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SUMMARY

This paper deals with the R-estimation of the regression parameters of a mea-
surement error model: y; = Bo+ fixi +e; and 2 = x;+u;,i=1,...,n. By com-
bining the two sets of the information, an emaculate regression model is obtained
using “quasi-empirical Bayes” estimates of the unknown covariates xi,...,Zn.
The model produces consistent estimates of the attenuated slope and the inter-
cept parameters and applies to broad range of regression problems. Asymptotic
properties of the R-estimators are provided based on the “quasi-Bayes regression
model”. Some simulated results are presented as evidence of the performances of
the estimators.
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1 Introduction

Consider the simple linear measurement errors (ME) model

yi = Bo + Brxi +e;

=1,...,n, (1.1)
x? = x; + U4,

where e; is the response error and u; is the measurement error in the regressor variable
x;, which is unobservable while z¥ is the corresponding observed value. Our problem is
the R-estimation of the intercept and slope parameters 3 = (8, 31)7 in the model (1.1).
The commonly used methods of estimating (8y,31)7 are the least squares or maximum
likelihood methods. For robust methods, one follows the R-,L- and M-estimation methods.
The literature is void of all these estimation methods for the measurement error models.
Some attempts have been made by Zamar (1989) and Cheng and Tsai (1995) to study the
M-estimators by robustifying the variance and covariance matrices following Huber’s(1981)
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technique. Recently, Jureckovd, Picek and Saleh (2008) initiated testing of hypothesis prob-
lems with rank statistics in measurement error models. In this paper we attempt to develop
the theory of R-estimation for (8, 31)” for the measurement error model (1.1) similar
to the theoretical works of Hodges and Lehmann (1963), Adichie (1967), Jaeckel (1972),
Saleh and Sen (1978, 1987), Sen (1968), and Jureckovd and Sen (1996) among others. The
least squares estimators for the measurement error model are recalled in Section 2, “quasi-
empirical” Bayes regression model is proposed in Section 3 and the joint R-estimation of
the slope and the intercept in Section 4. Asymptotic properties are discussed in Section 5
along with the expression for the joint asymptotic relative efficiency (JARE) of the LSE as
well as R-estimators are given for the ME model.

2 Least Squares Estimation
First we consider the traditional regression model
y =051, +bix+e (2.1)

wherey = (y1,. .. ,yn)/, x = (21,... ,.Z'n)l and e = (eq,...,e,) . In this case it is well known
that the LSE of B = (8, 51)’ is given by

*(L) = _ p*(L)=
g — [ Pon ) [ n BT (2.2)
n *(L) (xX=Tnlpn) (¥=7,1n)
in (x—Tnlp) (x—Tnly)
where 7,, = n_ll;lx and y,, = n‘ll;Ly. Under the following assumptions
(1) ,
NV . (:E7 - fn)
Ji o= and i e o S e 0 #)
, 2
(ii) the Fisher information, I(f) = [~ {J;((;f))} f(z)dz < .
Then, the asymptotic normality of \/E(BZ(L) — B) follows easily as
*(L) _ 1+ L s
V( OnL Bo) ~ N,y 0 ’Ug o2 o2 (2.4)
Va(BL — Bo) 0 -~ %

’

where S,., = % (x —Tnly) (x—7Znl,) — 02 as n — .

Now, consider the measurement error model (1.1) given by

y=[1.%]8+e, x*=x+u (2.5)
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which may be written as

Y =[1,.x"]B+w (2.6)
where y = (yl,...,yn),7 x0 = (m?,...,x%) ,Ww=e— fjuand u= (ul,...7un),.
1 a2
[1n,x7] = : (2.7)
0
1 Tn nx2

Following Fuller (1987), we minimize

(v = [10.x"] 8) (v = [10,x] B) (2.8)
with respect to 3 to obtain the least squares estimator (LSE) of 3 as
o (L)
R B N bely= [ T 29)
x0 x’ Ul
We observe that
1 nz? nz’ ﬂ
3 + 2 — €n — Bilin
,/§LL) =08+ i;—&-sw SowtSuu ) | 1 o o (2.10)
Soet S SeetBu wdave = 15 Szou + Tpen — STnTn

’

where Sy, = (a—&ln)/ (b—Eln)7 a= (ar, - ,an)/ and b = (b1, - ,b,) . We make the

following assumptions to obtain the relevant properties of D,(LL).

(A1) e and u are stochastically independent vectors such that E(e,u) = (0,0).

(xi 7Tn)2 _ O

(x=Fnln) (Xx~Tnln)

(A2) limy,—yo0 Tp, = pz € R! and lim,—, 0 maxi<i<y,

(A3) The observed vector x° is the adjusted vector x by an error-vector u with a known dis-
tribution function, say G, assumed to possess up to fourth moment and plim,,_, . Spuu =
o2 > 0, where
_ ’ _ _ 1
Snuu = = (u - unln) (u - unln)a u, = —-ul,
n n
and plim{2 37" | (u; — 1,)*} = pa < co. We assume o2 is known as an identifiability
condition for estimation.

