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summary

In this article we propose a weighted bootstrap approximation to the distribution
of the supremum (over compact sets) of the classical Bickel-Rosenblatt statistic
|fn(t) − f(t)|/

√

f(t) as well as its “Studentized” version |fn(t) − f(t)|/
√

fn(t),
where fn is the usual kernel density estimator of the true density f . Follow-
ing Horvath et al. (2000), we showed that the proposed weighted bootstrap
method is consistent (in capturing the true limiting distributions derived by Bickel
and Rosenblatt (1973)). Furthermore, simulation results show that the proposed
weighted bootstrap has a much better finite-sample performance than the results
based on asymptotic theory. For comparison purposes, we also consider Efron’s
(1979) original bootstrap.
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1 Introduction

Let X1, · · · , Xn be independent and identically distributed random variables with a common

distribution function F and the probability density function f = F ′. Also, let

fn(x) = (nhn)
−1

n∑

i=1

K((x−Xi)/hn)

be the usual Parzen-Rosenblatt kernel density estimate of f (Parzen (1962) and Rosenblatt

(1956)), where K, the kernel function, is typically required to satisfy certain regularity con-

ditions.; here hn is the smoothing parameter of the kernel. An important statistic, which is

also a standard measure of the performance of fn, as an estimator of f , is given by the func-

tion supa≤t≤b |fn(t)−f(t)|/
√

f(t), where−∞ < a < b < ∞. Using the theory of the extrema

of Gaussian Processes, Bickel and Rosenblatt (1973) derived the asymptotic distribution of
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the above statistic as well as its “Studentizes” version, supa≤t≤b |fn(t)−f(t)|/
√

fn(t), under

appropriate regularity conditions. More specifically, suppose that the following conditions

hold:

Condition (K)

K(i). The kernel K is nonnegative, symmetric about zero, and vanishes outside an interval

[−A,A], for some A < ∞.

K(ii). K is uniformly bounded and
∫
K(x) d(x) = 1. The derivative K ′ exists (a.e.) on

(−A,A) and satisfies
∫
x2 |K ′(x)| dx < ∞.

K(iii). K(x) = L(|x|p) for some nonincreasing function L, where p ≥ 1 is an integer.

An example of a kernel that satisfies all the above conditions is a truncated Gaussian

kernel (truncated at −A and A).

Condition (f)

The density f is continuous, bounded, and positive on (−ǫ, 1 + ǫ), for some ǫ > 0. Further-

more, the function f1/2 is absolutely continuous and its derivative is bounded in absolute

value. Also, f ′′ exists and is bounded.

Let

Mn = sup
0≤t≤1

√
nhn

f(t)

∣∣∣fn(t)− f(t)
∣∣∣ and M̂n = sup

0≤t≤1

√
nhn

fn(t)

∣∣∣fn(t)− f(t)
∣∣∣.

Although the supremum is taken over the interval [0, 1], the results hold on any other interval

on which f is bounded away fron 0 and ∞. Then, Bickel and Rosenblatt (1973) proved the

following results.

Theorem 1. Suppose that conditions K(i), K(ii), and (f) hold. If

hn = n−δ, where
1

5
< δ <

1

2

then, as n → ∞,

lim
n→∞

P

{√
2δ log n

(
Mn

λ1/2
− dn

)
≤ x

}
= lim

n→∞
P

{
√
2δ log n

(
M̂n

λ1/2
− dn

)
≤ x

}

= exp
(
−2e−x

)
, (1.1)
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where λ =
∫
K2(u)du ,

dn =
√
2δ log n+





logK1−
1

2
log π+ 1

2
(log δ+log logn)

(2δ logn)1/2
, if K1 := K2(A)+K2(−A)

2λ > 0,

log[(1/π)(K2/2)
1/2]

(2δ logn)1/2
, otherwise ,

(1.2)

and where K2 = 1
2λ

∫
(K ′(t))2dt.

