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summary

We consider the general estimation problem of the drift parameter matrix in
a multi-factors Vasicek model. We also develop estimation theory for the drift
parameters under natural restrictions. In particular, we propose shrinkage and
pretest estimators when the natural restrictions may or may not hold. Based on
the asymptotic properties of both unrestricted and restricted maximum likelihood
estimators (MLE), we examine the relative performance of the shrinkage and
pretest estimators. Finally, we appraise the properties of the listed estimators
based on a simulation study, insofar as applied implementation of the procedure
is concerned.
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1 Introduction

In this paper, we consider inference problem concerning the drift parameter matrix of some

multidimensional processes of the interest rates structure. In particular, we are interested

in case where the drift parameter matrix is suspected to lie in a certain hyperplane. More

specifically, we study the model for which the process under consideration follows a multi-

dimensional Ornstein-Uhlenbeck process.

First, let us notice that the Ornstein-Uhlenbeck process has been extensively used in

modelling diverse phenomenon in different scientific fields such as biology, ecology and fi-

nance. To give some examples, we quote Engen and Sther (2005), Engen et al. (2002),

Nkurunziza (2010), Schbel and Zhu (1999), respectively. Particularly, in finance, Ornstein-

Uhlenbeck process is mostly known as Vasicek process and is used in modelling the term
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structure of the interest rates. For more details about the interpretation of this model, we

refer to Vasicek (1977), Abu-Mostafa (2001) among others.

Let {W (t), t > 0} be a Wiener process. The instantaneous interest rate r(t) is governed

by the stochastic differential equation (SDE)

dr(t) = θ (α− r(t)) dt+ σdW (t), α, θ, σ > 0, (1.1)

where α denotes a steady-state interest rate (or the long-term mean), θ is the speed of

converging to the steady-state, and σ is a volatility or “randomness level”. The component

θ (α− r(t)) of the above relation represents the drift term. Thus, α and θ are so-called the

drift parameters. The component σdW (t) is the diffusion term of the process whose σ is

so-called the diffusion parameter. In the following sub-section we consider a more general

form of the above model.

1.1 Multidimensional Model

It is noticed that the model in (1.1) is univariate while the term structure of the interest rates

is embedded in a large macroeconomic system. To this end, Langetieg (1980) developed a

multivariate version of the model (1.1), namely “multi-factors Vasicek model”:

drk(t) =

p∑

j=1

θkj (αj − rj(t)) dt+ σkdWk(t), k = 1, 2, . . . , p, (1.2)

where {Wk, t > 0}, k = 1, 2, . . . , p are Wiener processes possibly correlated. The above

model takes into account the arbitrary number of economic relationships. In some economic

perspectives, such multiple factors model has the advantages of allowing the analysis of

the simultaneous impact of correlated factors on the behavior of interest rates. Also, the

model (1.2) includes the case where θkj = 0 for all 1 6 j 6= k 6 p and with θjj > 0 for all

j = 1, 2, . . . , p. In this particular scenario, we have

drk(t) = θkk (αk − rk(t)) dt+ σkdWk(t), k = 1, 2, . . . , p, (1.3)

Thereafter, we refer this model as the “non-interdependence model.” The interest rate

Vasicek model has been extensively used in literature. For example, Georges (2003) used

the model to analyze the maturity structure of the public debt using Canadian and Danish

data. Abu-Mostafa (2001) calibrates the correlated multi-factors Vasicek model of interest

rates, and then applied it to Japanese Yen swaps market and U.S. Dollar yield market.

Liptser and Shiryayev (1978), Basawa and Rao (1980) and Kutoyants (2004) considered

the inference problem concerning the drift parameters of the model (1.1) and derived its

maximum likelihood estimator (MLE). Our goal is here to consider some inference problem

for the drift parameters of multivariate Vasicek model. Our parameter of interest is θ (that

is a p × p-matrix). For the sake of brevity, we consider that α is either known or available

from the previous studies. For this reason, we let Xk(t) = rk(t) − αk. Then, from the
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multi-factors Vasicek model (1.2), we get

dXk(t) = −
p∑

j=1

θkjXj(t)dt+ σkdWk(t), k = 1, 2, . . . , p, (1.4)

where θk > 0, σk > 0, k = 1, 2, . . . , p. We assume that {Wk(t), t > 0, k = 1, 2 . . . , p} is

a p-dimensional Wiener process. The independence assumption between the p different

Wiener processes is made to simplify the analysis. Similar results can be established for the

case where these Wiener processes are pairwise jointly Gaussian with a non-zero correlation

coefficient.

For the mathematical convenience, we assume a continuous observation of the trajectory

in order to derive theoretical results. However, in practice, the observations are collected

at discrete times 0 = t0 < t1 < t2 < · · · < tn = T and thus, the continuous time mod-

elling is derived through some approximations. In order to guarantee the accuracy of such

approximations, we assume that the observation times are dense. Our statistical procedure

is applied by replacing each stochastic integral by its corresponding discrete Riemann-Itô

sum. Theoretically, it is well known that the resulting new estimator is asymptotically

equivalent to the original estimator obtained under continuous time sampling (see e.g. Le

Breton, 1976), subject the fact that the observation times are very closely spaced. Neverthe-

less, there is a loss of information due to discretizationas as discussed in Dacunha-Castelle

and Florens-Zmirou (1986) and Florens-Zmirou (1989).

Motivated by diverse applications of the above model, we consider the estimation of

the drift parameter p × p-matrix θ = (θij), 1 6 i 6 p, 1 6 j 6 p. However, in many

experiment the parameter space is usually restricted and thus, there may be some interre-

lationships among the components of the parameter matrix. In practice, the experimenters

may encounter one of the two following scenarios,

L1θL2 = d, or L∗

1θ = D∗ (1.5)

where L1 is a q × p-known full rank matrix with q < p, and L2 and d are known p× 1 and

q × 1-column vectors, respectively. Further, L∗
1 and D∗ are q × p-known matrix full rank

with q < p. For a suitable choice of L1, L2, d and d∗, the above two restrictions include

the equality of the parameters, see Section 3. The estimation and testing of homogeneity

of parameters is of great interest. For example, such a problem arises naturally in model

selection procedures. An illustrative case concerns the situation where several countries

have decided to unify their economic policy, and the measurements, of a certain economic

index, have been taken in these countries. In this case, it is reasonable to suspect the

homogeneity of the several drift parameters. The main contribution of this paper is to

suggest some improved estimators of θ with high estimation accuracy when θ is suspected

to satisfy the restriction as given in (1.5). As a particular case, an asymptotic test for the

equality of parameters is also suggested. Hence, we have extended the single factor inference

problem to the multidimensional. Indeed, the problem of estimation in multidimensional

diffusion processes is in general difficult and has received, as a consequence, less attention
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than the simpler one-dimensional case. Further, the problem studied here is more complex

since, in addition, the parameter matrix may satisfy or not some constraints. In Nkurunziza

and Ahmed (2010), the authors study similar problem, but they do not provide Pretest

(Pretest/Shrinkage) Estimators.