(A4) x and u are asymptotically uncorrelated i.e.

’

(uuln)} =0

1
plim,, ,  Snaw = plim,, { (x —ZTply)
n
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Then,
plim,, ,  Spao0 = plimnﬁooﬁ (xo - f?Lln) (XO — Tgln) =02+
also )
plim, , . —x"1, = p,. (2.11)
n
Using the above assumptions we have
- S, — Uy
D =g-p—2me | THe ) L0 (1) (2.12)

2
where plimn%m% =plim,, , Kp = Ky = W' Observe that

D =B-p(1—r) | " | +0,(1) (2.13)
1

where k, is reliability ratio (RR). Hence,

plim,,_, .7 r(LL) =08-51(1—ky) THe | Bo+ B1 (1= Ka) pa Y I
1 Kzﬂl 148
(2.14)
and 177(LL) estimates v consistently but not 8. Hence, the consistent estimator of 3

follows by writing
B = ki o) and B = 5, — BT (2.15)
where a consistent estimator of x, is given by

- (L)
if Kk, is unknown. As for the asymptotic normality of ﬁ;ﬁ) = on , we have the

5(L)
in
following result from Fuller (1987) and Schneeweiss (1976)

(L) 2
v ( ﬁo) ~ No 0 , (Uz + Ka:ﬁfo-i) LG —paG

Vi (B - ) 0 G G
(2.17)
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as n — 0o, where

G { 1 - BIEu* — 202 ]
Kooy (02 + Kafion) of
If there is no measurement error, we obtain the asymptotic distribution of the LSE
of the standard model given by (2.4). Using (2.4) and (2.17) and remembering that
0<#k, <1, and A% = (ngnxﬁfaﬁ), the joint asymptotic relative efficiency (JARE)
is given by:

JARE (B8 8,2) = [(1+a%6]

If there is no measurement error, then the JARE reduces to unity.

3 Quasi-Empirical Bayes Regression Models

In this section, we develop an emaculate regression model using the component information
of the ME model. Let us consider the general case of the ME model under non-normal
errors

yi:ﬂO‘Fﬁlxi"‘ei} izl,...,n (31)
x? =x; +Uu;
where ey, ..., e, are i.i.d.r.v. with the symmetric pdf with finite Fisher’s Information, I(fo)
as follows:
fe(e) = foly = Bo — Brz) (3.2)
such that
E(y) = Bo+ Przi, i=1,...,n and Var (y;) = o> (3.3)

We assume that

0
n

are independently distributed with the symmetric pdf

0 _ . .
fxo (2) = /\%fl (x Auxz) = /\iufl <;u) (3.4)

with £ (x?\xl) = x; and the known variance, \202.

(i) 29,29,...,2

(ii) The unknown covariates x1,--- ,x, are independently distributed with the symmetric
pdf

Aun:ih(”QM)

with E (z;) = p, and variance \202.
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(i) Sppuw = L0 (25 — Tp) (ui — Un) 50
Further, we have

(@) Snuu = 2 X0 (0 =) 5 Ao

(b) Spew = 23" (2 —T0)® = A202 and

_0\2 P
(€) Spgogo =237 (20 —70)" = A2o2 + A202 = 02, (say)

Firstly, we note that the model (2.6) has the inherent problem that z¥ is not uncorrelated
with e;—1u;. As aresult, the LSE D%ﬁ) is not consistent for 81, though it is consistent for the
attenuated slope v; = k1. Now we consider the model (where the slope has to be determined)
as

yi=Po+bad+z i=1,...,n, (3.5)

so that for some b, we have

(Br — b)% Z(l“z' —T5)° - b% D (wi—un)* + b% (i = Tn) (u; — Un) (3.7)
+% (z; — Tn)(e; — €n) + 1 Z(uZ Uy )(e; en)% Z(xl Tn) (u; — Up)

Under the assumptions A3 - A4 and (3.5), as n — oo, it reduces to
(Br — b)A262 —bA262 = 0. (3.8)

Solving for b, we obtain b = k.31, where x, = \202/(A\202 4+ A\202). Thus, the emaculate

regression model representing the ME model may be written as:
yi=1vo+uvial +z i=1,...,n, (3.9)
with
vo = Bo + B1(l — ka)pa, v1 = Kz B1 and z; = e; + B1{(1 — kz)(Ti — pia) — Kz}

Note that the model (3.11) may be obtained by the Bayesian approach, and is discussed by
Whittamore (1989). For the general error distribution given by (3.2) and (3.5), we follow
the quasi-empirical Bayes” method (see Saleh (2006), Ch. 4) for estimating the unknown
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z;’s in (1.1). Following the method, we obtain the “Stein-type estimates” of the unknown
covariates x;’s as

i =(n-3)z0L, +2) {1 - (n-3)L,"} (3.10)

(2

where L£,, = n.S,,0,0/A202 is the test-statistic for testing the null-hypothesis
Ho:x;=p, VY ¢ vs Hy:wx;# p, for at least one ¢ under (3.5). (3.11)
We may re-write z; as