From a statistical point of view, the result in (1.1) can be used to form asymptotic

confidence bands for the unknown density f . However, it is also well known that the rate of

convergence in (1.1) is very slow; see, for example, Konakov and Piterbarg (1984) and Hall

(1991). An alternative approach to approximate the limiting distribution in (1.1) is based

on the bootstrap. Efron’s (1979) original bootstrap algorithm replaces Mn and M̂n in (1.1)

by M∗
n and M̂∗

n, respectively, where

M∗
n = sup

0≤t≤1

√
nhn

fn(t)

∣∣∣f∗
n(t)− fn(t)

∣∣∣ and M̂∗
n = sup

0≤t≤1

√
nhn

f∗
n(t)

∣∣∣f∗
n(t)− fn(t)

∣∣∣ ;

here

f∗
n(t) = (nhn)

−1
n∑

i=1

K((t−X∗
i )/hn) (1.3)

where X∗
1 , · · · , X∗

n are conditionally independent (conditional on X1, · · · , Xn) with distri-

bution function Fn(t) = n−1
∑n

i=1 I{Xi ≤ t}. The theoretical validity of the corresponding

bootstrap versions of (1.1) follows from the work of Csörgő et al. (2000) and Hall (1991). For

1 ≤ p < ∞, one may also consider Lp-norms of kernel density estimators (and their boot-

strap versions) for goodness-of-fit tests; see, for example, Horvath (1991) and Mojirsheibani

(2007).

In this article we consider a weighted bootstrap approach for approximating the limiting

distributions in (1.1). The proposed approach is very easy to implement and produces

accurate approximations.

2 Main Results

Many authors have used the weighted bootstrap as a generalization of Efron’s (1979) orig-

inal bootstrap in the literature. Burke (2000) uses Gaussian weights to form bootstrap

confidence bands for a distribution functions. Mason and Newton (1992) give conditions

under which the weighted bootstrapped mean is consistent. Horvath et al. (2000) give the

rate of the best Gaussian approximation for the weighted bootstrap empirical process and

construct a sequence of Brownian bridges achieving this rate. Another interesting applica-

tion of the weighted bootstrap is the Bayesian bootstrap of Rubin (1981). One may also

refer to Barbe and Bertail (1995) for a general view and further results on the weighted

bootstrap. Of course, Efron’s original bootstrap itself is a weighted bootstrap algorithm,
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where the weights are multinomial random variables. One drawback of multinomial weights

is that some observations may be sampled more than once while others are not sampled

at all. Furthermore, in many applications, depending on the weights chosen, the weighted

bootstrap has been shown to be computationally more efficient than Efron’s algorithm; see,

for example, Burke (2000), Hall and Mammen (1994), and Horvath et al. (2000).

The weighted bootstrap approximation of this article works as follows. Let ǫ1, · · · , ǫn be

i.i.d. random variables, with mean µ and variance 1, independent of the data X1, · · · , Xn.

The weighted bootstrap version of fn is given by

fnn(t) = (nhn)
−1

n∑

i=1

(1 + ǫi − ǭ)K((t−Xi)/hn), (2.1)

where ǭ = n−1
∑n

i=1 ǫi. Observe that if we replace (1 + ǫi − ǭ) by Mn,i in (2.1), where

(Mn,1, · · · ,Mn,n) is a multinomial random vector with n draws on n categories, then fnn(t)

reduces to f∗
n(t) in (1.3). Next, consider the following counterparts of Mn and M̂n:

Mnn = sup
0≤t≤1

√
nhn

fn(t)

∣∣∣fnn(t)− fn(t)
∣∣∣

and

M̂nn = sup
0≤t≤1

√
nhn

fnn(t)

∣∣∣fnn(t)− fn(t)
∣∣∣ .

The following theorem shows that our weighted bootstrap approximation of (1.1) works

correctly. We first need to state a condition regarding the random variables ǫ1, · · · , ǫn used

in (2.1).

Condition (M)

The random variables ǫ1, · · · , ǫn are i.i.d., with some mean µ and variance 1, and are inde-

pendent of the data X1, · · · , Xn. Furthermore, there is a t0 > 0 such that E(etǫ1) < ∞ for

all t ∈ (−t0, t0).

Theorem 2. Suppose that conditions (K) , (f), and (M) hold. If

hn = n−δ, where
1

5
< δ <

1

2

then, as n → ∞,

lim
n→∞

P

{√
2δ log n

(
Mnn

λ1/2
− dn

)
≤ x

}
= lim

n→∞
P

{
√
2δ log n

(
M̂nn

λ1/2
− dn

)
≤ x

}

= exp
(
−2e−x

)
, (2.2)

where λ =
∫
K2(u)du and dn is as in (1.2).
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Proof. Let

Fn(t) = n−1
n∑

i=1

I{Xi ≤ t}

Fnn(t) = n−1
n∑

i=1

(1 + ǫi − ǭ)I{Xi ≤ t}

βn(t) = n1/2(Fnn(t)− Fn(t)) = n−1/2
n∑

i=1

(ǫi − ǭ)I{Xi ≤ t}

and observe that

fnn(t)− fn(t) = (nhn)
−1

[
n∑

i=1

(1 + ǫi − ǭ)K((t−Xi)/hn)−
n∑

i=1

K((t−Xi)/hn)

]

=
1

h

∫ ∞

−∞

K((t− s)/hn) d(Fnn(s)− Fn(s)).