The rest of this paper is organized as follows. Section 2 gives preliminaries results.

Namely, in this section, we present the MLE (unrestricted and restricted MLE) and the

shrinkage and pretest estimators as well as their respective asymptotic results. In Section 3,

we establish the supremacy of shrinkage and pretest estimator over the MLE. Section 4 deals

with a particular scenario where we consider the analysis of a non-interdependence model.

In Section 5, we study the performance of the proposed method through simulation studies.

Section 6 offers some recommendations and conclusions. Finally, some technical results are

outlined in the Appendix.

2 Preliminary Results

Let {X1(t), 0 6 t 6 T}, {X2(t), 0 6 t 6 T},. . . , {Xp(t), 0 6 t 6 T} be diffusion processes

whose diffusion equations are given by

dXk(t) = −
p∑

j=1

θkjXj(t)dt+ σkdWk(t) Xk(0) fixed , (2.1)

where σk > 0, k = 1, 2, . . . , p and {Wk(t), 0 6 t 6 T}, k = 1, 2, . . . , p are p-independent

Wiener processes. Let Σ be the diagonal matrix whose diagonal entrees are σ2
1 , σ

2
2 , . . . , σ

2
p,

i.e.,

Σ = diag
(
σ2
1 , σ

2
2 , . . . , σ

2
p

)
. Also, let X(t) and W (t) be column vectors given by

X(t) = (X1(t), X2(t), . . . , Xp(t))
′
, W (t) = (W1(t),W2(t), . . . ,Wp(t))

′
,

for 0 6 t 6 T . Let θ = (θij)16i,j6p
, from relation (2.1), we have

dX(t) = −θX(t)dt+Σ
1
2 dW (t), 0 6 t 6 T . (2.2)

To this end, we consider the following classical statistical hypotheses testing problem:

H0 : L1θL2 = d versus H1 : L1θL2 6= d. (2.3)

In Section 4, we consider the the non-interdependence case that was introduced in (1.3),

Section 1.

2.1 First Order Asymptotic and MLE

In this subsection, we recall some preliminary results about MLE which are used in deriving

Shrinkage/Pretest Estimators. For more details, we refer to Nkurunziza and Ahmed (2010).



Estimating and Pretesting in some Multidimensional . . . 247

Let

UT =

∫ T

0

dX(t)X ′(t), DT =

∫ T

0

X(t)X ′(t)dt. (2.4)

Conditionally to X0, let θ̂T be the MLE of θ satisfying the model (2.2).

Proposition 2.1. (Unrestricted MLE) If the model in (2.2) holds then, the unre-

stricted MLE is

θ̂T = −UTD
−1
T =

(
θ̂ij

)
16i,j6p

. (2.5)

Proof. See Nkurunziza and Ahmed (2010).

Further, Proposition 2.2 gives the restricted MLE (RMLE). Let θ̃T denote RMLE of θ

under H0 and let J = ΣL′
1 (L1ΣL′

1)
−1

.

Proposition 2.2. (Restricted MLE) Assume that relation (2.2) holds. Then, under

H0 the restricted MLE is

θ̃T = θ̂T − J
(
L1θ̂TL2 − d

) (
L′

2D
−1
T L2

)−1
L′

2D
−1
T . (2.6)

Proof. The proof follows directly by maximizing (A.1) under the first constraint in (1.5).

Indeed, let λ be q-column vector of Lagrangian multipliers and let Lλ (θ) be the Lagrangian,

we have

Lλ (θ) = trace
(
θ′Σ−1UT

)
+

1

2
trace

(
θ′Σ−1θDT

)
+ λ′ (L1θL2 − d) ,

and then, θ̃T is the solution to the equation ∂Lλ(θ)
∂θ

= 0, ∂Lλ(θ)
∂λ

= 0. Then, using the fact

that

∂ trace (X ′AXB) /∂X = AXB +A′XB′, and ∂ trace (AX) /∂X = A′,

along with some algebraic computations, we get the stated result.

We established (see Proposition 2.3 given bellow) that θ̂T and θ̃T are strongly consistent

for θ. Moreover, as stated in Proposition 2.4, these estimators are asymptotically normal

as T tends to infinity.

2.2 Large Sample Results and Test Statistic

In this sub-section, we establish asymptotic normality of the estimators and then use these

results to build a test statistic for the testing problem on hand. As intermediate result, we

present a proposition which shows that the UMLE θ̂T is strongly consistent. Also, under

the null hypothesis in (2.3), the following proposition shows that the RMLE θ̃T strong

consistency.
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Proposition 2.3. (Strong consistency) Assume that the model (2.2) holds. Then,

Pr
{

lim
T→∞

θ̂T = θ
}
= 1 and Pr

{
lim

T→∞

θ̃T = θ − J (L1θL2 − d) (L′

2L2)
−1

L2

}
= 1.

In particular, if L1θL2 = d, then Pr
{

lim
T→∞

θ̃T = θ
}
= 1.

Note that the second statement of the proposition follows directly from the first state-

ment. Also, note that the first statement corresponds to that given in Lipter and Shiryayev (1978,

Theorem 17.4) and Kutoyants (2004) for the univariate case. Thus, the ideas of proof are

the same as given in the quoted references. To give another reference where similar proof is

given, we quote Nkurunziza and Ahmed (2007, Proposition 5, p. 17).

For the convenience of the reader, we present bellow Lemma 2.1 and Lemma 2.2 which

are useful in deriving the asymptotic results.

Lemma 2.1. Let A and B be m × p and n × q matrices, respectively. Further, let X ∼
Np×n (µ,Ω⊗ Φ) where A ⊗ B stands for the Kronecker product of the matrices A and B.

