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summary

In this study, we are interested in comparing various computational approaches to
Bayesian small area estimation of proportions in logistic regression models. The
basic idea consists of incorporating into such a model nested random effects that
reflect the complex structure of the data in a multistage sample design. As com-
pared to the ordinary linear regression model, it is not feasible to obtain a closed
form expression for the posterior distribution of the parameters. However, the
proven optimality properties of empirical Bayes methods and their documented
successful performance have made them popular (cf. Efron 1998). The EM algo-
rithm has proven to be an extremely useful computational tool here for empirical
Bayes estimation. The approximation often used in the M step is that proposed
by Laird (1978), where the posterior is expressed as a multivariate normal distri-
bution having its mean at the mode and covariance matrix equal to the inverse
of the information matrix evaluated at the mode. Inspired by the work of Zeger
and Karim (1991), Wei and Tanner (1990), Gu and Li (1998) and Nielsen (2000)
we also study a stochastic simulation method to approximate the posterior dis-
tribution. Alternatively, a hierarchical Bayes approach based on Gibbs sampling
can also be employed. We present here the results of a Monte Carlo simulation
study to compare point and interval estimates of small area proportions based on
these three estimation methods. As the empirical Bayes estimators obtained are
known to be biased, we use the bootstrap to correct for this.
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1 Introduction

The estimation of parameters for small areas has received considerable attention. This is especially

true in health research as evidenced by the use of institutional profiling (cf. Normand and Shahian,

2007). Model-based estimators have gained acceptance over direct survey estimators, since the latter

are unstable due to the small or nonexistent sample sizes that result from small areas. Model-based

estimators borrow strength from related areas and are therefore less variable. Synthetic estimation

proposed by Gonzales (1973) was the first of these approaches. Many other model-based estimators

have also been developed, in particular, for the linear model. In a seminal theoretical paper Stein

(1955) showed that the usual estimator of the mean vector of a multivariate normal distribution was

inadmissible by exhibiting an estimator which dominated the usual one in mean square error. Such

estimators came to be known as James-Stein estimators. Efron and Morris (1971, 1972a,b, 1973,

1975, 1977) in a series of papers showed the versatility and applicability of the Stein method for data

analysis. Their 1977 paper gives insightful examples of the improvement in estimation possible with

Stein’s estimator. Fay and Herriot (1979) were among the first to apply James-Stein estimation

techniques based on linear models to the problem of small area estimation. Such estimators could

also be viewed as empirical Bayes estimators. Datta and Ghosh (1991) investigated hierarchical

Bayes models for this problem and a number of studies focused on the specification of the prior

distribution. Lahiri and Rao (1995) robustified the Fay-Herriot model by relaxing the assumption

of a normal prior distribution and Datta and Lahiri (1995) developed a robust hierarchical Bayes

approach for handling outliers. Empirical and hierarchical Bayes techniques were soon adapted to

estimation of mean parameters in hierarchical generalized linear models. Excellent summaries of

these methodologies can be found in Ghosh and Rao (1994), Rao (1999), and Rao (2003).

Here we concentrate on the study of empirical and hierarchical Bayes approaches to small

area estimation of proportions in hierarchical logistic regression models. The basic idea considered

consists of incorporating into such a model nested random effects that reflect the complex structure

of the data in a multistage sample design and to compare several computational methods to estimate

the random effects and other parameters. Many authors have considered this problem from both an

empirical Bayes and a hierarchical Bayes perspective. See, for example, Dempster and Tomberlin

(1980), Wong and Mason (1985), Tomberlin (1988), MacGibbon and Tomberlin (1989), Albert

and Chib (1993), Farrell et al. (1994, 1997a,b), Ghosh and Rao (1994), Stroud (1994), Malec et

al. (1997), Farrell (2000), Holmes and Knorr-Held (2003), Holmes and Held (2006), Browne and

Draper (2006), Wu and Rao (2009a,b). One method used is the classical EM algorithm of Dempster

et al. (1977) combined with the approximation in the M step originally proposed by Laird (1978),

where the posterior is expressed as a multivariate normal distribution having its mean at the mode

and covariance matrix equal to the inverse of the information matrix evaluated at the mode. Other

researchers introduced various computational innovations on the classical EM algorithm proposed

by Dempster et al. (1977). Wei and Tanner (1990), and Zeger and Karim (1991) introduced the

Monte Carlo EM algorithm, which was used successfully by Chan and Ledolter (1995) in a study of

a time series of counts. Rudd (1991) also gave some interesting extensions of the EM algorithm with

econometric applications. Gu and Li (1998) proposed an alternative iterative approach consisting

of a stochastic approximation based on the Robbins and Monro (1951) procedure. Nielsen (2000)
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gave asymptotic results for the stochastic EM algorithm originally suggested by Celeux and Diebolt

(1986). Holmes and Knorr-Held (2003) and Holmes and Held (2006) showed that conjugate priors

were possible for Bayesian logistic regression by using a scale mixture of normals representation and

additional auxiliary variables. Tanner (1996) gives a nice overview of some of these computational

methods.

