0.6 have been omitted. In Table 8 we present the following:
values of minus the negative-binomial log-likelihood (−l̂), values of minus the extended quasi
likelihood (−q̂1) for variance function v1 = µ + cµ2 , values of minus the extended quasi
likelihood (−q̂2) for variance function v2 = c3µ

2, the relative efficiency of the estimates of
µ under the variance function v1, denoted by RE1, the relative efficiency of the estimates
of µ under the variance function v2, denoted by RE2, and the relative efficiency of the
estimates of v1 and v2 denoted by RE(v1) and RE(v2) for all combinations of n = 20, 30, 50,
µ = 2, 5, 10, 20 and c = 0.1, 0.2 and 0.4. The relative efficiency of an estimator of a parameter
θ is calculated as MSE(θ̂)/MSE(θ̃), where θ̂ is the maximum likelihood estimate of θ under
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the negative binomial model and θ̃ is the extended quasi-likelihood estimate of θ under
certain variance function.

Results in Table 8 indicate that the extended quasi-likelihood estimate of the parameter
µ using either of the two variance functions has almost full efficiency in every situation
studied. Also, the estimate of the variance function v1 has almost full efficiency. The
estimate of the variance function v2 has efficiency below 1 only when µ and c are small, for
example for µ = 2, 5, c = 0.1 and µ = 2 and c = 0.2 efficiency falls far below 1. Otherwise,
in general, efficiency of v2 is larger than 1.

To check whether the behavior of the estimates of µ and those of the variance functions
remain the same when data arise from other over-dispersed count data models, we extended
our simulation study. For this we generated data from the log-normal (µ∗, σ2) mixture of
Poisson distribution, where µ∗ = log(µ)− .5 log(1 + c) and σ2 = log(1 + c). The behavior of
the estimate of µ and the two variance functions under consideration remains similar (see,
Table 9) irrespective of whether we generate data from the gamma mixture of a Poisson
(negative binomial) or from the log-normal mixture of a Poisson.

7 Discussion

We have developed likelihood and extended quasi-likelihood methodologies to choose an
appropriate variance function for the semi-parametric analysis (that is, without full dis-
tributional assumption) of count data. Data analysis and simulations indicate that the
three parameter generalized negative binomial distribution NB(µ, c, b) does not improve in
fit to count data over the simpler negative binomial NB(µ, c) distribution. So, for semi-
parametric analysis we prefer the negative binomial variance function over the variance
function of the NB(µ, c, b) distribution. Moreover, the variance function of the NB(µ, c, b)
distribution does not have a closed form and is difficult to calculate numerically. Also, as
in the likelihood analysis based on the NB(µ, c, b) distribution, only one of the parameters
c and b may be estimable. So, the variance function of the NB(µ, c, b) distribution was not
considered in the semi-parametric analysis.

Further, through extensive data analysis we found that only one of the parameters of
the variance function c1µ+c2µ

2 is estimable using the extended quasi-likelihood. Moreover,
Rodbard and Hutt (1974) reported from their experience that for immunoradiometric assays
the linear term in the variance function c1µ + c2µ

2 can be omitted, and that the variance
function c3µ2 is a very satisfactory representation of the variance. So, the variance function
c1µ+ c2µ

2 was also not considered for extended quasi-likelihood analysis.
Further data analysis and simulations using extended quasi-likelihood indicate that the

negative binomial variance function v1 = µ + cµ2 has almost full efficiency. The estimate
of the variance function v2 = c3µ

2 has efficiency below 1 only when µ and c are small, for
example, for µ = 2, c=0.1; µ = 5, c=0.1 and µ = 2, c=0.2 efficiency falls far below 1.
Otherwise, in general, the efficiency of v2 is larger than 1.
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[5] Böhning, D., Dietz, E., Schlattmann, P., Mendonca, L., Kirchner, U. (1999). The
zero-inflated Poisson model and the decayed, missing and filled teeth index in dental
epidemiology. Journal of Royal Statistical Society A , 162, 195-209.

[6] Bliss, C.I. and Fisher, R.A. (1953). Fitting the negative binomial distribution to bio-
logical data. Biometrics, 9,176-200.

[7] Bliss, C.I. and Owen, A.R.G. (1958). Negative binomial distribution with common k.
Biometrika, 45,37-58.