Then,

AXB ∼ Nm×q (AµB, (B′ΩB)⊗ (AΦA′)) .

The proof of this Lemma 2.1 follows from the following well known algebraic properties

on matrices vectorization. First, note that for a m × p-matrix A, one can write A =

(A1, A2, . . . , Ap), Aj ∈ R
p, j = 1, 2, . . . , p, where R

p denotes the p dimensional real space.

Further, let Vec(A) denote the np-column vector obtained by stacking together the columns

of A one underneath the other, i.e. Vec(A) =
(
A′

1, A
′
2, . . . , A

′
p

)′
.

Lemma 2.2. Let A, B and C be matrices such that ABC is well defined. Also, let I

denote an identity matrix.

Vec(ABC) = (I ⊗AB)Vec(C) and Vec(AB) = (I ⊗A)Vec(B) = (B′ ⊗ I)Vec(A).

By using Lemma 2.1 and Lemma 2.2, and ergodic theory, we establish the following

proposition.

Proposition 2.4. (Asymptotic normality) Let Wp (n, Σ) denote a p×p-random matrix

whose distribution is Wishart with parameter Σ and degrees of freedom n. Also, assume that

the model (2.2) holds and suppose that X0 has the same moment as the r.v. that follows

the invariant distribution. Further, let V0 = E(X0X
′
0). Then,

√
T
(
θ̂T − θ

)′
L−−−−→

T→∞

Np×p

(
0, Σ⊗ V −1

0

)
and T V

−
1
2

0

(
θ̂T − θ

)′
Σ−1

(
θ̂T − θ

)
V

−
1
2

0
L−−−−→

T→∞

Wp (p, Ip) .

Proof. We have

θ̂T − θ = −Σ
1
2

(∫ T

0

dW (t)X ′(t)

)
D−1

T
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and then
√
T
(
θ̂T − θ

)′
= −

(
1

T
DT

)−1
(

1√
T

∫ T

0

X(t)dW ′(t)

)
Σ

1
2 .

Form ergodicity theorem, we have

1

T
DT

a.s−−−−→
T→∞

V0. (2.7)

Further, from Proposition 1.34 or Theorem 2.8 of Kutoyants (2004, p. 61 and p. 121), we

have
(

1√
T

∫ T

0

X(t)dW ′(t)

)
L−−−−→

T→∞

Z ∼ Np×p (0, Ip ⊗ V0) . (2.8)

Hence, combining (2.7), (2.8) and Slutsky’s theorem, we get

√
T
(
θ̂T − θ

)′
L−−−−→

T→∞

−V −1
0 ZΣ

1
2 ,

and using Lemma 2.1, we have

−V −1
0 ZΣ

1
2 ∼ Np×p

(
0, Σ

1
2Σ

1
2 ⊗ V −1

0 V0V
−1
0

)
,

and that proves the first statement of the proposition. The second statement follows directly

by applying the properties of Wishart distribution (see for example De Gunst, 1987), and

that completes the proof.

For power computation and related purposes we consider the following set of local alter-

natives,

KT : L1θL2 = d+
δ√
T
, T > 0 (2.9)

where δ is a nonzero p-column vector with ‖δ‖ < ∞. Also, let V0 be the variance-covariance

of invariant distribution and let Σ∗ = JL1Σ. Further, let

̺T =
√
T
(
θ̂T − θ

)
L2, ξT =

√
T
(
θ̂T − θ̃T

)
L2, ζT =

√
T
(
θ̃T − θ

)
L2.

Proposition 2.5. Assume that the model (2.2) holds. Under the local alternative as given

in (2.9),

(i) 
 ̺T

ξT


 L−−−−→

T→∞

N2p




 0

Jδ


 ,

(
L′

2Σ
−1L2

)

 Σ Σ∗

Σ∗ Σ∗




 .
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(ii) 
 ζT

ξT


 L−−−−→

T→∞

N2p




 −Jδ

Jδ


 ,

(
L′

2Σ
−1L2

)

 Σ−Σ∗ 0

0 Σ∗




 .

Proof. (i) By some usual computations, we have (̺′

T , ξ
′

T )
′
= (Ip, L

′
1J

′)
′
√
T
(
θ̂T − θ

)
L2+

(0, δ′J ′). Statement in (i) follows directly by using Proposition 2.4 and by the appli-

cation of the Slutsky theorem.

(ii) It can be verified that (ζ′

T , ξ
′

T )
′
= ( Ip −L′

1J
′, L′

1J
′)
′
√
T
(
θ̂T − θ

)
L2+(−Ip, Ip)

′
J δ.

Then, the result in (ii) follows from Proposition 2.4 and the Slutsky’s theorem, that

completes the proof.

From Proposition 2.5, we establish the following corollary.

Corollary 2.1. Let Ξ = L′
1 (L1ΣL′

1)
−1

L1

(
L′

2Σ
−1L2

)−1
and let δ∗ = Jδ. If Proposition 2.5

holds, we have

ξ′TΞξT
L−−−−→

T→∞

χ2
q

(
δ∗

′

Ξδ∗
)
, and under H0 ξ′TΞξT

L−−−−→
T→∞

χ2
q.

The proof of Corollary 2.1 is given in the Appendix. It should be noted that the conver-

gence in Proposition 2.5 and Corollary 2.1 holds uniformly in δ∗ on every compact subset

of Rp. This allows us to conclude that, the statements in Proposition 2.5 and Corollary 2.1

still hold under the null hypothesis H0. Based on these results, we consider the following

test statistic, when Σ is known,

ϕ(T ) = TL′

2

(
θ̂T − θ̃T

)′
Σ−1

(
L′

2Σ
−1L2

)−1
(
θ̂T − θ̃T

)
L2. (2.10)

By Corollary 2.1, under H0, the test statistic follows a central chi-square distribution with

q degrees of freedom

ϕ(T )
L−−−−→

T→∞

χ2
q ( under H0).

Also, we denote χ2
q;α a nonnegative real number such that Pr

{
χ2
q > χ2

q;α

}
= α. Further,

concerning the testing problem (2.3), for the Σ known case, we suggest the following test

Ψ = I
(
ϕ(T ) > χ2

q;α

)
(2.11)

where I(A) denotes the indicator function of an event A. Note that, when Σ is unknown, the

test statistic (2.10) can be modified by replacing Σ with its strongly consistent estimator.

