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summary

The distribution of positive definite quadratic forms in normal random vectors

is first approximated by generalized gamma and Pearson-type density functions.

The distribution of indefinite quadratic forms is then obtained from their rep-

resentation in terms of the difference of two positive definite quadratic forms.

In the case of the Pearson-type approximant, explicit representations are ob-

tained for the density and distribution functions of an indefinite quadratic form.

A moment-based technique whereby the initial approximations are adjusted by

means of polynomials is being introduced. A detailed algorithm describing the

steps involved in the methodology advocated herein is provided as well. It is also

explained that the distributional results apply to the ratios of certain quadratic

forms. Two numerical examples are presented: the first involves an indefinite

quadratic form while the second approximates the distribution of the Durbin-

Watson statistic, which is shown to be expressible as a ratio of quadratic forms.
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1 Introduction

Numerous distributional results are already available in connection with quadratic forms in

normal random variables and ratios thereof. Various representations of the density function

of a quadratic form have been derived and several procedures have been proposed for com-

puting percentage points. Box (1954) considered a linear combination of chi-square variables
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having even degrees of freedom. Gurland (1953), Pachares (1955), Ruben (1960, 1962), Shah

and Khatri (1961), and Kotz et al. (1967a,b) among others, obtained expressions involving

MacLaurin series and the distribution function of chi-square variables. Gurland (1956) and

Shah (1963) considered respectively central and noncentral indefinite quadratic forms, but

as pointed by Shah (1963), the expansions obtained are not practical. Exact distributional

results were derived by Imhof (1961), Davis (1973) and Rice (1980).

As pointed out in Mathai and Provost (1992), a wide array of test statistics can be

expressed in terms of quadratic forms in normal random vectors. For example, one may

consider the lagged regression residuals developed by De Gooijer and MacNeill (1999) and

discussed in Provost et al. (2005), or certain change point test statistics derived by MacNeill

(1978).

An accessible approach is proposed in this paper for approximating the densities of

positive definite and indefinite quadratic forms in normal random variables from gamma,

generalized gamma and Pearson-type densities. It is explained that such approximants

can be combined with polynomial adjustments in order to improve their accuracy. These

results can also be utilized to determine the approximate distributions of the ratios of

certain quadratic forms. Such ratios arise for example in regression theory, linear models,

analysis of variance and time series. For instance, the sample serial correlation coefficient

as defined in Anderson (1990) and discussed in Provost and Rudiuk (1995) as well as the

sample innovation cross-correlation function for an ARMA time series whose asymptotic

distribution was derived by McLeod (1979), have such a structure. Koerts and Abrahamse

(1969) investigated the distribution of ratios of quadratic forms in the context of the general

linear model. Shenton and Johnson (1965) derived the first few terms of the series expansions

of the first and second moments of the sample circular serial correlation coefficient. Inder

(1986) developed an approximation to the null distribution of the Durbin-Watson statistic

to test for autoregressive disturbances in a linear regression model with a lagged dependent

variable and determined its critical values. This test statistic can in fact be expressed

as a ratio of quadratic forms wherein the matrix of the quadratic form appearing in the

denominator is idempotent.

The Monte Carlo and analytical approaches have their own merits and shortcomings.

Monte Carlo simulations which generate artificial data wherefrom sampling distributions

and moments are estimated, can be implemented and brought to bear with relative ease

on an extensive range of models and error probability distributions. There are, however,

some limitations on the range of applicability of these experiments: the results may be

subject to sampling variations or simulation inadequacies and may depend on the assumed

parameter values. Recent efforts to cope with these issues are discussed for example in

Hendry (1979), Hendry and Harrison (1974), Hendry and Mizon (1980) and Dempster et

al. (1977). The analytical approach, on the other hand, derives results which hold over the

whole parameter space but may find limitations in terms of simplifications on the model,

which have to be imposed to make the problem tractable. Even when exact theoretical

results can be obtained, the resulting expressions can be fairly complicated. The moment-
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based approximation procedure advocated in this paper has the advantage of producing

closed form expressions that yield very accurate results over the entire supports of the

distributions being considered.

A representation of noncentral indefinite quadratic forms which results from an ap-

plication of the spectral decomposition theorem is given in terms of the difference of two

positive definite quadratic forms in Section 2; a formula for determining their moments from

their cumulants as well as an integral representation of the density function of an indefinite

quadratic form are also provided therein. Pearson and gamma-types approximations to the

distribution of positive definite quadratic forms are introduced in Section 3; explicit repre-

sentations of the approximate density and distribution functions of an indefinite quadratic

form are given in the case of the Pearson-type approximation and a moment-based technique

for improving the approximations by means of polynomial adjustments is then presented.

An algorithm describing the methodology is provided in Section 4. The proposed density

approximation technique is applied to an indefinite quadratic form and the Durbin-Watson

statistic in Section 5.

2 Noncentral Indefinite Quadratic Forms

In this section, a decomposition of noncentral indefinite quadratic forms is given in terms of

the difference of two positive definite quadratic forms whose moments are determined from

a certain recursive relationship involving their cumulants. An integral representation of the

density function of an indefinite quadratic form is also provided.

Indefinite quadratic form in normal random variables can be expressed in terms of stan-

dard normal variables as follows. Let X ∼ N p(µ, Σ), Σ > 0, that is, X is distributed as

a p-variate normal random vector with mean µ and positive definite covariance matrix Σ.