[8] Byrd, R.H., Lu, P., Nocedal, J. and Zhu, C. (1995). A limited memory algorithm for
bound constrained optimization. SIAM J. Sci. Comput, 16, 11-29.

[9] Cameron, A.C. and Trivedi, P.K. (1986). Econometrics models based on count data.
Journal of Applied Statistics., 1, 29-53.

[10] Collings, B.J. (1981). The negative binomial distribution an alternative to the Poisson.
unpublished PhD thesis, University of North Carolina at Chapel Hill, USA.

[11] Collings, B.J. and Margolin, B.H. (1985). Testing goodness of fit for Poisson assumption
when observations are not identically distributed. J. Am. Statist. Assoc., 80, 411-418.

[12] Clark, S.J and Perry, J.N. (1989). Estimation of negative binomial parameter k by
maximum quasi-likelihood. Biometrics, 45, 309-316.

[13] Fisher, R.A. (1941). The negative binomial distribution. Annals of Eugenics, 11, 182-
187.



Variance Function in Semi-parametric . . . 157

[14] Finney, D.J. (1976). Radioligand assay. Biometrics, 32, 721-740.

[15] Gaffeo, E., Guilmi, C.D., Gallegati, M. and Russo, A. (2008). On the mean/variance
relationship of the firm size distribution: evidence and some theory. Discussion Paper
No. 5 , Department Di Economia, Universitá Degli Studi Di Trento, Italy.
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A Expression for Score Statistic

Suppose Y1, . . . , Yn is a random sample of size n from the three parameter negative binomial
model NB(µ, c, b) which has probability function

Pr(Y = y) =
Γ(y + c−1µ1−b)
y!Γ(c−1µ1−b)

( 1
1 + cµb

)c−1µ1−b( cµb

1 + cµb

)y
. (A.1)

Now, for any non-negative integer y and any x 6= 0,−1,−2, . . .,

Γ(y + x)/Γ(x) =

 Πy
j=1{x+ (j − 1)}, if y > 0

1, if y = 0.
(A.2)

Using this and other simplifications, we obtain

log
(Γ(y + c−1µ1−b)

Γ(c−1µ1−b)

)
= log

[ y∏
j=1

{c−1µ1−b + (j − 1)}
]

=
y∑
j=1

log
(
1 + (j − 1)cµb−1

)
− y log(cµb−1). (A.3)

Then, using the results in equation (A.3) and after simplification, the kernel of the
log-likelihood can be written as

l =
n∑
i=1

log
(Γ(y + c−1µ1−b)

Γ(c−1µ1−b)

)
− log(1 + cµb)

n∑
i=1

{
(c−1µ1−b) + yi

}
+ log(cµb)

n∑
i=1

yi

= log(µ)
n∑
i=1

yi +
n∑
i=1

yi∑
j=1

log(1 + (j − 1)cµb−1)− log(1 + cµb)
n∑
i=1

(yi + c−1µ1−b). (A.4)
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Following Barnwal and Paul (1988) we define φ = b and θ = (µ, c). We further define
ψ(θ) = ∂`

∂b |b=1, D = E(− ∂
2`
∂b2 )b=1, A = [E(− ∂2`

∂b∂c )b=1, E(− ∂2`
∂b∂µ )b=1] and

B =

 E(− ∂2`
∂µ2 )b=1 E(− ∂2`

∂µ∂c )b=1

E(− ∂2`
∂c∂µ )b=1 E(−−∂

2`
∂c2 )b=1

 .

Then the score test statistic (Rao, 1947) for testing H0 : b = 1 against HA : b 6= 1, is

S =
ψ(θ)2

V ar(ψ(θ))
, (A.5)

where V ar(ψ(θ)) = D − AB−1A
′
, which has asymptotically, as n → ∞, a chi-square

distribution with one degree of freedom. Note that θ is an unknown nuisance parameter. If
θ is replaced by θ̂, the maximum likelihood estimator of θ under H0 in ψ, A, B and D, then
the distribution of S = ψ(θ)2

D−AB−1A is chi-square, asymptotically, as n→∞, with one degree
of freedom (Moran, 1970). Now, using the log-likelihood (l) the required quantities for the
score statistic S are obtained in what follows.