The new test is asymptotically α-level, and it is asymptotically as powerful as the test given

in (2.11). Let ΠΨ denote the power function of the test Ψ.
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Corollary 2.2. Under the model (2.2), the test Ψ in (2.11) is asymptotically α-level test for

the testing problem (2.3). Further, under the conditions of Corollary 2.1, we have

lim
T→∞

ΠΨ

(
θ +

δ√
T

)
= Pr

{
χ2
q

(
δ∗

′

Ξδ∗
)
> χ2

q;α

(
δ∗

′

Ξδ∗
)}

.

The proof is straightforward from Corollary 2.1.

Remark 1. We obtained the MLE (2.6) by assuming that the whole sample paths of (1.4)

are observable. The continuous time process has the advantage to be mathematically more

convenient. However, in practice the data are collected in discrete times and thus here we

keep in mind the fact that a continuous time process is derived through some approximations

of a process that is observed in discrete times. In order to evaluate the suggested estimator,

the stochastic integrals are replaced with their corresponding discrete Riemann-Itô sums.

Remark 2. Noting that for the diffusion process (1.4), Σ is known (equals to the quadratic

variation). For the corresponding incomplete sample paths, the covariance matrix Σ be-

comes unknown. Also, for the special case Σ = σ2Ip, the estimator θ̃T in (2.6) and test

statistic in (2.11) does not depend on σ. Nevertheless, Σ can be replaced by its correspond-

ing strongly consistent estimator Σ̂. Then, by Slutsky theorem we can get the similar result

when Σ is unknown. The strongly consistent estimator for the diffusion parameter is based

on quadratic variation.

2.3 Shrinkage and Pretest Estimation

We will use the results of the preceding subsections to build some alternative estimators of θ.

Our interest here is the estimation of θ when it is suspected L1 θ L2 = d. It is advantageous

to utilize this information in the estimation process to construct improved estimation for

the drift parameters. It is reasonable then to move the unrestricted maximum likelihood

estimator (UMLE) of θ close to the RMLE. We define a linear shrinkage estimator (LSE)

as

θ̂S = βθ̃T + (1− β)θ̂T ,

where β ∈ [0, 1] denotes the shrinkage intensity. Noting that for β = 1 the shrinkage

estimate equals the θ̃T whereas for β = 0 the UMLE is recovered. The key advantage of

this construction is that it outperforms the UMLE in important part of the parameter space.

However, the key question in this type of estimator is how to select an optimal value for the

shrinkage factor β. In some situations, it may suffice to fix the parameter β at some given

value. The second choice, is to choose the parameter β in a data-driven fashion by explicitly

minimizing a suitable risk function. A common but also computationally intensive approach

is to estimate β by using cross-validation; we refer to Friedman (1989) among others. On

the other hand, from a Bayesian perspective one can employ the empirical Bayes technique

to infer β. In this case β is treated as a hyper-parameter and that may be estimated from

the data by optimizing the marginal likelihood.
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Here we treat β as the degree of trust in the prior information L1θL2 = d. The value

of β ∈ [0, 1] may be assigned by the experimenter according to her/his prior belief in the

prior value L1θL2 = d. Ahmed and Krzanowski (2004), Bickel and Doksum (2001), Chiou

and Miao (2007) and others pointed out that such an estimator yields smaller mean squared

error (MSE) when a priori information is correct or nearly correct, however at the expense

of poorer performance in the rest of the parameter space induced by the prior information.

In the present context, we will demonstrate that θ̂S will have a smaller MSE than θ̂T
near the restriction, that is, L1θL2 = d. However, θ̃T becomes considerably biased and

inefficient when the restriction may not be judiciously justified. Accordingly, when the prior

information is rather suspicious, it may be reasonable to construct a shrinkage preliminary

test estimator (SPE) denoted by θ̂SP which incorporates a preliminary test on L1θL2 = d.

Thus, the estimator θ̂T and θ̃T is selected depending upon the outcome of the preliminary

test. Thus, the shrinkage preliminary test estimator (SPE) is defined as

θ̂SP = θ̂T I (ϕ(T ) ≥ cT,α) + θ̂SI (ϕ(T ) < cT,α) , (2.12)

where ϕ(T ) is the test statistic for the null hypothesis Ho : L1θL2 = d, which is defined

in (2.10) (see subsection 2.2). The critical value cT,α converges to χ2
q,α as T → ∞. Thus,

the critical value cT,α of ϕ(T ) may be approximated by χ2
q,α, the upper 100α% critical value

of the χ2-distribution with q degree of freedom. If we substitute β = 1 in (2.12) we get

θ̂P = θ̂T I (ϕ(T ) ≥ cT,α) + θ̃T I (ϕ(T ) < cT,α) . (2.13)

The estimator θ̂P is known as the usual preliminary estimator (PE), due to Bancroft (1944).

The SPE may be viewed as an improved PE which represents both UE and PE for β = 0

and β = 1, respectively. For a discussion about preliminary testing in various context, we

refer to Leeb (2003), Danilov and Magnus (2004), Khan and Ahmed (2006), Ahmed (2005),

Kibria and Saleh (2006), Reif (2006), Ahmed et al. (2006), Zoua et al. (2007) and Pardoa

and Menndez (2008). For a comprehensive discussion on preliminary test and shrinkage

estimations, we refer to Saleh (2006) and references therein.

3 Main Result

In this section, we compare the performance of the proposed shrinkage and pre-test estimator

with respect to the UMLE and RMLE. In particular, we study the behavior of the risk

functions of these estimators. Here, the most difficulty consists in the fact that the closed

form of the finite sample distributions of the maximum likelihood estimators θ̂T and θ̃T are

not known unless we adopt a sequential plans (see e.g. Liptser and Shiryayev, 1978, p. 219).

Furthermore, the finite sample distribution theory of pretest estimators is not simple to

obtain. This difficulty has been largely overcome by asymptotic methods (see e.g. Ahmed

et al., 2006 among others).

These asymptotic methods relate primarily to convergence in distribution which may not

generally guarantee convergence in quadratic risk. This technicality has been taken care of
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by the introduction of asymptotic distributional risk (ADR) (Sen (1986)), which, in turn, is

based on the concept of a shrinking neighborhood of the pivot for which the ADR serves a

useful and interpretable role in asymptotic risk analysis.