25 = (1 — fog) T + Rl i=1,...,m (3.12)
where /&, = {1 — (n —3) [A202/nS,40.0] } Where &, is a consistent estimator of r,. Fur-
ther, from the fact that

(i) =2 5 4., and (i1) (1/m)Syz040 R X202 + X202 it follows that plim &, = Kk, =

X202 /(202 + A\202) (the reliability ratio) so that we may write the parametric version
of (3.17) as

E(z]2)) = (1 — ka) o + ka2, i=1,....n (3.13)

The expression (3.18) allows us to write the “quasi - empirical Bayes regression model”
corresponding to the ME model (1.1) as

Yi = Bo+ B (1 — k) p + Ka a2l + 2 (3.14)

with z; = e; + 1 {(1 — Kz) (x5 — pizr) — Kzui}, (1 =1,...,n) as in (3.11). This model is the
conditional expectation of y; given z{ under normal errors. Writing

zi = e; = Bi{kzui — (1 — k) (@i — pa)} = € — vy, vy = viu; — Bi(l — k) (@i — pz),  (say),
we define c.d.f. and p.d.f. as a convolution of e; and v; as

F*(x) = /_00 F(x—kf1v)hg(v)dv and  f*(x) = k01 /_00 f(x = kyBrv)hg(v)dv (3.15)

where hy(v) is the p.d.f. of the v’s depending on 6 = (k,, 81) given by v; = {u; — (1 —
Ke)ky H(w; — pz)}, i =1,...,n. Now assume f; = fo = fo in (3.5(1) & (ii)). Then,

o [T @ e
1= [ oo{ f*(@} F @)z < moBul(f). (3.16)

Under this model with the associated assumptions, the LSE (2.15) of 8 has an asymptotic
distribution given by

V(B — B) = No{0, (02 + kA2 B30 2) B (3.17)
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where

_/imG* G*

> =

204 o 4
with G*:[ 1 BB —20,] }

kaop (02 + KaX,Bi07) 0

Thus, the JARE( 35 ,*L(L)) = [(14+A*2)G*] 7! with A*? = 2k, A2 8702, Further, define
the Fisher scores

CE W)
fr(F = (w)

based on the distribution f* of the errors, z;’s.

1
o(u, f*) = , 0<u<1l and ~*(u, ) :/0 p(uw)e(u, f*)du

In the next section we develop the R-estimators of 3.

4 R-estimators of Regression Parameters

Consider the traditional model (2.1) again with the associated assumptions in (2.3). We
consider the R-estimators of 8 = (S, 61)/ using linear rank statistics as given by Saleh and
Sen (1978)

—n_l/gz i — In)af (R;(D))

and .
T(a,b) = n~Y2> " af" (RY,(a,b)(yi — a — bay) (4.1)
i=1
where R;(b) is the rank of y; — bx; among y; — bxy,...,y, — bz, and RJr (b) is the rank of
ly; — bx;| among |y; — bx1],. .., |yn — bxy|. Now, consider the score af (i) (a;} (i) generated
by a nondecreasing, square 1ntegrable score function ¢(p*) : (0,1) — R! in either of the
two following ways:

af(i) = Ep(U;)) or ¢<n+1>, i=1,...,n, (4.2)
() =EpU) or ot (). i=1
af (¢ ©(Uy) or 1) 1 RN

where Uy < -+ < U, ( y the order statistics of a sample of size n from the uniform distribu-
tion U(0,1). Here o™ (u) = ¢ (14%) with the condition: ¢(u) + (1 — u). We define

2

Ai = /01 0% (u)du — (/01 gp(u)du) , (4.3)

Y, f) = /0 o(u)p(u, fldu, o(u, f)= _(7
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with 0 < u < 1. Following Saleh and Sen (1978) we define the R-estimators of 31 as

#(B) = f{sup[b:Ln(b)>O]+inf[b:Ln(b)<O]} (4.4)
and that of By by
5ol = 5 {sula = T(a, 517 > 0] + infla T(a, 5) > 0]} (45)
where
78 (a5 ) = WZa@ (Rus(a, 815 ) sen(ys —a = BiPa)  (46)

is the aligned rank statistics. Now, using asymptotic linearity results of Jureckova (1971)
given by
sup {n!/2|L5,(n=1/26) = L3,0) + 1(, f)o?

|8]<e

} = 0,1) (4.7)
and

sup  {n!/2 |T0(n 201,07 /282) ~ T(0,0) + (i, £)[61 + Do
|5i|<ci, i=1,2

} = 0,(1). (4.8)

From the non-decreasing property of L, (b) and the linearity results given by (4.7) and (4.8)
we obtain the fact that n!/2[8;\" — By| = 0,(1) and n/2|B{™ — ;| = O,(1) and the
asymptotic normality given by Saleh (2006) as

*(R 2
Vi (8557 = o) (o) A (1 W)
\/ﬁ( 17(LR)_51) 0 72(907f) —% 0'%
Thus, ARE of ﬁZ(R) compared to BﬁlL) is given by
2
ARE (5;;<R>, ﬂff)) — 527 (A@Q’ f) (4.10)
©
If f is normal and we have used the Wilcoxon’s score, ¢(u) = 2u — 1, then
ARE (5;;<R>,ﬁff>) _3 (4.11)
T