ψ =
∣∣∣∂`
∂b

∣∣∣
b=1

=
log(µ)
c

{
n log(1 + cµ) +

n∑
i=1

yi∑
j=1

c2(j − 1)
(1 + (j − 1)c)

−
n∑
i=1

c2µ(xi + c−1)
1 + cµ

}
. (A.6)

E

[
− ∂2`

∂b2

]
b=1

= E

[
n log(1 + cµ)

c
− µ

(1 + cµ)2

{
n(1 + 2cµ)− c

n∑
i=1

yi

}
−

n∑
i=1

yi∑
j=1

c(j − 1)
(1 + (j − 1)c)2

]
log(µ)2

=
log(µ)2

c

{
n log(1 + cµ)− ncµ

(1 + cµ)
− c2

n∑
i=1

∞∑
y=0

y∑
j=1

(j − 1)
(1 + (j − 1)c)2

Pr(y)
}

= a1(say), (A.7)

where Pr(y) is the negative binomial probability given by equation (1.1).

E

[
− ∂2`

∂b∂µ

]
b=1

= E

[
n

(1 + cµ)
+
c{1 + log(µ)}

∑n
i=1 yi

(1 + cµ)
− n log(1 + cµ)

cµ
−
µc2 log(µ)(

∑n
i=1 yi + nc−1)

(1 + cµ)2

− c

µ

{ n∑
i=1

yi∑
j=1

(j − 1)
(1 + (j − 1)c)

}]

=
n

(1 + cµ)
+
nµc(1 + log(µ))

1 + cµ
− n log(1 + cµ)

cµ
− nµc2 log(µ)(µ+ c−1)

(1 + cµ)2

− c

µ
E

{ n∑
i=1

yi∑
j=1

(j − 1)
(1 + (j − 1)c)

}
. (A.8)

Now,

E

[
∂`

∂b

]
b=1

= E

[ n∑
i=1

yi∑
j=1

(j − 1)
(1 + (j − 1)c)

− nµ

c
+
n log(1 + cµ)

c2

]
= 0, (A.9)
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so that

E

[ n∑
i=1

yi∑
j=1

(j − 1)
(1 + (j − 1)c)

]
=

nµ

c
− n log(1 + cµ)

c2
. (A.10)

Substituting equation (A.10) in equation (A.8) we obtain

E

[
− ∂2`

∂b∂µ

]
b=1

=
n

(1 + cµ)
+
nµc(1 + log(µ))

1 + cµ
− n log(1 + cµ)

cµ
− nµc2 log(µ)(µ+ c−1)

(1 + cµ)2
−

− n+
n log(1 + cµ)

µc

= 0. (A.11)

E

[
− ∂2`

∂b∂c

]
b=1

= E

[
n log(µ) log(1 + cµ)

c2
− nµ log(µ)
c(1 + cµ)

− log(µ)
{ n∑
i=1

yi∑
j=1

(j − 1)
(1 + (j − 1)c)2

}

− nµ2 log(µ)
(1 + cµ)2

−
cµ2 log(µ)

∑n
i=1 yi

(1 + cµ)2
+
µ log(µ)

∑n
i=1 yi

(1 + cµ)

]
=
n log(µ) log(1 + cµ)

c2
− nµ log(µ)
c(1 + cµ)

− log(µ)
n∑
i=1

∞∑
y=0

y∑
j=1

(j − 1)
(1 + (j − 1)c)2

Pr(y)

= a2(say). (A.12)

Therefore, we can write A = (a2, 0). Next we obtain

E

[
− ∂2`

∂µ2

]
b=1

= E

[
2cµ

∑n
i=1 yi +

∑n
i=1 yi − ncµ2

(1 + cµ)2µ2

]
=

n

µ(1 + cµ)
= a3(say), (A.13)

E

[
− ∂2`

∂µ∂c

]
b=1

= E

[
−
∑n
i=1 yi + nµ

(1 + cµ)2

]
= 0 (A.14)

and E(− ∂
2`
∂c2 )|b=1 = a4(say). Then

B−1 =

 1/a3 0

0 1/a4

 (A.15)

and D −AB−1A′ = a1 − a2
2/a3.