Our main goal here is to compare in a Monte Carlo simulation study the behaviour of three

different computational approaches to small area estimation of proportions in a random-effects

logistic model. The methods we have chosen to compare are: the classical empirical Bayes method

using the EM algorithm proposed by Dempster et al. (1977) combined with the Laird (1978)

approximation; a stochastic simulation method, that is, a hybrid stochastic EM algorithm using

the Laird (1978) approximation in the M step and the averaging log-likelihood modification of

the stochastic EM algorithm proposed by Nielsen (2000) for the E step; and Gibbs sampling (cf.

Geman and Geman, 1984 and Gelfand and Smith, 1990) using Markov chain Monte Carlo (MCMC)

techniques. This comparative study was motivated by our previous work in analyzing data using

different computational techniques. For example, in Farrell et al. (1997b), we chose to use the

EM algorithm in a random-effects logistic model to compare with classical unbiased and synthetic

estimation approaches in order to obtain local area labour force participation rates for females

in the United States using US census data. More recently, we had access to a very interesting

data set originally retrieved by Simons et al. (1997) from the University of Southern California

Cancer Surveillance Program, consisting of all patients who underwent surgery for rectal cancer

in Los Angeles county for a specific five-year period, in order to analyze and assess the factors

that affect the choice of surgery for rectal cancer. The data set consisted of over 1000 patients

with several patient characteristics as well as characteristics of the hospital where the patient

had the surgery. Although we considered our previous limited computer experiments with the

EM algorithm, stochastic simulation and Gibbs sampling for small area estimation and applied

it, with hospital as a ’small area’ or random effect in a logistic model to this data set, Farrell

et al. (2009) chose to use Gibbs sampling rather than either of the other two methods in order

to study the problem of detecting hospitals that are outliers. This decision was based on our

belief that, regardless of the many advantages of the classical EM algorithm including its ease of

implementation, its computational scalability and its good convergence properties, intuitively Gibbs

sampling should give the more accurate estimates. Although in our experience stochastic simulation

seemed a very promising technique, we felt the need to compare the performances of these three

methods in a more formal way before analyzing a real data set. Thus, our main contribution in

this paper is the implementation of a relatively simple Monte Carlo simulation study in order to

compare the three techniques on an application involving a random-effects logistic regression model.

We also derive the bias-corrected estimates by adapting a parametric bootstrap method originally

proposed by Laird and Louis (1987) and including a modification of these bootstrap techniques

proposed by Carlin and Gelfand (1991).

The paper is organized as follows. Section 2 consists of the description of the model and the

different estimation procedures used. In Section 3, the simulation study is described and the results

presented. This is followed by a discussion and conclusions in Section 4.
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2 The Model and Estimation Procedures

We follow the framework of Dempster and Tomberlin (1980) used previously for small area esti-

mation by MacGibbon and Tomberlin (1989), and Farrell et al. (1994, 1997a,b). Although we

concentrate on the hierarchical logistic model here, other generalized linear models could be stud-

ied in an analogous fashion; thus, the basic framework is re-formulated to be consistent with the

notation of McCullagh and Nelder (1989) for generalized linear models. However, the estimation

methods used here should be contrasted with the work of McCullagh and Nelder (1989) and Breslow

and Clayton (1993) who study quasi-likelihood methods of approximate inference for these models.

In these models, the expected value of a variable of interest is expressed as a function of K co-

variates as well as random sampling characteristics. For example, consider the case of a two-stage

cluster sample consisting of samples of individuals within each of I primary sampling units or local

areas.

Specifically, let Yij represent a random variable for the characteristic of interest for the j-th

individual within the i-th local area, and let yij represent a realization of Yij . If µij is the expected

value of Yij , then following McCullagh and Nelder (1989) the µij are related to a linear function

of covariates and sampling characteristics via a link function g with differentiable inverse h, that is

ηij = g(µij) and µij = h(ηij). We concentrate here on the estimation of small area characteristics.

In this framework, we might be interested in the total of yij ’s for each local area, that is

Ti =
X
j

yij . (2.1)

These parameters we propose to estimate using a prediction approach based on the linear model

ηij = β0 +

KX
k=1

βkXijk + φi, (2.2)

where φi represents a random effect associated with the i-th local area, βk represents the regression

coefficient associated with the k-th covariate and ηij represents the link function.

Let us henceforth illustrate the techniques on a problem where the objective is the development

of point and interval estimates in the hierarchical logistic model for the proportion of individuals,

pi, in each of I small areas that possess a characteristic of interest. The data to be used in obtaining

these estimates will be based on a two stage sample design, where individuals are sampled from

selected small areas. For example, imagine that there are two outcomes, A and B, and that interest

is in the proportion of individuals in each of I small areas with outcome A. A sample is drawn

from each selected small area, and information is recorded on the outcome for each individual in

the sample. In addition, suppose that covariate information is available for all individuals in each

small area for which point and interval estimates are desired, regardless of whether the individual

is sampled or not.