Now, we consider the measurement error model (3.1) together with the “quasi - empirical
Bayes” model (3.19) along with the assumptions and (3.5). Let ¢ : (0,1) — R! be the
score functions belonging to the class of non-constant, nondecreasing and square integrable
functions. Let us consider the scores af(1),...,a¥(n) generated by score functions ¢ :

(0,1) — R as defined by (4.2). Define the linear rank statistic (LRS) for the slope parameter
of the model (3.19) based on the observations {(z, ;)i = 1,...,n} as

b)=n""/? Z(x? — @p)ag (Ri(b)), (4.12)
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where R;(b) is the rank of y; —bx? among y; —bx?, ..., y, —bzl. Notice that y; —ba?, ... y,—
bx¥ are independently distributed random variables with pdf fx. Hence,

P{RIb)., Ru(0)} = — (4.13)

Thus (4.12) is a legitimate linear rank statistics for the estimation of the slope parameter
of the model. Now, setting L, (b) = 0, we define the solution as the estimator of 11 = k.31

which is the slope of the “quasi - empirical Bayes” model. Due to the non-decreasing nature

of L, (b) as a function of b, we define R-estimator 19%5) routinely as

1
o) = 5 {sup [b: L (b) > 0] + inf [b: L (b) > 0]} (4.14)
which satisfies the asymptotic linearity results of Jureckovd (1971) given by

Ln(Vl + n_1/25*) - Ln(Vl) + ’7(907 f*)O'io(s*

sup { 5 € R’} =0,(1) (4.15)
[6*|<c

where 0* = k,8 with k, = \202/(A\202 + \202). To justify its consideration we look at the
“quasi- empirical Bayes” model in vector form as:

y = [60 + 51(1 - "'@w)ﬂm] 1, + fizﬂlxo +z

where z is the error vector of independent components, so that the R-estimator defined by
(4.14) estimates v4 = K,01. The proof of (4.15) may be found in Jureckovd and Sen (1996),

Hajek et al (1999) and Koul (2000). Since L, (b) is non-increasing function of b and (4.15)
R)

n 18 & consistent

hold we conclude that n'/2 ‘ﬁ{f) — 1/1‘ = O, (1) where v = Kk, 31. Hence, f/§
estimator of v;. Therefore, x 1ﬁ§f) is also a consistent estimator of 5. Hence, inserting
5 =nl/? (ﬁg) - yl) in (4.15) we obtain

n 2o v = Li (1) + 0p(1), (4.16)

_
v, f*)

where
n

Ly(n) =012 (] = 20)0(F7(21)) + 0p(1) ~ N(0, AZ020), (4.17)

i=1

where 02, = A202 + A202 Thus, we obtain

A2
n' 20 — )~ N (0, “") . (4.18)

Consequently,

. A2
235 _ gy~ N <o, *”) . (4.19)
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The asymptotic relative efficiency (ARE) of B;f) relative to BA&) is given by

2 * 2E[u* — 202
ARE(M : BD) = (02 4+ w2 3202) 2] ) Ko B 19
(B 1) = (02 + ka3 B0y Az + (02 + ke A202 %) X202 (4-20)
If p(u) = 2u — 1 i.e. Wilcoxon’s score, the ARE turns out to be
2B[ut — 202
48 (0% + Ko N25202) |1 4 ol B2(F* 4.21
8(0_(3 + K uﬂlo—u) + (0’2+I'€w)\20'251))\%0'% ( ) ( )
and, the ARE of ﬂ(R) w.r.t B;SR) is simply given by
2 * 2 *
(e, ) B(F7) / >
Kg < Ky < [ hg(t)dt 4.22
2.0 = <)Y 2
where
B(F /f d:c) and B2(F*) = (/ i )
The above result follows since ¢(u) = 2u — 1 and
AWeud) = [ PN P@is =2 [ £s (1.23)
2
Vo) =2 [ 1@ (424)

where

= x— Ve, f*) ([ flz = t)he(t)dt)*dx )
7 = /f( Dho(t)dt, v(p, f) a fo(QS)dCC < /ha(t)dt,

5 Joint R-estimation of Intercept and Slope

In this section, we consider the estimation of the intercept and slope parameters jointly by
using the two linear rank statistics as in Saleh and Sen (1978):

b) =n"Y2Y (2 — 2))af (Ri(b)) (5.1)
i=1
and
(a,0) =n IZa“’ b))sgn(y; — a — bal), (5.2)
where R (a,b) is the rank of |y; —a — b2?| among |y; —a —bal|,..., |y, — a — bzl| with the
scores a{r (1),..., a,f+ (n) defined by

" () =B U)o ¢ (1) 5:3)
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with
1
<p+(u):<p( —i2-u>’ olu)+e(l—u)=0, 0<u<l. (5.4)
Let B(R) be the R-estimator of the slope parameter using ﬁg) = Kz01. Then to obtain the
R-estimator of the intercept parameter, we consider the aligned statistics