Thus, the score test statistic for testing H0 : b = 1 against H1 : b 6= 1, is given by

S = ψ(θ̂)2
(
â1 −

â2
2

â3

)−1

,

where, ψ(θ̂) = n log(µ̂) log(1+ĉµ̂)
ĉ + ĉ log(µ̂)

∑n
i=1

∑yi

j=1
(j−1)

(1+(j−1)ĉ) − ĉ µ̂ log(µ̂)
∑n
i=1

(yi+ĉ
−1)

1+ĉµ̂ ,

â1 = 2n log(µ̂){ log(1+ĉµ̂)
ĉ − µ̂

1+ĉµ̂ − ĉH}, â2 = n log(µ̂)
ĉ { log(1+ĉµ̂)

ĉ − µ̂
1+ĉµ̂ − ĉH} , â3 = n

µ̂(1+ĉµ̂)
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where, H = E{
∑n
i=1

∑yi

j=1
(j−1)

(1+(j−1)ĉ)2 } and µ̂ and ĉ are the maximum likelihood estimates
under the null hypothesis. Now, under the null hypothesis b = 1, the kernel of the log-
likelihood, that is, the kernel of log-likelihood of the NB(µ, c) model, is

l0(µ, c) =
n∑
i=1

yi log(µ) +
n∑
i=1

yi∑
j=1

log(1 + (j − 1)c)−
n∑
i=1

(yi + c−1) log(1 + cµ). (A.16)

Maximum likelihood estimates of µ and c are obtained by solving

∂`0
∂µ

=
n∑
i=1

[
yi
µ
− 1 + cyi

1 + cµ

]
= 0 (A.17)

and

∂`0
∂c

=
n∑
i=1

[
log(1 + cµ)

c2
− (yi + c−1)µ

1 + cµ
+

yi∑
j=1

(j − 1)
(1 + (j − 1)c)

]
= 0. (A.18)

Solution to (A.17) gives µ̂ = ȳ. Simplifying (A.18) and putting µ̂ = ȳ the estimating
equation for obtaining ĉ is log(1+cȳ)

c −
∑n
i=1

∑yi

j=1
1

(1+(j−1)c) = 0. This equation can be solved
numerically using a subroutine, such as the FORTRAN subroutine ZBREN. Alternatively
one can do numerical maximization of l0(ȳ, c) following Piegorsch (1990). Here, we used R
function OPTIM to maximize l0(ȳ, c) for obtaining ĉ. The R function maximizes a function
by the quasi-Newton method which uses function values and gradient (see Byrd, Lu, Nocedal
and Zhu, 1995).

Table 1: Frequency distribution of counts of embryonic death

Number of deaths 0 1 2 3 4

frequency in treatment with
dose level 2

4 2 3 0 1
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Table 2: Values of estimate of minus the log-likelihood (−l); estimates of µ and c and their
standard errors in parenthesis; and estimate of the variance function with its standard error
in parenthesis; for different values of b

b −l̂ ˜̃µSE(˜̃µ) ˜̃cSE(˜̃c) ˜̃µ(1 + ˜̃c ˜̃µb) SE (˜̃µ(1 + ˜̃c ˜̃µb))

0.0 14.85 1.20(.41) .39(.76) 1.67 1.34

0.4 14.85 1.20(.41) .36(.70) 1.67 1.34

0.8 14.85 1.20(.41) .34(.65) 1.67 1.34

1.0 14.85 1.20(.41) .33(.62) 1.67 1.34

1.4 14.85 1.20(.41) .30(.58) 1.67 1.34

1.8 14.85 1.20(.41) .28(.55) 1.67 1.34

2.0 14.85 1.20(.41) .27(.53) 1.67 1.34

Table 3: Frequency distribution of red mites on apple leaves.

Number of mites per leaf 0 1 2 3 4 5 6 7 8+

Number of leaves observed 70 38 17 10 9 3 2 1 0

Table 4: Values of estimate of minus the log-likelihood (−l); estimates of µ and c and their
standard errors in parenthesis; and estimate of the variance function with its standard error
in parenthesis; for different values b

b −l̂ ˜̃µSE(˜̃µ) ˜̃cSE(˜̃c) ˜̃µ(1 + ˜̃c ˜̃µb) SE (˜̃µ(1 + ˜̃c ˜̃µb))