Therefore

(nhn)
1/2(fnn(t)− fn(t)) = h−1/2

∫ ∞

−∞

K((t− s)/hn) dβn(s).

Next, we need to state the following result of Horvath et al. (2000):

Lemma 2.1. If the weights ǫ1, · · · , ǫn satisfy condition (M) then there exists a sequence of

Brownian bridges {Bn(t), 0 ≤ t ≤ 1} such that

P

{
sup

−∞<t<∞

∣∣βn(t)−Bn(F (t))
∣∣ > n−1/2 (c1 log n+ x)

}
≤ c2 e

−c3x,

for all x ≥ 0, where c1, c2, c3 are positive constants.

The following corollary is an immediate consequence of Lemma 2.1.

Corollary 2.1. Under condition (M),

sup
−∞<t<∞

∣∣βn(t)−Bn(F (t))
∣∣ a.s.= O

(
n−1/2 log n

)
,

where {Bn(t), 0 ≤ t ≤ 1} is as in Lemma 2.1.

Now, let {Bn(t), 0 ≤ t ≤ 1} be as in Lemma 2.1 and observe that

sup
0≤t≤1

∣∣∣∣∣

√
nhn

f(t)

(
fnn(t)− fn(t)

)
− 1√

h f(t)

∫ ∞

−∞

K((t− s)/hn) dBn(F (s))

∣∣∣∣∣

= h−1/2
n sup

0≤t≤1

1√
f(t)

∣∣∣∣
∫ ∞

−∞

βn(t− xhn) dK(x)−
∫ ∞

−∞

Bn(F (t− xh)) dK(x)

∣∣∣∣

≤ h−1/2
n

∣∣∣∣
∫ ∞

−∞

dK(x)

∣∣∣∣ sup
0≤t≤1

1√
f(t)

× sup
−∞<u<∞

∣∣∣βn(u)−Bn(F (u))
∣∣∣

= OP

(
log n√
nhn

)
, (by Corollary 2.1 and the assumptions on f and K). (2.3)
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Now let {B(t), 0 ≤ t ≤ 1} be a Brownian bridge and note that for each n = 1, 2, · · ·

{
1√

hnf(t)

∫ ∞

−∞

K((t− s)/hn) dBn(F (s)), 0 ≤ t ≤ 1

}

d
=

{
1√

hnf(t)

∫ ∞

−∞

K((t− s)/hn) dB(F (s)), 0 ≤ t ≤ 1

}
.

Bickel and Rosenblatt (1973) studied the process (hnf(t))
−1/2

∫∞

−∞
K((t−s)/hn)dB(F (s)) ,

0 ≤ t ≤ 1, and showed that its normalized supremum, i.e.,

√
2δ log n

(
λ−1/2 sup

0≤t≤1

∣∣∣∣∣
1√

hnf(t)

∫ ∞

−∞

K((t− s)/hn) dB(F (s))

∣∣∣∣∣− dn

)
,

converges in distribution to a random variable Y , where P{Y ≤ x} = exp (−2e−x). Thus,

in view of (2.3),

P

{
√
2δ log n

(
λ−1/2 sup

0≤t≤1

∣∣∣∣∣

√
nhn

f(t)

(
fnn(t)− fn(t)

)∣∣∣∣∣− dn

)
≤ x

}
= exp

(
−2e−x

)
. (2.4)

Next, we show that

√
(nhn) log n sup

0≤t≤1

∣∣∣∣∣

(
1√
fn(t)

− 1√
f(t)

)
(
fnn(t)− fn(t)

)
∣∣∣∣∣ = oP (1). (2.5)

We observe from (2.5) and (2.4) that the first limit statement of Theorem 2 is equal to

exp(−2e−x). To establish (2.5), first note by (2.4) that we have

sup
0≤t≤1

∣∣∣
√
nhn/f(t) (fnn(t)− fn(t))

∣∣∣ = OP

(√
log n

)
.