T, (a, uln n~1/?2 Za"’ (a, Vln)))sgn(yi —a— ug)x?). (5.5)
This allows us to obtain the R—estlmator as
1
ﬁéf) =3 {sup {a; T, (a, 1/%5)) > 0} + inf [a; T, (a, V£n)) < 0]} (5.6)

Now, recall that F* is symmetric about 0 so that T,,(0,71) is symmetric about 0 and we
obtain (see Saleh and Sen (1978))

sup {2 [Ty (071200, + 071 25) = Ta(0,00) + (0, ) T + o]

b =01, (5.7)

where the supremum is taken over |t1]| < ¢; and t5 < ¢o. This together with (4.15) implies
that we can use the statistics

n

Li(n) =n 2 (@) — 20)o(F* (21)) + 0,(1) (5.8)
i=1
and .
T:(0,01) =n~ V2" o (F*(21))sgn(2:) + 0,(1) (5.9)
i=1
to represent the estimator of vy as
~(R — * *
V(g =) =17, 1) [T5(0,01) = pa L ()] + 0, (1), (5.10)
since
Tu(0,01) | N, [ (€ A 1 0 (5.11)
L, (1) 0 0 A02+4 X202
and we have
. 2 2
\F( (R) _ ﬁO) N N2 0 A?P 1+ P )\202 _Kzl;\ﬁdg (5 12)
’ 2 * * N
Vn(By (R) - B1) 0) Ve f) *mﬁgog FTo?

Hence, the JARE of BﬁlR) compared to ,BZ(R) is given by
(e, f*) _  B(FY)

JARE(BP) : Bx()y = = K, 5.13
( )= B E) 13

and the JARE of B,SR) compared to the LSE is given by
4802(1 + A**)G* B*(F*) (5.14)

if Wilcoxon’s score is used in both cases.
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6 Jaeckel’s Estimator of Slope

In this section we consider the Jaeckel’s (1972) estimator of the slope v4 of the model (3.11).

The dispersion D(z) of z1, ..., z, is minimized, where
zi=yi—wnad, i=1,...,n. (6.1)
Accordingly, let a¥ (i), ¢ = 1,...,n, be a non-decreasing set of scores, not all equal, satisfying

the condition

Z a?(i) = 0. (6.2)

Based on the observations {(z?,y;)'|i = 1,...,n} from (3.16), consider z) < -+ < 2()
to be the ordered values of the residuals (6.1). Let us write z(x) = y;x) — le?(k), where (k)
is the index of the observations giving rise to the k-th ordered residuals. The dispersion of
residuals as a function of v; is then given by

n

Dly — w1a®) = 3" ag (k) [y — vaaly | - (6.3)
k=1

By Theorem 1 of Jaeckel (1972), D(y — v12°) is a non-negative, continuous and convex
function of v;. The minimization of (6.3) with respect to 3; yields the R-estimator of v;.
But the estimator may not be unique. Thus, any choice of 1 is acceptable. There is
an asymptotic equivalence between the Jaeckel’s estimator using (6.3) and the estimators
discussed in Section 3 and 4; these solve the same equation since

G%D(y —A2%) = —L,(y — Az°), where A = n'/?u,. (6.4)

In other words the derivative of the Jaeckel’s dispersion criterion is the negative of the
linear rank statistics subject to (6.2). Let ﬁ{i) denote the consistent Jaeckel’s estimator of
v1, obtained by minimizing (6.3). Then, the R-estimator is obtained as:

B%;]z) = I%_lf/(J) = [ - (Sn:vw + Snuu)_lsnuu}_lﬁ(J)- (65)

T in in

Now considering the AUL result given at (4.7) and (4.16), we investigate the quadratic form

Q(6) = (¢, 1) (Snaa + Snuu)d” — L1 (B1)0 + Op(1). (6.6)
The derivative of Q(0) with respect to d is given by

O] i, £°) S + S~ L), (6.7

where L} (v1) is given by (4.17). This leads to the asymptotic representation of

\/ﬁ(ﬁgi) - Vl) = ’7_1(907 f*)(Snmc + Snuu)_lL:,(Vl) + Op(l), (68)
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yielding the asymptotic distribution of \/ﬁ(ﬁg) —11) as
N (0,

VBl = Bi) ~ N <0, lA?a] (mz/\iai)*) : (6.10)

2
A

Y2 (e, f*)

[oio]‘1> (69

as given in (4.18). Hence,

(e, %)
We now consider the Jaeckel’s (1972) estimator using Wilcoxon scores given by
. i 1
azv(z):n+1—§, i=1,...,n. (6.11)

Then, the Jaeckel’s estimator based on the residuals (6.1) is given by the median of the
divided differences {(y; — yl)/(xg —z))[1 <i<j<n} ie

med Y5~ yf).