In the framework of the sample design proposed for this example, pi can be written as

pi =
X
j

yij/Ni, (2.3)
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where Ni is the population size of the i-th local area, and yij takes on a value of zero or one,

depending upon whether or not the j-th individual in the i-th local area possesses the characteristic

of interest. Using a predictive model-based approach proposed by Royall (1970), an estimator for

pi is

p̂i =
“X
j∈S

yij +
X
j∈S′

ŷij
”
/Ni, (2.4)

where the sum over j ∈ S of yij is the sum of the outcome variable for sampled individuals from

the i-th local area, and the sum over j ∈ S′ of ŷij is the sum of the estimated outcome variables

for nonsampled individuals in the i-th local area. Values for ŷij are obtained by initially specifying

a model to describe the probability πij that the j-th individual within the i-th local area possesses

the characteristic of interest. Specifically, setting ηij = logit(πij), the model is given by

yij | πij ∼ i.i.d.Bernoulli(πij), logit(πij) = β0 +

KX
k=1

βkXijk + φi = XT
ijβ + φi (2.5)

so that

1− πij = [1 + exp(β0 +

KX
k=1

βkXijk + φi)]
−1 = [1 + exp(XT

ijβ + φi)]
−1. (2.6)

In the notation of McCullagh and Nelder (1989), πij = µij , and as indicated above, φi represents

a random effect associated with the i-th small area, which is assumed to follow some specified

prior probability distribution. These random effects are included in the model to account for the

influence of unobserved covariates on the variation in the pi. For purposes of the simulation study

conducted here, we will assume that

φi ∼ i.i.d.Normal(0, σ2). (2.7)

Once estimates for β and φi have been determined, πij is estimated by

1− π̂ij = [1 + exp(β̂0 +

KX
k=1

β̂kXijk + φ̂i)]
−1 = [1 + exp(XT

ij β̂ + φ̂i)]
−1. (2.8)

The estimates π̂ij in conjunction with (2.4) ultimately allow for the development of point and

interval estimates for the pi. The approaches employed are described next.

2.1 Empirical Bayes Model Parameter Estimates Based on Classi-
cal EM Algorithm

Typically, the random effects variance, σ2, is unknown. Suppose that a value is assigned to this

variance (that will be updated and possibly altered later). For this value of σ2, the distribution of

the data is given by

f(y | β, φ, σ2) ∝
Y
ij

π
yij

ij (1− πij)1−yij , (2.9)

where φ is a vector containing the random effects φi. If a flat prior is placed upon β, then the prior

distribution of the parameters is

f(β, φ | σ2) ∝ 1

σI
exp

“
−
X
i

φ2
i

2σ2

”
. (2.10)
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Thus, the joint distribution of the data and the parameters is given by

f(y, β, φ | σ2) ∝
Y
ij

π
yij

ij (1− πij)1−yij
1

σI
exp

“
−
X
i

φ2
i

2σ2

”
(2.11)

so that the posterior distribution of the parameters is

f(β, φ | y, σ2) = f(y, β, φ | σ2)/f(y | σ2). (2.12)

It is not possible to obtain a closed form for the expression in (2.12) due to the intractable integration

required to evaluate the denominator on the right hand side. Therefore, according to a proposal

by Laird (1978), we can approximate (2.12) by a multivariate normal having its mean at the mode

and covariance matrix equal to the inverse of the information matrix evaluated at the mode.

The resulting estimates are conditional on the initially specified value of σ2, say σ̂2
{0}. Let these

estimates be represented by β̂{0} and φ̂{0}. The EM algorithm proposed by Dempster et al. (1977)

can be used to find a maximum likelihood estimate for σ2. Specifically, using the estimates obtained

with σ̂2
{0}, an updated value for σ2, σ̂2

{1} is determined using

σ̂2
{1} =

IX
i=1

[φ̂2
i{0} + V âr(φ̂i{0})]/I, (2.13)

where I is the total number of sampled local areas. If σ̂2
{1} is approximately equal to σ̂2

{0}, then

β̂{0}, φ̂{0}, and the associated covariance matrix serve as the empirical Bayes estimates of the

model parameters. Alternatively, if these two successive estimates of the random effects variance

are deemed to be different, another set of estimates for the fixed and random effects parameters

would be computed using the Laird approximation with σ̂2
{1} as the value specified for the random

effects variance. This iterative procedure would continue until successive estimates for σ2 converge.

As above, at the {n+ 1}-th iteration, σ̂2
{n} would be updated using

σ̂2
{n+1} =

IX
i=1

[φ̂2
i{n} + V âr(φ̂i{n})]/I. (2.14)

2.2 Empirical Bayes Model Estimates Based on Stochastic Simu-
lation

As indicated in the previous section, the EM algorithm involves two steps, the E step and the M

step. Various authors have proposed different methods for the calculations involved in each of these

steps. The maximization in the M step is often done directly or by the usual methods such as those

proposed by Wei and Tanner (1990), Chan and Ledolter (1995), Nielsen (2000), and others. These

include such methods as gradient ones or scoring. For the E-step, Wei and Tanner (1990) used a

Monte Carlo technique to calculate the expected likelihood. For random effects generalized linear

models, Zeger and Karim (1991) proposed using either a Gibbs sampler or Monte Carlo methods

to calculate this expectation. They also considered both the cases of normal and non-normal prior

distributions. Chan and Ledolter (1995) successfully used Monte Carlo techniques for problems

involving time series of counts. Gu and Li (1998) proposed an alternative iterative approach for
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estimating the random effects variance in a generalized linear model that also makes use of the

assumption that the prior distribution in equation (2.10) is multivariate normal. It consists of a

stochastic approximation based on the Robbins and Monro (1951) procedure.