0.0 222.44 1.15(.13) 1.12(.33) 2.43 .29

0.4 222.44 1.15(.13) 1.06(.29) 2.43 .29

0.8 222.44 1.15(.13) 1.00(.27) 2.43 .29

1.0 222.44 1.15(.13) .98(.26) 2.43 .29

1.4 222.44 1.15(.13) .92(.25) 2.43 .29

1.8 222.44 1.15(.13) .87(.25) 2.43 .29

2.0 222.44 1.15(.13) .85(.25) 2.43 .29
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Table 5: Variance function and the extended quasi likelihood for the variance functions (a)
to (c)

Variance Function Extended Quasi Likelihood

µ+ cµ2
∑n
i {−

1
2 log(2π)− 1

2 log( (yi+1/6)(1+cyi)
2(1+c/6)

(1+cyi+c/6) )

+(yi + c−1) log(1+cyi

1+cµ )− yi log(yi

µ )}

c1µ+ c2µ
2 −n2 log(2π)− Σ log(yi)

2 + log(µ)
c1

Σyi + ( 1
c2
− 1

2 )Σ log(c1 + c2yi)

− log(c1 + c2µ)(Σyi

c1
+ n

c2
) +

Σyi log(c2+
c1
yi

)

c1

c3µ
2 −n2 log(2π)− n

2 log(c3)− Σ log(yi)−
P
yi

c3µ
+ 1

c3
Σ log(yi/µ) + n

c3

Table 6: Values of estimate of minus the extended quasi log-likelihood (−q), estimates of µ,
c, c3 and variance function (VF) along with their standard errors in parenthesis for different
variance functions for the embryo data set

VF −q̂ µ̂ ĉ ĉ3 b̂ V̂ F

µ+ cµ2 14.63 1.20(.41) .33(.64) - - 1.68(1.18)

c3µ
2 10.99 1.20(.40) - 1.10(.49) - 1.59(1.27)

Table 7: Values of estimate of minus the extended quasi log-likelihood (−q), estimates of µ,
c, c3 and variance function (VF) along with their standard errors in parenthesis for different
variance functions for the red mite data set

VF −q̂ µ̂ ĉ ĉ3 b̂ V̂ F

µ+ cµ2 219.47 1.15(.13) 1.00(.27) - - 2.47(.55)

cµ2 154.85 1.15(.11) - 1.34(.15) - 1.76(.39)
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Table 8: Values of estimates of negative-binomial log-likelihood (l), extended quasi likelihood
for variance function v1 = µ + cµ2 (q1), extended quasi likelihood for variance function
v2 = c3µ

2 (q2) and relative efficiency of estimates of µ and v1, v2 with respect to maximum
likelihood estimates for all combinations of n=20, 30, 50, µ=2, 5, 10, 20 and c=.1, .2, 4;
data from NB(µ, c) distribution

c n µ −l̂ −q̂1 −q̂2 RE1 RE2 RE(v1) RE(v2)