It is well known that, even for normal distribution, the effective domain of risk dominance

of SPE or PE over MLE is a small neighborhood of the chosen pivot (viz., L1θL2 = d); and

as we make the observation period T large, this domain becomes narrower. This justifies

the choice of the local alternatives given in (2.9).

Now we introduce the following optimality criterion. For an estimator θ̂⋆ of θ, we

consider a quadratic loss function of the form

L
(
θ̂⋆,θ;W

)
= L′

2

[√
T
(
θ̂⋆ − θ

)]′
W
[√

T
(
θ̂⋆ − θ

)]
L2, (3.1)

whereW is a positive semi-definite (p.s.d) matrix. Using the distribution of
√
T
(
θ̂⋆ − θ

)
L2

and taking the expected value both sides of (3.1), we get the expected loss that would be

called the quadratic risk Ro
T

(
θ̂⋆,θ;W

)
= trace

(
WΣ̂T

)
, where Σ̂T is the dispersion matrix

of
√
T
(
θ̂⋆ − θ

)
L2. Whenever lim

T→∞

Σ̂T = Σ exists, Ro
T

(
θ̂⋆,θ;W

)
−−−−→
T→∞

Ro
(
θ̂⋆,θ;W

)
=

trace(WΣ), which is termed the asymptotic risk. To set up notation, let G̃T (u) (u ∈ R
p )

denote the distribution of
√
T
(
θ̂⋆ − θ

)
L2. Also, suppose that G̃T → G̃ (at all points of

continuity of G̃), as T → ∞, and let ΣG̃ be the dispersion matrix of G̃. Then the asymptotic

distributional risk (ADR) of θ̂⋆ is defined as

Ro
(
θ̂⋆,θ;W

)
= trace (WΣG̃) +

[
B
(
θ̂⋆,θ

)]′
W
[
B
(
θ̂⋆,θ

)]
, (3.2)

where B
(
θ̂⋆,θ

)
=

∫

Rp

xdG̃(x), that is called asymptotic distributional bias (ADB) of θ̂⋆.

Two crucial results to the study of ADR and ADB of the suggested estimators are given

in Proposition 2.5 and Corollary 2.1. Indeed, from these results, we apply the results on the

(normal distribution) parametric model, and thereby give the main results of this subsection.

The results are presented without derivation since the proofs are similar to that given in

Ahmed (2001). Let ∆ = δ∗
′

Ξδ∗ and let Hν(x ; ∆) = P{χ2
ν(∆) ≤ x}, x > 0.

Theorem 1. If Proposition 2.5 holds, then, the ADB functions of the estimators are given

as follows:

ADB
(
θ̂T

)
= 0, ADB

(
θ̃T

)
= −δ∗, ADB

(
θ̂S
)
= −β δ∗

ADB
(
θ̂P
)

= −δ∗
[
Hq+2

(
χ2
q,α; ∆

)]
, ADB

(
θ̂SP

)
= −βδ∗

[
Hq+2

(
χ2
q,α; ∆

)]
.

(3.3)

Since for the ADB of θ̃T , θ̂
S , θ̂P and θ̂SP , the component δ∗ is common and they differ

only by scalar factors, it suffices to compare the scalar factors ∆ only. It is clear that bias

of the θ̃T and θ̂S are unbounded function of ||δ∗||. On the other hand, the ADB of both
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θ̂P and θ̂SP are bounded in ∆. The ADB of θ̂P starts from the origin at ∆ = 0, increases

to a maximum, and then decreases towards 0. The risk characteristic θ̂SP is similar to θ̂P .

Interestingly, the bias curve of θ̂SP remains below the curve of θ̂P for all values of ∆.

Theorem 2. If Proposition 2.5 holds, then, the ADR functions of the estimators are given

as follows:

ADR
(
θ̂T ;W

)
=
(
L′

2Σ
−1L2

)
trace (WΣ) ,

ADR
(
θ̃T ;W

)
= ADR

(
θ̂T ;W

)
−
(
L′

2Σ
−1L2

)
trace (WΣ∗) + δ∗′Wδ∗,

ADR
(
θ̂S ;W

)
= ADR

(
θ̂T ;W

)
− β(2− β)

(
L′

2Σ
−1L2

)
trace(WΣ∗) + β2δ∗′Wδ∗

ADR
(
θ̂P ;W

)
= ADR

(
θ̂T ;W

)
−
(
L′

2Σ
−1L2

)
trace (WΣ∗)Hq+2(χ

2
q,α; ∆)

+δ∗′Wδ∗
{
2Hq+2

(
χ2
q,α; ∆

)
−Hq+4

(
χ2
q,α; ∆

)}

ADR
(
θ̂SP ;W

)
= ADR

(
θ̂T ;W

)
− β(2− β)

(
L′

2Σ
−1L2

)
trace (WΣ∗)Hq+2

(
χ2
q,α; ∆

)

+δ∗′Wδ∗
{
2βHq+2

(
χ2
q,α; ∆

)
− β(2− β)Hq+4

(
χ2
q,α; ∆

)}

(3.4)

The proof is similar to that given in Ahmed (2001). Clearly, the ADR of θ̂T is constant

(independent of δ∗′Wδ∗). If β > 0, the ADR
(
θ̂S ;W

)
is a straight line in terms of δ∗′Wδ∗

which intersects the ADR
(
θ̂T ;W

)
whenever δ∗′Wδ∗ = (2 − β)trace (WΣ∗) /β. At and

near the null hypothesis the ADR of θ̂S is less than the ADR of θ̂T .

Comparing ADR
(
θ̂SP ;W

)
with ADR

(
θ̂T ;W

)
,

ADR
(
θ̂SP ;W

)
6 ADR

(
θ̂T ;W

)
, when

∆ 6 (2− β)
(
L′

2Σ
−1L2

)
trace (WΣ∗)Hq+2(χ

2
q,α; ∆)

{
2Hq+2(χ

2
q,α; ∆)− (2− β)Hq+4(χ

2
q,α; ∆)

}−1
.