Therefore, the left side of (2.5) is bounded by

sup
0≤t≤1

∣∣∣∣∣

√
f(t)√
fn(t)

− 1

∣∣∣∣∣×OP (log n) ≤
(

1

inf0≤t≤1 fn(t)

)1/2

sup
0≤t≤1

|fn(t)− f(t)|√
f(t)

×OP (log n)

= OP (1)×OP

(√
log n

nhn

)
×OP (log n) = oP (1),

where the OP (1) term follows from a result of Devroye (1978; eq. (21)), whereas the

OP

(√
log n/(nhn)

)
term is a direct consequence of the first limit statement in (1.1). This

completes the proof of (2.5). Similarly, the second limit statement in Theorem 2 follows

from (2.4) and the observation that

√
(nhn) log n sup

0≤t≤1

∣∣∣∣∣

(
1√

fnn(t)
− 1√

f(t)

)
(
fnn(t)− fn(t)

)
∣∣∣∣∣ = oP (1).

�
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2.1 Numerical Examples

To illustrate the theoretical findings of the paper, we provided a numerical assessment of

the performance and effectiveness of the methods discussed in this section. It will be seen

that, in general, the weighted bootstrap performs very well in capturing the finite-sample

distribution of the Bickel-Rosenblatt statistic. Our examples involve random samples of

sizes n = 50 and n = 100 drawn from the mixture of normals:

f(x) =
1

3
√
2π

e−(x−1)2/2 +
2

3
√
2π

e−x2/2.

As for the choice of the kernel, we considered the truncated Gaussin density

K(u) =
I{−5 < u < 5}(

Φ(5)− Φ(−5)
)√

2π
e−u2/2,

where Φ is the N(0, 1) distribution function. Next we computed the kernel density estimate

fn for each of the samples as well as their corresponding Bickel-Rosenblatt statistics,

Yn :=
√

2δ log n

(
Mn

λ1/2
− dn

)
and Ŷn :=

√
2δ log n

(
M̂n

λ1/2
− dn

)

for 7 different values of the smoothing parameter hn = 0.10, 0.15, 0.20, 0.25, 0.30, 0.35,

0.40, (recall that hn = n−δ with 0.2 < δ < 0.5). To compute the supremum functional,

we picked the maximum of |fn(t)− f(t)| over a grid of 50 equally spaced values of t in the

interval (0,1). Furthermore, for each sample size n and each value of hn, we also computed

B = 1000 copies of the weighted bootstrap statistics

Ynn :=
√

2δ log n

(
Mnn

λ1/2
− dn

)
and Ŷnn :=

√
2δ log n

(
M̂nn

λ1/2
− dn

)
, (2.6)

where the weights ǫ1, · · · , ǫn used in (2.1) were standard normal random variables. Also,

for each value of hn (and n), we computed B = 1000 copies of

Y ∗
n :=

√
2δ log n

(
M∗

n

λ1/2
− dn

)
and Ŷ ∗

n :=
√
2δ log n

(
M̂∗

n

λ1/2
− dn

)
;

these are Efron’s original bootstrap counterparts of Yn and Ŷn. This entire process was then

repeated 1000 times. To summarize our findings, let

U = exp
(
− 2 exp(−Yn)

)
and Û = exp

(
−2 exp(−Ŷn)

)

and note that if n is not ‘too small’ then, by Theorem 1, each of the random variables U

and Û should have, approximately, a Unif (0,1) distribution. Similarly, by Theorem 2, the

random variables

V = B−1
B∑

j=1

I {Ynn,j ≤ Yn} and V̂ = B−1
B∑

j=1

I
{
Ŷnn,j ≤ Yn

}



226 Mojirsheibani

should each be, approximately, a Unif (0,1) random variable; here, for j = 1, · · · , B = 1000,

the random variable Ynn,j (equivalently Ŷnn,j) is the jth copy of Ynn (equivalently Ŷnn) in

(2.6), based on the the jth sample of weights ǫ1,j , · · · , ǫn,j . Similarly, the random variables

W = B−1
B∑

j=1

I
{
Y ∗
n,j ≤ Yn

}
and Ŵ = B−1

B∑

j=1

I
{
Ŷ ∗
n,j ≤ Yn

}

should each be approximately a Unif (0,1) random variable, where Y ∗
n,j (equivalently Ŷ ∗

n,j)

is the jth copy of Y ∗
n (equivalently Ŷ ∗

n ), computed based on the jth bootstrap sample

X∗
1,j , · · · , X∗

n,j ; see (1.3) and the remarks after. Carrying out 1000 such Monte Carlo runs

resulted in U1, · · · , U1000; Û1, · · · , Û1000; V1, · · · , V1000; V̂1, · · · , V̂1000; W1, · · · ,W1000,

and Ŵ1, · · · , Ŵ1000. Figure 1 gives the plots of the empirical distribution functions of Vi’s,

Wi’s, and Ui’s when the sample size is n = 50. The 45◦ line represents the true cdf of the

Unif(0,1) distribution.