~(J) _
- g 0
1<i<j<n ;Ej —x;

Vin

(6.12)

Consequently, the slope estimator is given by

B =iyt { med Y } , (6.13)

1<i<j<n ¥ —

where &, is given by (3.17). Thus, it is easily proved using (6.8) that

\/ﬁ(ﬁﬁi) - Vl) ~N (07 48(f f*2(]C-U)d£L')20'2U> (614)
and )
VA(BD — By~ N (0, B f*z(m)dx)QnmAEJ:%) : (6.15)

The ARE of the estimator compared to the least squares estimator is clearly given by

(02 + ke Ason AT ) A2 02 .

48(0% + K N202 37) (1 + (6.16)

And the ARE of Bi,‘]l) compared to 8*(7) is given by

2 * 2 *
(e, f*) B*(F™) 2
Ky = Ky < ky;B*(Hyp). 6.17
P BE < (047
We may remind the readers that Jaeckel’s estimator ﬁﬁ{) and Bgi) may also be obtained
using Kendall’s tau test, resulting in the Theil-Sen type estimator (Sen 1968) in the model
(3.1) with the ME version in Sen and Saleh (2010). In the next section we provide some
simulation studies on the performance of the R-estimators for the ME models.
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7 Simulation Study

We have conducted a simulation study to check how the proposed estimation procedures
perform for finite sample situations. We considered the model

yi = Bo + PBrxi + ey, i=1,...,n, (7.1)
m?zxi—kui, 1=1,...,n,
where the errors e;, ¢ = 1,...,n, were simulated from the normal N(0, 1), Laplace L(0,1)
and Cauchy distributions. The measurement errors u;, i = 1,...,n were generated indepen-
dently from the normal N(0,0.5), N(0, 2) and uniform U(—1, 1) distributions. We considered
vectors with design points x4, ..., x, generated from the uniform distribution on the interval

(-2,10).
The following parameter values of the model were used:

e sample sizes: n = 20, 100;

e By=1, 31 =3;

e Wilcoxon score function p(u) =2u—1, 0 <wu <1, and A?o = %

10000 replications of the model were simulated for each combination of the parameters and
a particular distribution of the measurement errors. The slope parameter was estimated
by the least squares, R- and Jaeckel’s estimators. For the sake of comparison, the mean
square error (MSE), mean, median, 2.5%— and 97.5%-sample quantiles were computed
and summarized in Tables 1-9. These tables compare the slope estimators under different
conditions of the sample sizes, error distributions and measurement errors. These results
are reproduced from the paper by Saleh et al (2009).

Conclusion

The simulation study indicates:

(i) The R-estimator and Jaeckel’s estimator give very good results, though intuitively the
least squares estimator would be more favorable for the normal distribution.

(ii) The influence of even a small sample size is not too big.

(iii) The R-estimator and Jaeckel’s estimator show a good performance for the measure-
ment errors with a small variance.

We have made more extensive simulation experiments. Particularly, we considered various
score functions, design vectors, other underlying distributions of the error terms and the
measurement errors with a small variance. The corresponding estimates have appeared to
be very slightly influenced by these parameters.
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Estimator uj MSE mean 2.5%-q. median 97.5%-q.
LSE - 0.00466 2.99942 2.8647 2.99924 3.13477
N(0,0.5) 0.02585 3.00118 2.68445 2.99926 3.31555
N(O, 2) 0.08827 3.00094 2.41449 2.99593 3.59150
U(-1,1) 0.01838 2.99971 2.73392 3.00007 3.26213
R - 0.00507 2.99913 2.86009 2.99834 3.14291
N(0, 0.5) 0.02777 3.00045 2.67288 2.99786 3.32993
N(O, 2) 0.09290 3.00336 2.41420 2.99910 3.60857
U(—1,1) 0.01798 2.99558 2.73435 2.99541 3.25841
Jaeckel - 0.00529 2.99920 2.85672 2.99907 3.14351
N(0, 0.5) 0.02921 3.01801 2.67955 3.01528 3.36205
N(O, 2) 0.09979 3.04651 2.44197 3.03935 3.65707
U(—1,1) 0.01868 3.00963 2.74470 3.01258 3.27215

Table 1: Sample statistics of 10000 values of the estimated slope parameter in model (7.1)
for the Least Squares, the R- and the Jaeckel’s estimators, various distributions of the
measurement errors u;, j = 1,...,n, the sample size n = 20 and the standard normal
distribution of errors e;, i =1,...,n.