(3.5)

Further, as α, the level of the statistical significance, approaches 1, ADR
(
θ̂SP ;W

)
con-

verges to ADR
(
θ̂T ;W

)
. Also, when ∆ increases and tends to infinity, the ADR

(
θ̂SP ;W

)

approaches the ADR
(
θ̂T ;W

)
. Broadly speaking, for larger values of ∆, the value of the

ADR
(
θ̂SP ;W

)
increases, reaches its maximum after crossing the ADR

(
θ̂T ;W

)
and then

monotonically decreases and approaches the ADR
(
θ̂T ;W

)
. On the other hand,

ADR
(
θ̂P ;W

)
6 ADR

(
θ̂T ;W

)
when

∆ 6
(
L′

2Σ
−1L2

)
trace (WΣ∗)Hq+2(χ

2
q,α; ∆)

{
2Hq+2(χ

2
q,α; ∆)−Hq+4(χ

2
q,α; ∆)

}−1
.
(3.6)
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By comparing the right hand side of equation (3.5) to the right hand side of (3.6), we noticed

that the range of the parameter space in (3.6) is smaller than that in (3.5).

Noting that under the null hypothesis, θ̂P dominates θ̂SP . However, the picture is

somewhat different when the hypothesis error grows. As the hypothesis error increases then

θ̂SP performs better than θ̂P . Denote δ∗′Wδ∗ = ∆∗ and for a given β, let ∆∗

β be a point

in the parameter at which the risk of θ̂SP and θ̂P intersect. Then for ∆∗ ∈ (0,∆∗

β ], θ̂
P

performs better than θ̂SP , while for ∆∗ ∈ [∆∗

β ,∞), θ̂SP dominates θ̂P . Further for large

values of β (close to 1) the (0,∆∗

β ] may not be significant. Nonetheless, θ̂P and θ̂SP share

a common asymptotic property that as the hypothesis error grows and tends to ∞, their

ADRs converge to a common limit, that is, to the ADR of θ̂T .

Thus, in the light of above findings we suggest to use θ̂SP , since it has a good control

on ADR when the restriction may not be judiciously imposed.

In the following section, we consider the non-interdependence case.

4 The Non-interdependence Model

In this section, we briefly give a special case for which the drift terms of the model in (2.1) do

not contain interdependence parameters and that corresponds to the case where the matrix

parameter θ is a diagonal matrix. Note that this case is also presented in Nkurunziza and

Ahmed (2010). We consider the estimation problem of a p-column vector (θ11, θ22, . . . , θpp)
′

when it is suspected that

θ11 = θ22 = · · · = θpp. (4.1)

For this case, the notation θ denotes the p-column parameter vector (θ11, θ22, . . . , θpp)
′
,

and then, for this particular case, we set for the simplicity sake, (θ11, θ22, . . . , θpp)
′
=

(θ1, θ2, . . . , θp)
′
= θ. Accordingly, the constraint (4.1) has the same form as first constraint

in (1.5) with d a p− 1-column zero vector and

L1 =




1 −1 0 0 . . . 0

0 1 −1 0 . . . 0
...

...
...

. . .
. . .

...

0 0 0 . . . 1 −1




(p−1)×p

.

To make a connection with the problem studied in Section 2, note that here q = p−1. Also,

let

V (t) = diag (X1(t), X2(t), . . . , Xp(t)) , 0 6 t 6 T .

From relation (2.1), we get

dX(t) = −V (t)θdt+Σ
1
2 dW (t), 0 6 t 6 T . (4.2)
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Finally, based on constraint in (4.1),

H0 : θ1 = θ2 = · · · = θp versus H1 : θj 6= θk for some 1 6 j < k 6 p. (4.3)

Further, let

ŨT = diag (UT ) =

(∫ T

0

X1(t)dX1(t),

∫ T

0

X2(t)dX2(t), . . . ,

∫ T

0

Xp(t)dXp(t)

)′

,

and let

D̃T = diag (DT ) =

∫ T

0

V 2(t)dt, θ̂∗

T = −D̃−1
T ŨT =

(
θ̂∗1 , θ̂

∗

2 , . . . , θ̂
∗

p

)′
. (4.4)

Proposition 4.1. Let ep be a p-column vector whose all entrees are equal to 1. We have

θ̂T =
(
θ̂∗+1 , θ̂∗+2 , . . . , θ̂∗+p

)′
and θ̃T =

(
e′pΣ

−1D̃Tep

)−1

epe
′

pΣ
−1D̃T θ̂T . (4.5)

Under this special model and for the Σ known case, we get the following test statistic,

ϕ(T ) = T
(
θ̂T − θ̃T

)′
Σ−1

(
θ̂T − θ̃T

)
(4.6)

and accordingly, for a given 0 < α < 1, we suggest the asymptotically α-level test

Ψ = I
(
ϕ(T ) > χ2

p−1;α

)
, where Pr

{
χ2
p−1 > χ2

p−1;α

}
= α. (4.7)

As for Section 2, when Σ is unknown, the test statistic in (4.6) is modified by replacing Σ

by a its strongly consistent estimator and again, the obtained new test is asymptotically

α-level test, as powerful as the test Ψ .

The shrinkage and pretest estimators will have the same form as that presented in

Section 2. We obtain these estimators by replacing the unrestricted, restricted estimators

and test statistic of Section 2 by the unrestricted, restricted estimators and test statistic

derived in this section. Let θ̄ be the common value of θ1 = θ2 = · · · = θp under H0. For the

asymptotic power and derivation of ADR of all estimators, we modify local alternative as

KT : θ = θ̄ep +
δ√
T

(4.8)

where δ is a p-column vector with different direction than ep. Also, we assume that ‖δ‖ < ∞.

With the following minor adjustment in the asymptotic results of Section 2, we get parallel

expressions for ADB and ADR results, and the performance of the estimators remain intact.

We denote

Σ = ΣV −1
0 , Υ =

(
e′pΣ

−1ep
)−1

epe
′

p, δ∗ = δ−ΥΣ−1δ, Σ∗ = Σ−Υ and Σ− = Σ∗.
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In this case, under local alternative and if T tends to infinity, the test statistic in ϕ(T ) con-

verges in distribution to a noncentral χ2 random variable with p−1 degrees of freedom (q =

p−1) and non-centrality parameter ∆ = δ∗
′

Ξδ∗, whereΞ = Σ−1−Σ−1
(
e′pΣ

−1ep
)−1

epe
′
pΣ

−1.

To save the space, we do not display the expression for ADB and ADR of the estimators

under the special cases. Indeed, it suffices to replace q by p − 1. The performance of

shrinkage and pretest estimator is now much superior since q = p − 1. In other words, we

have less parameters to estimate with the same sample information as compared to general

estimation problem in Section 2.