Both Tanner (1996) and Nielsen (2000) remark, that in order to obtain asymptotic convergence

of the estimated likelihood obtained by Monte Carlo techniques to the true likelihood, the sample

size used must increase towards infinity. Nielsen (2000) obtained asymptotic convergence results

with the stochastic EM algorithm using for the M step, one of the usual maximization methods

given above and for the E step, the method of stochastic simulation originally proposed by Celeux

and Diebolt (1986), where at each iteration a sample of size one is randomly generated.

Here we use a hybrid method where, influenced by Nielsen (2000), we use the average likelihood

method which takes a fixed number of iterations at each step in order to calculate the expected

likelihood, while retaining the method proposed by Laird (1978) for the M step. We continue to

refer to it as the stochastic simulation method here. We now describe it more precisely.

Specifically, the initialization step is as described in the previous section. We then fix a value T

for the number of iterations we will use to average the likelihood. In the E step at the {n+ 1}-th
iteration, (β̂{n}, φ̂{n}){1}, (β̂{n}, φ̂{n}){2}, . . . , (β̂{n}, φ̂{n}){T} are generated from the multivariate

normal found by the Laird (1978) approximation in the previous M step. Then

Q(σ2 | σ̂2
{n}) =

ZZ
log[f(y | β, φ, σ2)f(β, φ | y, σ̂2

{n})]dβdφ

≈ 1

T

TX
t=1

log{f [y | (β̂{n}, φ̂{n}){t}, σ2]f(β, φ | y, σ̂2
{n})} (2.15)

is maximized over σ2 using the approach of Laird (1978) to obtain σ̂2
{n+1}. If, however, it is assumed

that the estimates for σ2 have converged at iteration n, then another iteration is not needed and

the T values of (β̂{n}, φ̂{n}){t} are averaged to produce the empirical Bayes estimates of the fixed

and random effects parameters. The inverse of the information matrix is then evaluated at this

average to obtain the covariance matrix.

2.3 Empirical Bayes Local Area Estimates

Once the empirical Bayes estimates of the model parameters have been obtained according to the

methods given in Section 2.1 or 2.2, equation (2.8) is used to determine a value for π̂ij for all jεS′

in the i-th local area. Then (2.4) is used to obtain empirical Bayes point estimates of small area

proportions by setting
P
ŷij =

P
π̂ij . To develop empirical Bayes interval estimates, we consider

the mean square error of p̂i. When
P
ŷij in equation (2.4) is replaced by

P
π̂ij , this mean square

error can be estimated as

MŜE(p̂i) = V âr

 P
jεS′ π̂ij

Ni

!
+

P
jεS′ π̂ij(1− π̂ij)

N2
i

. (2.16)

For sampled local areas, where the sample size, ni, is greater than zero, the first term in (2.16) is

of order 1/ni, while the second term is of order 1/Ni. In this study, the approximation of the mean

square error of p̂i is based on the first term only, yielding a useful approximation so long as Ni is

large compared to ni.
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To develop an expression for the variance of p̂i, we let Zij represent a vector of fixed effects

predictor variables for the ij-th individual augmented by a series of binary variables, each indicating

whether or not the ij-th individual belongs to a particular local area. We also let Γ̂ be the vector

containing the estimates of the fixed and random effects parameters. Then

ZTijΓ̂ = XT
ij β̂ + φ̂i (2.17)

where β̂ and φ̂i are the empirical Bayes estimates of β and φi. To obtain an expression for the

variance of p̂i, a first order multivariate Taylor series expansion of (2.4) with
P
ŷij replaced by

P
π̂ij

is taken with respect to the realized values of the fixed and random effects estimates, yielding an

approximate expression that describes p̂ias a linear function of these estimates. Taking the variance

of this expression yields

V âr(p̂i) =

24X
jεS′

ZTij π̂ij(1− π̂ij)

35“ Σ̂

N2
i

”24X
jεS′

Zij π̂ij(1− π̂ij)

35 , (2.18)

where Σ̂ represents the estimated covariance matrix of Γ̂. A 100(1 − α)% naive empirical Bayes

confidence interval for pi can be determined using

p̂i ± z(1−α/2)
p
V âr(p̂i), (2.19)

where z(1−α/2) is the 100(1−α/2) percentile of a standard normal distribution. Note that provided

that information is available on all Zij vectors in a local area that was not sampled, it is possible

to use equations (2.4) and (2.19) to develop point and interval estimates for such a domain (See

Farrell et al. 1997b, for example). However, we do not consider this situation here.