Plots (a), (b), and (c) show that the weighted bootstrap approximation performs much

better than the large-sample theory (in the sense of capturing the true distribution of Yn).

This is reflected by the fact that in (a), (b), and (c), the empirical cdf of Vi’s nearly coincides

with the 45◦ line, for various choices of hn. Similarly, the same conclusion applies to the

usual (Efron’s) bootstrap approximation, as shown by plots (d), (e), and (f) of Figure 1.

Plots (g), (h), and (i) of Figure 1 show that Ui’s are perhaps far from being Unif(0,1);

this is in line with the well-known fact that the rate of convergence in Theorem 1 is very

slow (logarithmic rate). Figure 2 gives the same plots for the empirical cdf of V̂i’s (in plots

(a), (b), (c)), and the empirical cdf of Ŵi’s (in plots (d), (e), (f)), and those of Ûi’s (plots

(g), (h), (i)). Once again, these plots confirm that the weighted bootstrap approximation

(as well as Efron’s original bootstrap) outperforms the large-sample theory (in the sense of

capturing the true distribution of Ŷn). Similar results are obtained for the case of n = 100

in Figure 3 and Figure 4.

Next, as a more formal approach, we carried out tests of hypothesis for the distributions

of the resulting 1000 random variables (U1, · · · , U1000; Û1, · · · , Û1000; · · · ). Two test statis-

tics were employed: Kolmogorov-Smirnov and Shapiro-Wilk tests. For each sample size n

(=50 or 100) and each choice of hn (=.10, .15, .20, .25, .30, .35, .40) the following tests of

the null hypothesis were carried out.

1. The Kolmogorov-Smirnov tests:

H
(1)
0 : U1, · · · , U300 are iid Unif(0,1)

H
(2)
0 : V1, · · · , V300 are iid Unif(0,1)

H
(3)
0 : W1, · · · ,W300 are iid Unif(0,1)

H
(4)
0 : Û1, · · · , Û300 are iid Unif(0,1)

H
(5)
0 : V̂1, · · · , V̂300 are iid Unif(0,1)
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H
(6)
0 : Ŵ1, · · · , Ŵ300 are iid Unif(0,1).

2. The Shapiro-Wilk tests (of normality):

H
(7)
0 : Φ−1(U1), · · · ,Φ−1(U300) are iid N(0,1)

H
(8)
0 : Φ−1(V1), · · · ,Φ−1(V300) are iid N(0,1)

H
(9)
0 : Φ−1(W1), · · · ,Φ−1(W300) are iid N(0,1)

H
(10)
0 : Φ−1(Û1), · · · ,Φ−1(Û300) are iid N(0,1)

H
(11)
0 : Φ−1(V̂1), · · · ,Φ−1(V̂300) are iid N(0,1)

H
(12)
0 : Φ−1(Ŵ1), · · · ,Φ−1(Ŵ300) are iid N(0,1),

where Φ is the cdf of the standard normal distribution. The p-values corresponding to

the hypotheses H
(k)
0 , k = 2, 3, 5, 6, 8, 9, 11, 12 were all larger than 5% (and in fact, in most

cases larger than 10%), indicating that both weighted and regular bootstraps work at 5%

significance level. This was true for both n= 50 and 100. On the other hand, all the other

p-values (i.e., the p-values for H
(k)
0 , k = 1, 4, 7, 10) were virtually less than 10−4.
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Figure 1: Plots of the empirical cdf’s (n=50) of Vi’s appear in (a), (b), and (c), of Wi’s are
in (d), (e), and (f), and of Ui’s appear in (g), (h), and (i), for different values of hn.
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Figure 2: Plots of the empirical cdf’s (n=50) of V̂i’s appear in (a), (b), and (c), of Ŵi’s are

in (d), (e), and (f), and of Ûi’s appear in (g), (h), and (i), for different values of hn.
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Figure 3: Plots of the empirical cdf’s (n=100) of Vi’s appear in (a), (b), and (c), of Wi’s
are in (d), (e), and (f), and of Ui’s appear in (g), (h), and (i), for different values of hn.
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Figure 4: Plots of the empirical cdf’s (n=100) of V̂i’s appear in (a), (b), and (c), of Ŵi’s

are in (d), (e), and (f), and of Ûi’s appear in (g), (h), and (i), for different values of hn.