Estimator g MSE mean 2.5%-q. median 97.5%-q.
LSE - 0.00899 3.00142 2.81441 3.00100 3.19353
N(0,0.5) 0.02970 3.00438 2.67894 3.00094 3.35343
N(0, 2) 0.09093 3.00475 2.41145 3.00343 3.58918
U(—1,1) 0.02284 3.00298 2.70889 3.00071 3.30307
R - 0.00707 3.00088 2.83494 3.00134 3.17287
N(0,0.5) 0.03101 3.00327 2.66215 2.99926 3.34867
N(0, 2) 0.09622 3.00468 2.39988 3.00659 3.61228
uU(—1,1) 0.02238 2.99949 2.71051 2.99607 3.29889
Jaeckel 0.00733 3.00069 2.82944 3.00115 3.17347
N(0,0.5) 0.03287 3.02051 2.67842 3.01766 3.38284
N(0, 2) 0.10324 3.04708 2.44339 3.04161 3.67898
U(—1,1) 0.02332 3.01260 2.71744 3.00966 3.31475

Table 2: Sample statistics of 10 000 values of the estimated slope parameter in model (7.1)
for the Least Squares, the R- and the Jaeckel’s estimators, various distributions of the
measurement errors u;, j = 1,...,n, the sample size n = 20 and the Laplace distribution
of errorse;, i=1,...,n.
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Estimator uj MSE mean 2.5%-q. median 97.5%-q.
LSE - 868.7410 2.99596 -0.19920 2.99559 6.83956
N(0, 0.5) 847.6568 2.95700 -0.31639 2.99069 6.82395
N(0, 2) 711.9615 3.08034 -0.39872 2.98669 6.92081
U(-1,1) 969.4066 3.13333 -0.20596 2.99226 6.91857
R - 0.02435 2.99856 2.67390 3.00072 3.30730
N(0, 0.5) 0.06643 2.99559 2.50962 2.99584 3.52798
N(0, 2) 0.16673 2.99866 2.22365 2.99282 3.82022
U(—1,1) 0.05206 2.99296 2.54776 2.99075 3.44513
Jaeckel - 0.02301 2.99877 2.68850 3.00054 3.29576
N(0, 0.5) 0.06817 3.01331 2.51926 3.01089 3.54477
N(O, 2) 0.17318 3.03930 2.26856 3.03128 3.89083
U(—1,1) 0.05244 3.00637 2.56401 3.00336 3.46739

Table 3: Sample statistics of 10000 values of the estimated slope parameter in model (7.1)
for the Least Squares, the R- and the Jaeckel’s estimators, various distributions of the
measurement errors u;, j = 1,...,n, the sample size n = 20 and the Cauchy distribution
of errorse;, i=1,...,n.

Estimator g MSE mean 2.5%-q. median 97.5%-q.
LSE - 0.00072 3.00033 2.94677 3.00063 3.05131
N(0,0.5) 0.00413 2.99901 2.87156 2.99939 3.12368
N(0, 2) 0.01388 2.99804 2.76341 2.99731 3.23099
U(—1,1) 0.00308 3.00071 2.89090 3.00068 3.10848
R - 0.00077 3.00033 2.94422 3.00056 3.05302
N(0,0.5) 0.00431 2.99983 2.87180 3.00055 3.12718
N(0, 2) 0.01422 3.00303 2.76645 3.00133 3.23695
uU(—1,1) 0.00289 2.99536 2.89034 2.99591 3.09981
Jaeckel 0.00077 3.00035 2.94462 3.00051 3.05388
N(0,0.5) 0.00435 3.00019 2.87142 3.00058 3.12858
N(0, 2) 0.01464 3.01656 2.78057 3.01529 3.25044
U(—1,1) 0.00290 2.99468 2.88935 2.99486 3.09859

Table 4: Sample statistics of 10000 values of the estimated slope parameter in model (7.1)
for the Least Squares, the R- and the Jaeckel’s estimators, various distributions of the
measurement errors u;, j = 1,...,n, the sample size n = 100 and the standard normal
distribution of errors e;, i =1,...,n.
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Estimator uj MSE mean 2.5%-q. median 97.5%-q.
LSE - 0.00150 2.99934 2.92448 2.99926 3.07669
N(0,0.5) 0.00488 2.99973 2.86708 2.99799 3.13954
N(O, 2) 0.01528 2.99737 2.75938 2.99331 3.24431
U(-1,1) 0.00379 2.99837 2.87889 2.99952 3.11731
R - 0.00104 2.99934 2.93654 2.99902 3.06413
N(0, 0.5) 0.00495 2.99992 2.86580 2.99885 3.14055
N(O, 2) 0.01569 3.00142 2.76264 2.99948 3.25023
U(—1,1) 0.00355 2.99381 2.87555 2.99379 3.10981
Jaeckel - 0.00104 2.99932 2.93578 2.99904 3.06419
N(0, 0.5) 0.00501 3.00058 2.86546 2.99871 3.14310
N(O, 2) 0.01608 3.01611 2.77713 3.01421 3.26630
U(—1,1) 0.00359 2.99324 2.87548 2.99332 3.10976

Table 5: Sample statistics of 10000 values of the estimated slope parameter in model (7.1)
for the Least Squares, the R- and the Jaeckel’s estimators, various distributions of the
measurement errors u;, j = 1,...,n, the sample size n = 100 and the Laplace distribution
of errorse;, i=1,...,n.