Let us also note that estimates of posterior variances given by (2.18) do not include the uncer-

tainty due to estimating the prior parameters; hence empirical Bayes confidence intervals based on

these variances are often too short to achieve the desired level of coverage when a naive approach

is employed since the variability arising from estimating the parameters of the prior distribution

is not incorporated (Ghosh and Rao, 1994; Farrell et al. 1994, 1997b;). A number of methods for

addressing this shortcoming are available. One of the most compelling ways to account for such

variability is by using the bootstrap originally introduced by Efron (1979). (Excellent expositions

of the bootstrap can be found in Efron and Gong (1983) and Efron and Tibshirani (1993).)

For confidence intervals of the estimates of the small area proportions, Farrell et al. (1997a,b)

used the parametric Type III bootstrap techniques proposed by Laird and Louis (1987) and also

included a modification of these bootstrap techniques proposed by Carlin and Gelfand (1991). They

demonstrated via a simulation study that the modification produced estimates for the nominal rate

of coverage for individual local areas that were closer than those achieved with the simple Laird

and Louis(1987) approach. It should be noted that the Type III bootstrap differs from the Rao-Wu

bootstrap which is most often employed in complex survey data for constructing confidence intervals

for nonlinear statistics (See Rao and Wu, 1988). The Rao-Wu bootstrap has been used effectively in

many situations. Recently, Wu and Rao (2009a,b) have introduced a bootstrap calibrated pseudo

empirical likelihood confidence interval, and a Bayesian pseudo empirical likelihood interval for data

from complex designs.



A Comparison of Computational Approaches . . . 175

The methodology for Laird and Louis (1987) Type III bootstrap requires the generation of a

number of bootstrap samples, NB , from each sample selected from the population under consider-

ation. The procedure for generating a single bootstrap sample is as follows:

(i) For a given set of sample data, obtain empirical Bayes estimates of the regression coefficients

and the random effects for the model in (2.5), along with an estimate of the prior distribution

of the random effects using the procedure described in Section 2.1 or 2.2.

(ii) For each sampled local area, generate a random effect using the estimated prior distribution

of the random effects obtained in (i).

(iii) For each sample observation, compute an estimated probability, π̂∗ij , using the estimated

regression coefficients in (i) and the random effects generated in (ii).

(iv) For each sample observation, generate y∗ij from a Bernoulli distribution with parameter π̂∗ij .

(v) The values obtained for y∗ij , along with the vectors Zij constitute the data for a bootstrap

sample.

For the b-th bootstrap sample, an empirical Bayes point estimate for the proportion of local

area i, p̂∗bi, along with an associated estimate of variability V âr(p̂∗bi), are determined using the

estimation procedures described in Section 2.1 or 2.2, along with equation (2.18) above. These

quantities are used to calculate

V âr∗(p̂i) =

PNB
b=1 V âr(p̂

∗
bi)

NB
+

PNB
b=1(p̂∗bi − p̂∗i )2

NB − 1
(2.20)

where p̂∗i =
PNB
b=1 p̂

∗
bi/NB . A bootstrap-adjusted empirical Bayes confidence interval for pi based

on the Laird and Louis (1987) approach can then be determined using

p̂i ± z(1−α/2)
p
V âr∗(p̂i). (2.21)

Carlin and Gelfand (1991) proposed a modification to the Type III bootstrap, which conditions

on the data from the local area in question. Their procedure, when applied to the generation of a

single bootstrap sample for the i-th local area is as follows:

(i) For a given set of sample data, obtain empirical Bayes estimates of the regression coefficients

and the random effects for the model in (2.5), along with an estimate of the prior distribution

of the random effects using the procedure described in Section 2.1 or 2.2.

(ii) For the k-th sampled local area, where k 6= i, generate a random effect φ∗k using the estimated

prior distribution of the random effects obtained in (i).

(iii) For each observation from the k-th sampled local area, where k 6= i, compute an estimated

probability, π̂∗kj , using the estimated regression coefficients in (i) and the random effects

generated in (ii).

(iv) For each observation from the k-th sampled local area, where k 6= i, generate y∗kj from a

Bernoulli distribution with parameter π̂∗kj .

(v) The yij associated with the i-th local area, the generated y∗kj values, where k 6= i, as well as

the Z vector for each sampled local area constitute the data for a bootstrap sample.
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Suppose that NB bootstrap samples are drawn in this fashion, with the b-th sample, using

the estimation procedures described in Section 2.1 or 2.2 and equation (2.18) above, producing

the estimates p̂∗Cbi and V âr(p̂∗Cbi). These estimates can then be used to determine a modified

bootstrap-adjusted estimate of the variability in p̂i as

V âr∗C(p̂i) =

PNB
b=1 V âr(p̂

∗
Cbi)

NB
+

PNB
b=1(p̂∗Cbi − p̂∗Ci)2

NB − 1
(2.22)

where p̂∗Ci =
PNB
b=1 p̂

∗
Cbi/NB . A modified bootstrap-adjusted empirical Bayes confidence interval for

pi is given by

p̂i ± z(1−α/2)

q
V âr∗C(p̂i). (2.23)

Farrell et al. (1997a) demonstrated via a simulation study that the Carlin and Gelfand (1991)

modification produced estimates for the nominal rate of coverage for individual local areas that

were closer than those achieved with the simple Laird and Louis (1987) approach. We therefore

used the modification in the simulation study presented in Section 3.