0.1 20 2 34.51 34.55 31.09 .99 .99 .98 .17

5 46.66 46.65 46.01 .99 .99 .99 .50

10 56.45 56.45 56.18 1.00 1.00 .99 1.93

20 67.62 67.62 67.37 .99 .99 .99 6.8

30 2 51.86 51.92 46.80 .99 .99 .98 .14

5 73.01 70.01 69.51 1.00 1.00 .99 .47

10 85.15 85.15 84.80 1.00 1.00 .99 2.03

20 101.88 101.87 101.53 1.00 1.00 .99 7.72

50 2 87.15 87.31 78.90 .99 .99 .98 .12

5 117.83 117.82 116.97 1.00 1.00 .99 .47

10 142.92 142.91 142.41 1.00 1.00 .99 2.13

20 170.58 170.58 170.06 .99 .99 .99 8.38

0.2 20 2 35.14 35.20 31.30 1.00 1.00 .98 .43

5 48.38 48.38 47.53 .99 .99 .99 1.27

10 59.77 59.76 59.27 1.00 1.00 .99 3.99

20 71.78 71.78 71.37 1.00 1.00 .99 10.89

30 2 53.22 53.30 47.41 1.00 1.00 .99 .40

5 73.74 73.74 72.45 1.00 1.00 .99 1.27

10 90.23 90.22 89.56 .99 .99 .99 4.44

20 108.56 108.49 107.91 .99 .99 .99 12.63

50 2 89.30 89.44 79.48 .99 .99 .98 1.22

5 123.29 123.29 121.22 .99 .99 .99 1.34

10 151.21 151.19 150.16 .99 .99 .99 5.29

20 181.56 181.55 180.53 1.00 1.00 .99 17.02

0.4 20 2 36.29 36.35 31.44 .99 .99 .98 1.22

5 51.12 51.12 49.25 .99 .97 .99 2.70

10 63.49 63.48 62.23 1.00 1.00 .99 5.59

20 76.14 76.12 75.30 .99 .99 .99 9.38

30 2 54.63 54.73 47.38 .99 .99 .98 1.37

5 79.97 76.97 74.24 1.00 1.00 .99 3.11

10 95.40 95.38 93.85 1.00 1.00 .99 7.02

20 114.94 114.91 113.72 1.00 1.00 .99 13.41

50 2 92.29 92.46 80.10 1.00 1.00 .98 1.34

5 129.14 129.14 124.44 1.00 1.00 .99 3.60

10 160.31 160.27 157.77 1.00 1.00 .99 8.55

20 192.27 192.23 190.27 .99 .99 .99 17.95
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Table 9: Values of estimates of negative-binomial log-likelihood (l), extended quasi likelihood
for variance function v1 = µ + cµ2 (q1), extended quasi likelihood for variance function
v2 = c3µ

2 (q2) and relative efficiency of estimates of µ and v1, v2 with respect to maximum
likelihood estimates for all combinations of n=20, 30, 50, µ=2, 5, 10, 20 and c=.1, .2, .4;
data from log-normal mixture of Poisson

c n µ −l̂ −q̂1 −q̂2 RE1 RE2 RE(v1) RE(v2)

0.1 20 2 34.36 34.41 30.95 .99 .99 .98 .18

5 46.49 46.49 45.90 1.00 1.00 .99 .48

10 56.49 56.48 56.15 1.00 1.00 .99 1.99

20 67.25 67.25 66.97 1.00 1.00 .99 7.10

30 2 51.95 52.02 46.84 .99 .99 .98 .16

5 69.89 69.88 69.21 .99 .99 .99 .50

10 84.86 84.86 84.46 .99 .99 .99 2.12

20 101.18 101.18 100.77 1.00 1.00 .99 8.77

50 2 87.19 87.28 79.02 .99 .99 .99 .12

5 117.53 117.52 116.68 1.00 1.00 .99 .49

10 142.16 142.15 141.51 1.00 1.00 .99 2.35

20 169.81 169.81 169.11 .99 .99 .99 9.47

0.2 20 2 35.12 35.17 31.25 .99 .99 .98 .44

5 48.26 48.26 47.37 .98 .99 .99 1.33

10 59.31 59.31 58.75 .99 .99 .99 5.04

20 71.18 71.18 70.72 .99 .99 .99 11.99

30 2 53.16 53.24 47.40 .99 .99 .98 .42

5 72.64 72.64 71.32 1.00 1.00 .99 1.47

10 89.36 89.35 88.57 1.00 1.00 .99 5.86

20 107.41 107.39 106.69 .99 .99 .99 17.78

50 2 89.17 89.29 79.53 .99 .99 .99 .40

5 123.29 123.38 120.37 1.00 1.00 .99 1.54

10 149.75 149.73 148.39 .99 .99 .99 7.31

20 179.62 179.61 178.43 .99 .99 .99 23.71

0.4 20 2 35.80 35.87 31.16 .99 .99 .98 1.31

5 50.57 50.57 48.97 1.00 1.00 .99 2.96

10 62.17 62.16 61.22 .99 .99 .99 8.25

20 74.66 74.65 73.93 .99 .99 .99 12.11

30 2 54.58 54.67 47.61 1.00 1.00 .98 1.36

5 76.27 76.26 73.86 .99 .99 .99 3.87

10 94.04 94.02 92.61 1.00 1.00 .99 10.31

20 113.07 113.06 111.92 .99 .99 .99 16.51

50 2 91.67 91.82 79.92 .99 .99 .98 1.41

5 128.02 128.01 124.00 1.00 1.00 .99 4.38

10 157.63 157.59 155.24 .99 .99 .99 14.71

20 189.22 189.18 187.306 .99 .99 .99 28.64