5 Simulation Study

In this section, we utilize the theoretical methodology of the proceeding section to deter-

mine the practical performance of the shrinkage and pretest estimators relative to θ̂T in

a simulating setting. This setting is intended to replace the circumstances as an applied

researcher is likely to face in the estimation of θ.

A Monte Carlo simulation experiment is designed to investigate the risk (namely MSE)

behavior of the all estimators under consideration. In an effort to conserve space, we report

detailed results only for p = 3 and p = 5 with the shrinkage parameter β = 0.2, β = 0.5 and

β = 0.8. Also, we consider the null hypothesis H0 : θ = θe′p. The length of the time period

of observation T = 15, T = 30 are considered. Also, the chosen value for θ is 0.2 and 2500

replications have been performed.

The relative efficiency of the estimators with respect to θ̂T is defined byRE = MSE(θ̂T )/MSE(θ̂l),

l = R,S, P, SP.

Thus, a relative efficiency larger than one indicates the degree of superiority of the

estimator θ̂l (l = R,S, P, SP ) over θ̂T . The results are graphically reported in FIG. 1(a)-

1(f) for p = 3 and in FIG. 2(a)-2(f) for p = 5. Graphically, FIG. 1 and FIG. 2 indicate that

a substantial improvement of 50% or more over θ̂T seems quite realistic depending on the

values of ∆, p and β. Our simulation study findings are in agreement with our theoretical

results developed in this paper.

6 Conclusion

We develop the inferential statistics for drift parameter matrix of a multivariate Ornstein-

Uhlenbeck process. The analytical and numerical results presented in this paper should

have great applicability to the researchers in this area. For this paper, MLE, shrinkage and

pretest estimators are considered for estimation drift parameter matrix of a multivariate

Ornstein-Uhlenbeck process. The shrinkage and pretest estimators are presented as alter-

native to the UMLE and RMLE. We show that θ̂SP displays superior performance to the

other three estimators for a significant range of the parameter space. On the basis of our

simulation experiment results, this range appears to be substantial, in terms of yielding a

large reductions in MSE. The results of our simulation experiments also indicate several
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Figure 1: Relative efficiency vs ∆
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factors for which an applied researcher would wish to take into account in practical situa-

tions. The simulation results also provide largely good news about the behavior of suggested

estimators. In summary, our simulation study provides strong evidence that corroborates

with the developed asymptotic theory related to MLE , RMLE and shrinkage and pretest

estimators.
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A Some technical details

Let µU be the probability measure induced by process {U(t), t ≥ 0}, and let µW be the

measure induced by the Wiener process {W (t), t ≥ 0}. We have µU (B) = P{ω : Ut(ω) ∈
B}, where B is a Borel set. The following result plays a central role in establishing the MLE

of θ.

Proposition A.1. Conditionally to X0, the Radon-Nicodym derivative of µX with respect to

µW is given by

dµX

dµW

(X) = exp

{
−trace

(
θ′Σ−1UT

)
− 1

2
trace

(
θ′Σ−1θDT

)}
. (A.1)

The proof is straightforward by applying Theorem 7.7 in Liptser and Shiryayev (1977).

It should be noted that, the relation (A.1) has the same form as the equation 17.24 of Liptser

and Shiryayev (1977) for the univariate case with the non-random initial value.

A.1 The interdependence model case

In univariate case, Lipter and Shiryayev (1978, Theorem 17.3, Lemma 17.3 and Theo-

rem 17.4) and Kutoyants (2004) give some asymptotic results for the maximum likelihood

estimator of the drift parameter of an Ornstein-Uhlenbech process. The ideas of proof are

the same as given in the quoted references. However, the multidimensional case requires

some additional attention and technicality. Because of that, and for the completeness, we

outline the proofs of the main results. To this end, let

̺T =
√
T
(
θ̂T − θ

)
L2, ξT =

√
T
(
θ̂T − θ̃T

)
L2, ζT =

√
T
(
θ̃T − θ

)
L2, Υ = ΣL′

2Σ
−1L2,

and let Σ∗ = JL1Σ.

Note that, the covariance-variance matrix of invariant distribution can be written as

CΣ where C is a positive definite matrix. Thus, through a linear transformation, one

can take C as the identity matrix without loss of generalities. In particular, without loss
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of generalities, we assume that X0 has an invariant distribution with V0 = Σ. However,

under this assumption the estimator of θ in (2.6) may no longer be MLE. Nevertheless, this

estimator is a quasi-likelihood and preserves the same asymptotic optimality. Accordingly,

in the sequel and in order to simplify the mathematical analysis, we work with V0 = Σ.

Proposition A.2. Assume that Proposition 2.4 holds. Then, under H0 given in (2.3), we

have 
 ̺T

ξT


 L−−−−→

T→∞

N2p




 0

0


 ,

(
L′

2Σ
−1L2

)−1


 Σ Σ∗

Σ∗ Σ∗




 and


 ζT

ξT


 L−−−−→

T→∞

N2p




 0

0


 ,

(
L′

2Σ
−1L2

)−1


 Σ−Σ∗ 0

0 Σ∗




 .

Proof. Under H0, we have

(̺′

T , ξ
′

T )
′
= (Ip, L

′

1J
′)
′
√
T
(
θ̂T − θ

)
L2, (A.2)

and then, the rest of proof is similar to that given for Proposition 2.5 and that completes

the proof.

A.1.1 Proof of Corollary 2.1

From Proposition 2.5, under local alternative, we have

ξT
L−−−−→

T→∞

Z ∼ Np (δ
∗, Σ∗) . (A.3)

Therefore, under local alternative (2.9), ξ′TΣ
−1
(
L′

2Σ
−1L2

)−1
ξT

L−−−−→
T→∞

Z ′Σ−1
(
L′

2Σ
−1L2

)−1
Z.

Moreover, one can verify that

(
L′

2Σ
−1L2

)
Σ∗

(
Σ−1

(
L′

2Σ
−1L2

)−1 (
L′

2Σ
−1L2

)
Σ∗

)2
=
(
L′

2Σ
−1L2

)
Σ∗Σ−1

(
L′

2Σ
−1L2

)−1 (
L′

2Σ
−1L2

)
Σ∗,

rank
[(
L′

2Σ
−1L2

)
Σ∗Σ−1

(
L′

2Σ
−1L2

)−1 (
L′

2Σ
−1L2

)
Σ∗

]
= q,

δ∗
′

(
Σ−1

(
L′

2Σ
−1L2

)−1 (
L′

2Σ
−1L2

)
Σ∗

)2
= δ∗

′

Σ−1
(
L′

2Σ
−1L2

)−1 (
L′

2Σ
−1L2

)
Σ∗,

and that

δ∗
′

(
Σ−1

(
L′

2Σ
−1L2

)−1 (
L′

2Σ
−1L2

)
Σ∗Σ−1

(
L′

2Σ
−1L2

)−1
)
δ∗

′

= δ∗
′

Ξδ∗.