2.4 Hierarchical Bayes Model Parameter and Local Area Estimates

The development of hierarchical Bayes estimates for the model parameters in (2.5) requires that a

distribution for the random effects variance be specified. In theory, the method is only applicable

if the joint posterior of all parameters is proper. However, as a first approximation here, we have

chosen a flat prior for σ2 so that P (y, β, φ, σ2) is identical to P (y, β, φ|σ2) in (2.11). Using (2.11)

then allows for the determination of marginal posterior distributions of each parameter up to a

constant of proportionality (Gilks, Best, and Tan, 1995); the evaluation of the actual distribution

is not possible due to the intractable integration required to obtain P (β, φ, σ2|y). Specifically the

posterior distribution for any given parameter is proportional to the product of all terms in (2.11)

that contain it, which yields

f(β0 | y, β1, . . . , βK , φ, σ
2) ∝

Q
ij π

yij

ij (1− πij)1−yij ,

f(βk | y, β0, . . . , βk−1, βk+1, . . . , βK , φ, σ
2) ∝

Q
ij π

yij

ij (1− πij)1−yij ,

f(φi | y, β, φ1, . . . , φi−1, φi+1, . . . , φI , σ
2) ∝

Q
ij π

yij

ij (1− πij)1−yij exp(−
P
i

φ2
i

2σ2 ),

f(σ2 | y, β, φ) ∝ 1
σI exp(−

P
i

φ2
i

2σ2 ).

9>>>>>>=>>>>>>;
(2.24)

Obviously, f(σ2 | y, φ, β) is improper. To avoid the problems this may cause, we use a truncated

version of this function for our sampling.

The computational method typically used to determine hierarchical Bayes estimates for the

model parameters in (2.5) is Gibbs sampling. Although software such as WinBUGS is now readily

available for such Bayesian computations and the model proposed here could be implemented in

it, we include a description of the method we used for simulating the posterior distributions of the

model parameter estimates.

Under Gibbs sampling, an initial set of values would be assumed as the estimates for β, φ, and σ2,

say β̂{0}, φ̂{0}, and σ̂2
{0}. An updated estimate for β0, say β̂0{1}, is obtained by sampling from the dis-

tribution f(β0 | y, β̂1{0}, . . . , β̂K{0}, φ̂{0}, σ̂
2
{0}). Sampling from f(β1 | y, β̂0{1}, β̂2{0}, . . . , β̂K{0}, φ̂{0},
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σ̂2
{0}) based on β̂0{1} yields the revised estimate β̂1{1} for β1. The completion of a first iteration is

realized once the revised estimates β̂{1}, φ̂{1}, and σ̂2
{1} are obtained. This procedure of sampling

from full conditional distributions using the most up-to-date revised estimates continues until the

estimates of each parameter are deemed to have stabilized from one iteration to the next. See Ge-

man and Geman (1984) and Gelfand and Smith (1990) for a general discussion on Gibbs sampling,

and Gelman and Rubin (1992) for methods of convergence.

Note that a different full conditional distribution must be sampled every time a new estimate

is obtained, regardless of which parameter is being estimated. Since many iterations are usually

needed to ensure that estimates for each parameter have stabilized, efficient methods for construct-

ing full conditional distributions and sampling from them are required. For log-concave distribu-

tions, this can be accomplished through adaptive rejection sampling (See Gilks and Wild, 1992).

For applications where the full conditional distributions are not log-concave, Gilks, Best, and Tan

(1995) propose appending a step using the Metropolis-Hastings algorithm, an algorithm originally

conceived by Hastings (1970), to the adaptive rejection sampling scheme. They suggest using the

resulting adaptive rejection Metropolis sampling scheme within the Gibbs sampling algorithm. We

follow this approach here.

Specifically, suppose that the Gibbs sampler has been applied to the full conditional distribution

of the parameter θ, f(θ | y, ψ̂), to obtain an updated estimate, say θ̂CUR. Here, ψ̂ contains the most

recent updated estimates for all other parameters with associated full conditional distributions.

For example, one possibility is that θ = β0, ψ̂ = {β̂1{10}, . . ., β̂K{10}, φ̂{10}, σ̂
2
{10}}, so that

θ̂CUR = β̂0{11}. In what follows, the various distributions referred to are conditional upon y and

ψ̂; however we will suppress the conditioning, writing f(θ | y, ψ̂). as f(θ), for example. Let

SM = {θi; i = 0, 1, . . . ,M + 1} denote a set of values in ascending order for θ at which f(θ) is to

be evaluated, where θ0 and θM+1 are possibly infinite lower and upper limits. Further, for 1 ≤ i ≤
j ≤M , let Lij(θ;SM ) denote the straight line through the points [θi, lnf(θi)] and [θj , lnf(θj)]; for

other (i, j) assume that Lij(θ;SM ) is undefined. Under adaptive rejection Metropolis sampling, in

order to determine if θ̂CUR is to be kept or replaced when applying the Gibbs sampler to the full

conditional of the next parameter, we proceed as follows:

(1) Sample θ from gM (θ) = 1
vM

exp[hM (θ)] where vM =
R

exp[hM (θ)]dθ, and hM (θ) is a piecewise

linear function given by hM (θ) = max[Li,i+1(θ;SM ), min{Li−1,i(θ;SM ), Li+1,i+2(θ;SM )}],
θi ≤ θ ≤ θi+1.