Estimator U MSE mean 2.5%-q. median 97.5%-q.
LSE - 420.1448 2.89912 0.40932 3.01662 6.65968
N(0,0.5) 479.1673 2.90735 0.33433 3.01176 6.82481
N(0, 2) 557.7343 2.83851 0.09792 3.01329 6.72500
U(—1,1) 444.3006 2.90010 0.19087 3.01646 6.73704
R - 0.00267 3.00122 2.89646 3.00212 3.10032
N(0,0.5) 0.00934 3.00194 2.80682 3.00201 3.19296
N(0, 2) 0.02352 3.00801 2.70963 3.00701 3.30800
U(—1,1) 0.00720 3.00092 2.83388 3.00114 3.16662
Jaeckel 0.00266 3.00129 2.89643 3.00195 3.10059
N(0,0.5) 0.00947 3.00284 2.80988 3.00400 3.19459
N(0, 2) 0.02428 3.02411 2.72223 3.02127 3.32601
U(—1,1) 0.00724 3.00017 2.83262 3.00034 3.16889

Table 6: Sample statistics of 10 000 values of the estimated slope parameter in model (7.1)
for the Least Squares, the R- and the Jaeckel’s estimators, various distributions of the
measurement errors u;, j = 1,...,n, the sample size n = 100 and the Cauchy distribution
of errorse;, i=1,...,n.
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Estimator uj MSE mean 2.5%-q. median 97.5%-q.
LSE - 0.00016 3.00002 2.97457 3.00018 3.02573
N(0,0.5) 0.00090 2.99996 2.94132 3.0002 3.05877
N(O, 2) 0.00303 2.99939 2.89386 2.99921 3.10636
U(-1,1) 0.00067 2.99980 2.94866 2.99968 3.05169
R - 0.00017 3.00003 2.97414 3.00015 3.02639
N(0, 0.5) 0.00095 3.00037 2.94061 3.00046 3.05976
N(O, 2) 0.00317 3.00477 2.89686 3.00520 3.11546
U(—1,1) 0.00065 2.99397 2.94454 2.99371 3.04362
Jaeckel - 0.00017 3.00003 2.97416 3.00010 3.02625
N(0, 0.5) 0.00097 3.00455 2.94461 3.00499 3.06461
N(O, 2) 0.00391 3.02762 2.92018 3.02778 3.13775
U(—1,1) 0.00063 2.99626 2.94757 2.99600 3.04520

Table 7: Sample statistics of 10000 values of the estimated slope parameter in model (7.1)
for the Least Squares, the R- and the Jaeckel’s estimators, various distributions of the
measurement errors u;, j = 1,...,n, the sample size n = 500 and the standard normal
distribution of errors e;, i =1,...,n.

Estimator g MSE mean 2.5%-q. median 97.5%-q.
LSE - 0.00031 2.99972 2.96607 2.99971 3.03374
N(0,0.5) 0.00106 2.99910 2.93580 2.99858 3.06320
N(0, 2) 0.00323 3.00045 2.88965 3.00101 3.11198
U(—1,1) 0.00082 3.00004 2.94431 2.9998 3.05559
R - 0.00021 2.99972 2.97154 2.99989 3.02772
N(0,0.5) 0.00108 2.99933 2.93513 2.99869 3.06431
N(0, 2) 0.00335 3.00570 2.89365 3.00588 3.11936
uU(—1,1) 0.00077 2.99501 2.94133 2.99478 3.04784
Jaeckel 0.00021 2.99973 2.97157 2.99983 3.02763
N(0,0.5) 0.00109 3.00366 2.93983 3.00329 3.06801
N(0, 2) 0.00419 3.02911 2.91569 3.02958 3.14090
U(—1,1) 0.00075 2.99730 2.94341 2.99733 3.05056

Table 8: Sample statistics of 10000 values of the estimated slope parameter in model (7.1)
for the Least Squares, the R- and the Jaeckel’s estimators, various distributions of the
measurement errors u;, j = 1,...,n, the sample size n = 500 and the Laplace distribution
of errorse;, i=1,...,n.
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Estimator U MSE mean 2.5%-q. median 97.5%-q.
LSE - 8576.803 1.58670 -0.03652 2.99776 6.11806
N(0,0.5) 11153.72 1.27588 -0.16233 2.99874 6.12812
N(0, 2) 11885.26 1.45589 -0.30151 2.99726 6.47853
U(—1,1) 5778.837 1.98624 -0.11801 2.99830 6.34738
R - 0.00055 2.99975 2.95469 2.99948 3.04758
N(0,0.5) 0.00193 3.00009 2.91503 2.99994 3.08592
N(0, 2) 0.00501 3.00425 2.86343 3.00355 3.13989
U(—1,1) 0.00151 2.99562 2.92148 2.99570 3.07219
Jaeckel - 0.00055 2.99977 2.95457 2.99938 3.04754
N(0, 0.5) 0.00195 3.00465 2.91823 3.00444 3.09070
N(0, 2) 0.00589 3.02899 2.88856 3.02881 3.16543
U(—1,1) 0.00150 2.99794 2.92347 2.99797 3.07405

Table 9: Sample statistics of 10000 values of the estimated slope parameter in model (7.1)
for the Least Squares, the R- and the Jaeckel’s estimators, various distributions of the
measurement errors u;, j = 1,...,n, the sample size n = 500 and the Cauchy distribution
of errors e;, i =1,...,n.
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