Therefore, by using Theorem 4 in Styan (1970), we getZ ′Σ−1
(
L′

2Σ
−1L2

)−1
Z ∼ χ2

q

(
δ∗

′

Ξδ∗
)
.

Moreover, under H0 in (2.3), by rewriting the same steps and by replacing δ∗ with 0, we

prove that ξ′TΣ
−1
(
L′

2Σ
−1L2

)−1
ξT

L−−−−→
T→∞

χ2
q, that completes the proof. �



262 Ahmed & Nkurunziza

A.2 The non-interdependence model case

Proposition A.3. If the model (2.2) holds and if X0 has the same moment as a r.v. that

follows the invariant distribution, then

(i) uniformly in θ on every compact subset of R∗p
+ ,

√
T
(
θ̂T − θ

)
L−−−−→

T→∞

Np (0, Σ) , and T
(
θ̂T − θ

)′
Σ−1

(
θ̂T − θ

)
L−−−−→

T→∞

χ2
p;

(ii) if θ1 = θ2 = · · · = θp, we have, uniformly in θ on every compact subset of R∗
+,

√
T
(
θ̃T − θ̄ep

)
L−−−−→

T→∞

Np

(
0, epe

′

p

(
e′pΣ

−1ep
)−1
)
.

Proof. The proof follows directly from Theorem 2.8 in Kutoyants (2004, p. 121) and that

completes the proof.

Let

̺T =
√
T
(
θ̂T − θ̄ep

)
, ξT =

√
T
(
θ̂T − θ̃T

)
, ζT =

√
T
(
θ̃T − θ̄ep

)
, Υ =

(
e′pΣ

−1ep
)−1

epe
′

p

and let Σ∗ = Σ−Υ.

Proposition A.4. Assume that Proposition A.3 holds.

(i) Under the local alternative hypothesis as given in (4.8), we have

 ̺T

ξT


 L−−−−→

T→∞

N2p




 δ

δ∗


 ,


 Σ Σ∗

Σ∗ Σ∗




 and


 ζT

ξT


 L−−−−→

T→∞

N2p




 δ − δ∗

δ∗


 ,


 Υ 0

0 Σ∗




 .

(ii) Under H0 given in (4.3), we have

 ̺T

ξT


 L−−−−→

T→∞

N2p




 0

0


 ,


 Σ Σ∗

Σ∗ Σ∗




 and


 ζT

ξT


 L−−−−→

T→∞

N2p




 0

0


 ,


 Υ 0

0 Σ∗




 .

Proof. (i) By some computations, we get

(̺′

T , ξ
′

T )
′
=
(
Ip, Ip −

(
e′pΣ

−1DTep
)−1

DTΣ
−1epe

′

p

)′ √
T
(
θ̂T − θ

)

+
(
Ip, Ip −

(
e′pΣ

−1DTep
)−1

DTΣ
−1epe

′

p

)′
δ.
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By using Proposition A.3 and the Slutsky theorem, we get the first statement in (i).

Further, in the similar way, we have

 ζT

ξT


 =




(
e′pΣ

−1DTep
)−1

epe
′
pΣ

−1DT

Ip −
(
e′pΣ

−1DTep
)−1

epe
′
pΣ

−1DT


√

T
(
θ̂T − θ

)

+




(
e′pΣ

−1DTep
)−1

epe
′
pΣ

−1DT

Ip −
(
e′pΣ

−1DTep
)−1

epe
′
pΣ

−1DT


 δ.

Again, from Proposition A.3 and the Slutsky theorem, we get the second statement

in (i).

(ii) The proof of (ii) is similar to that given in (i). It suffices to take δ = 0 and the

completes the proof.

Corollary A.1. Assume that the conditions of Proposition A.4 holds. Then, under the local

alternative hypothesis as given in (4.8),

ξ′TΣ
−1ξT

L−−−−→
T→∞

χ2
p−1 (δ ∗′ Ξδ∗) .

Furthermore, under H0, we have

ξ′TΣ
−1ξT

L−−−−→
T→∞

χ2
p−1. (A.4)

Proof. We have

ξ′TΣ
−1ξT = ̺′

T

(
Σ−1 −Σ−1

(
e′pΣ

−1ep
)−1

epe
′

pΣ
−1
)
̺T + ̺′

T (ΞT −Ξ)̺T , (A.5)

where

ΞT =
(
Ip −DTΣ

−1ep
(
e′pΣ

−1DTep
)−1
)
Σ−1

(
Ip −

(
e′pΣ

−1DTep
)−1

e′pΣ
−1DT

)
, (A.6)

and

Ξ = Σ−1 −Σ−1
(
e′pΣ

−1ep
)−1

epe
′

pΣ
−1. (A.7)

Combining Proposition A.4 and the Slutsky theorem, we deduce that, under the local alter-

native hypothesis as given in (4.8),

̺′

T [ΞT −Ξ]̺T
L−−−−→

T→∞

0 and ̺T
L−−−−→

T→∞

Z ∼ Np (δ, Σ) . (A.8)

Moreover, Σ
(
Σ−1 −Σ−1

(
e′pΣ

−1ep
)−1

epe
′
pΣ

−1
)
= ΣΞ is an idempotent matrix. There-

fore,

̺′

T

(
Σ−1 −Σ−1

(
e′pΣ

−1ep
)−1

epe
′

pΣ
−1
)
̺T

L−−−−→
T→∞

Z ′ΞZ ∼ χ2
r (δ

′Ξδ) ,
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where

r = rank (Ξ) = trace
(
Σ
(
Σ−1 −Σ−1

(
e′pΣ

−1ep
)−1

epe
′

pΣ
−1
))

= p− 1 and δ′Ξδ = δ∗
′

Ξδ∗.(A.9)

Further, under H0 in (4.3), since the relation in (A.8) holds with δ = 0, the statement (A.4)

holds too and that completes the proof.
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