(2) Sample W1 from a uniform (0, 1) distribution.

(3) If W1 > f(θ)/ exp[hM (θ)], set SM+1 = SM ∪ {θ}, ensure that all values for θ in SM+1 are

arranged in increasing order, increment M , and go back to (1). Otherwise, set θA = θ, and

continue.

(4) Sample W2 from a uniform (0, 1) distribution.

(5) If

W2 > min

"
1,
f(θA) min{f(θ̂CUR), exp[hM (θ̂CUR)]}
f(θ̂CUR) min{f(θA), exp[hM (θA)]}

#
,
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then use θ̂CUR when applying the Gibbs sampler to the next full conditional distribution.

Otherwise, use θA instead.

When making use of adaptive rejection Metropolis sampling within the Gibbs sampler here,

for each parameter SM = {θi; i = 0, 1, . . .M + 1} initially comprised six θi values based on the

5th, 30th, 45th, 55th, 70th, and 95th percentiles of hM (θ) from the previous Gibbs iteration. This

adaptive rejection Metropolis sampling scheme is applied immediately following each time a full

conditional distribution is sampled via the Gibbs sampler.

Following Gilks, Best, and Tan (1995) when running the above algorithm here for a particular

data set, it was executed twice, using 15,000 iterations each time. A different set of starting

values for the parameter estimates was used for each of the two runs. To construct the posterior

distributions of the parameters, the last 3,000 iterations in each run were used in order to ensure

proper convergence. The method of Gelman and Rubin (1992) was used to assess convergence.

This approach yields 6,000 sets of estimates for the fixed and random effects parameters in the

model, where a set is linked by the iteration number at which the estimates were produced. For

each set of estimates, (8) is used to determine values for π̂ij for all jεS′ in the i-th local area. A

value for ŷij where jεS′ is then generated from a Bernoulli distribution with parameter π̂ij . The

resulting values of ŷij are then used in (4) to determine a value for p̂i. There would be 6,000 such

estimates for p̂i, one associated with each of the 6,000 sets of model estimates. These estimates for

p̂i are then treated as an empirical distribution. If a point estimate for the proportion of the i-th

local area is desired the median of this distribution could be used. In addition, if a 100(1 − α)%

interval estimate is required, then the 100(α/2) and 100(1 − α/2) percentiles of this distribution

can be taken as the lower and upper limits, respectively.

3 Simulation Study

A simulation study was conducted to compare the performance of estimators for small area pro-

portions based on a hierarchical Bayes estimation approach with those based on empirical Bayes

techniques that use the classical EM method with a Laird approximation and the stochastic simu-

lation method discussed here. For purposes of this study, we decided to create randomly generated

data using a model defined by equations (2.5) through (2.7) containing two covariates; one cat-

egorical, and the other continuous. However, as noted in the introduction, we have in previous

work applied the empirical Bayes techniques using the EM algorithm as well as hierarchical Bayes

techniques using MCMC methodology described here to real data sets. For example, Farrell et al.

(1997b) applied the classical EM algorithm using the Laird approximation to US census data and

Farrell et al. (2009) applied hierarchical Bayes procedures using MCMC methodology to a can-

cer surveillance database. We did consider some computer experiments comparing classical EM,

the Gibbs sampler and stochastic simulation but did not attempt a systematic analysis. Such an

analysis is the motivation for the study here.

In order to lend a context to our randomly generated data, we imagine that two choices of

surgical procedure, A and B, are available for a certain disease, and that interest is in the proportions

of patients at particular hospitals that select procedure A. Suppose also that when sampling takes
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place to estimate these proportions, covariate information on gender and age is collected along with

the surgical procedure selected.

Treating the hospitals as local areas, a population of 2,500 patients was created for each. To

develop these populations, for each hospital a random effect value, φi, was first generated from

a normal distribution with mean zero and standard deviation 0.25. Then, for the j-th patient

at the i-th hospital, outcomes for gender, Xij1, and age, Xij2, were generated from a Bernoulli

distribution with parameter 0.5, and from a continuous uniform distribution ranging from 25 to

65, respectively. The indicator variable for gender took on a value of one for females, and zero for

males. For the j-th patient at the i-th hospital, the probability πij of choosing surgical procedure

A was then computed according to the model

log

„
πij

1− πij

«
= β0 + β1Xij1 + β2Xij2 + φi, (3.1)

where β0 = −0.5, β1 = −0.5, and β2 = 0.02. Using the πij , the small area proportion of individuals

at the i-th hospital opting for procedure A was determined as

pi =

2500X
j=1

πij/2500. (3.2)

This yielded the small area proportions given in Table 1, which range from 0.35 to 0.59. For the

j-th patient at the i-th hospital, a response variate value for Yij of 1 or 0 to indicate selection of

procedure A or B respectively was generated from a Bernoulli distribution with parameter πij .

In order to study the properties of small area estimators of proportions using the three estimation

methodologies, samples of 50 individuals were drawn from each of the twenty hospitals, yielding a

total sample size of 1,000. For each approach, a point estimate and 95% confidence interval was

determined for the proportion of patients at each hospital opting for procedure A. This process was

repeated 1,000 times to allow for a comparison of the three approaches over repeated realizations

of the sampling design.

The results over the entire 1,000 replications are presented in Table 1. Included for each hospital

are summaries for each of the three methods that reflect an average point estimate for the proportion

of interest, an average confidence interval width, and a coverage rate. The average point estimates

suggest that the design bias in the small area estimators associated with the three approaches is

quite small for most hospitals. To compare the three procedures, the mean absolute difference

between the small area proportions and the average estimates was obtained for each approach. The

hierarchical Bayes technique produced a mean absolute difference of 0.0028, as compared to 0.0058

and 0.0041 for the empirical Bayes methods based on classical and stochastic simulation approaches,

respectively. The hierarchical Bayes approach resulted in the smallest absolute difference for half

of the twenty hospitals, while the empirical Bayes method based on stochastic simulation had the

smallest in seven others.

There is little difference in the average interval lengths obtained using the various procedures.

The average coverage rates over the twenty hospitals are also similar for the three approaches, and

very close to the 95% nominal rate. For the empirical Bayes approaches based on classical and

stochastic simulation procedures these averages are 94.58% and 94.90% respectively, as compared
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to 95.15% for the hierarchical Bayes intervals. However, of note is the difference in the variability of

the twenty coverage rates obtained for the three methods. The standard deviation of the coverage

rates for the hierarchical Bayes intervals is only 0.497%, as compared to 1.458% and 0.937% for the

empirical Bayes intervals based on classical and stochastic simulation approaches, respectively.

4 Conclusion and Discussion

In the context of the study conducted here for estimating small area proportions, both the empirical

and hierarchical Bayes procedures yielded point estimates with small design bias, with the latter

approach being slightly better. The average coverage rates for the three methods are similar and

very close to the 95% nominal rate. However, the variability in the individual local area coverage

rates based on the hierarchical Bayes intervals is noticeably smaller than that in counterparts based

on the two empirical Bayes approaches. This is clearly an advantage of the hierarchical Bayes

approach. Of note also is the reduction in variability in these rates when empirical Bayes stochastic

simulation is used instead of the classical approach. Unfortunately, this reduction in coverage rate

variability as one opts for classical empirical Bayes, stochastic simulation, and hierarchical Bayes is

tempered by sizeable increases in computing time. We find, however, in the context studied here,

that the stochastic simulation method is a good compromise solution.

As a normal prior was used exclusively in this study, an interesting avenue of future research

would be to perform a simulation study which relaxes this assumption. The study could compare

the methods investigated here with analogous ones without the normality hypothesis, including a

non-normal stochastic simulation method similar to the Monte Carlo one proposed by Zeger and

Karim (1991). Since Holmes and Knorr-Held (2003) and Holmes and Held (2006) showed that

conjugate priors are possible for Bayesian logistic regression, comparisons could also be made with

their method.

An interesting extension of the computational methods we used here would be to be able to

apply them to longitudinal data where generalized estimation equations (GEE) become necessary.

Rao and Tausi (2004), influenced by the work of Hu and Kalbfleisch (2000) in the non-survey case,

introduced an estimating function (EF) bootstrap to handle longitudinal as well as cross-sectional

data for complex survey designs. Roberts et al. (2006) were able to apply the EF bootstrap to

marginal logistic regression models with binary response data from a longitudinal survey with a

complex design. An interesting survey on bootstrap methods for the analysis of complex sample

survey data is given by Rao (2006).

Of course, in reaching any definitive conclusion we must also take into consideration the general

knowledge we have about the performance of each of these methods. It is well-known that the

EM algorithm is an easily implementable and computationally scalable method. Its simplicity

was also noted by Rydén (2008) in his study of the EM algorithm versus MCMC methods for

the estimation of hidden Markov models, although he concluded that the Bayesian methods were

more useful for complex models. Browne and Draper (2006) used simulation studies with realistic

designs for random-effects logistic regression multilevel models to compare (MCMC) estimation

with adaptive hybrid Metropolis Gibbs sampling and quasi-likelihood methods. They concluded
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that the Bayesian methods with diffuse priors clearly outperformed the likelihood methods in terms

of calibration in point and interval estimation. However, it should also be noted that the Gibbs

sampler is a sequential method and therefore, slower than stochastic simulation. For very large data

sets, stochastic simulation would have the advantage of the possibility of having the computations

done by parallel computing.

We do find that this simulation study has demonstrated the usefulness of the stochastic sim-

ulation method for the hierarchical logistic regression model and we feel that extensions of this

computational method can be developed to handle more complex situations. However a good prac-

tical rule to follow in applications involving a random-effects logistic model would be to consider

using all three techniques on the available data when feasible.
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