On letting Z ∼ Np(0, I), where I is a p × p identity matrix, one has X = Σ
1
2Z + µ where

Σ
1
2 denotes the symmetric square root of Σ. Then, in light of the spectral decomposition

theorem, the quadratic form Q = X′AX where A is a p× p real symmetric matrix and X′

denotes the transpose of X, can be expressed as follows:

Q = (Z+Σ−
1
2µ)′Σ

1
2AΣ

1
2 (Z+Σ−

1
2µ)

= (Z+Σ−
1
2µ)′PP ′Σ

1
2AΣ

1
2PP ′(Z+Σ−

1
2µ) , (2.1)

where P is an orthogonal matrix that diagonalizes Σ
1
2AΣ

1
2 , that is, P ′Σ

1
2AΣ

1
2P = diag(λ1,

. . . , λp), λ1, . . . , λp being the eigenvalues of Σ
1
2AΣ

1
2 (or equivalently those of AΣ) in de-

creasing order. Let vi denote the normalized eigenvector of Σ
1
2AΣ

1
2 corresponding to λi,

i = 1, . . . , p, (such that Σ
1
2AΣ

1
2vi = λivi and vi

′vi = 1) and P = (v1, . . . ,vp). Letting

U = P ′Z, U ∼ Np(0, I) since P is an orthogonal matrix, and then, one has

Q = (U+ b)′Diag(λ1, . . . , λp)(U+ b)

=

p
∑

j=1

λj(Uj + bj)
2 , (2.2)
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where Diag(λ1, . . . , λp) is a diagonal matrix whose diagonal elements are λ1, . . . , λp, b =

P ′Σ−
1
2µ with b = (b1, . . . , bp)

′, U = (U1, . . . , Up)
′, and (Uj + bj), j = 1, . . . , p, are indepen-

dently distributed N (bj , 1) random variables. It follows that

Q =

r
∑

j=1

λj(Uj + bj)
2 −

p
∑

j=r+θ+1

|λj |(Uj + bj)
2

≡ Q1 −Q2 , (2.3)

where r is the number of positive eigenvalues of AΣ and p− r− θ is the number of negative

eigenvalues of AΣ, θ being the number of null eigenvalues. Thus, a noncentral indefinite

quadratic form, Q, can be expressed as a difference of independently distributed linear

combinations of independent non-central chi-square random variables having one degree of

freedom each, or equivalently, as the difference of two positive definite quadratic forms. It

should be noted that the chi-square random variables are central whenever µ = 0. When

the matrix A is positive semidefinite, so is Q, and then, Q ∼ Q1 as defined in Equation

(2.3). Moreover, if A is not symmetric, it suffices to replace this matrix by (A + A′)/2 in

a quadratic form. Accordingly, it will be assumed without any loss of generality that the

matrices of the quadratic forms being considered are symmetric.

The moments of a quadratic forms, which are useful for estimating the parameters of

the density approximants, can be determined as follows. As shown in Mathai and Provost

(1992), the sth cumulant of X′AX where X ∼ N p(µ, Σ) is

k(s) = 2s−1s!
(

tr(AΣ)s/s + µ′(AΣ)s−1Aµ
)

= 2s−1(s− 1)! θs , (2.4)

where tr(·) denotes the trace of (·) and θs =
∑p

j=1 λ
s
j(1 + s b2j ), s = 1, 2, . . . . It should

be noted that tr(AΣ)s =
∑p

j=1 λ
s
j where the λj ’s, j = 1, . . . , p, are the eigenvalues of AΣ.

The hth moment of X′AX can be obtained from its cumulants by means of the following

recursive relationship, which was derived by for instance by Smith (1995):

µ(h) =

h−1
∑

i=0

(h− 1)!

(h− 1− i)! i!
k(h− i)µ(i) , (2.5)

where k(s) is as given in Equation (2.4).

One can make use of Equation (2.5) to determine the moments of each of the positive

definite quadratic forms, Q1 ≡ W′

1A1W1 and Q2 ≡ W′

2A2W2, appearing in Equation

(2.3) where A1 = diag(λ1, . . . , λr), A2 = diag(|λr+θ+1|, . . . , |λp|), W1 ∼ N r(b1, I), b1 =

(b1, . . . , br)
′, and W2 ∼ N p−r−θ(b2, I), b2 = (br+θ+1, . . . , bp)

′, the bj ’s being as defined in

Equation (2.2).

Since an indefinite quadratic form is distributed as the difference of two positive defi-

nite quadratic forms, its density function can be obtained via the transformation of vari-

ables technique. For the problem at hand, letting hQ(q) Iℜ(x), fQ1
(q1) I(τ1,∞)(x) and
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fQ2
(q2) I(τ2,∞)(x) respectively denote the approximate densities of Q, Q1 and Q2, where the

IS(.) is the indicator function with respect to the set S, an approximation to the density

function of the indefinite quadratic form Q can then be obtained as follows:

hQ(q) =







hP (q) for q ≥ τ1 − τ2

hN (q) for q < τ1 − τ2,
(2.6)

where

hP (q) =

∫ ∞

q+τ2

fQ1
(y)fQ2

(y − q) dy (2.7)

and

hN (q) =

∫ ∞

τ1

fQ1
(y)fQ2

(y − q) dy . (2.8)

Noting that

Pr
(X′AX

X′BX
< t0

)

= Pr(X′(A− t0B)X < 0) , (2.9)

it is seen that the distribution of the ratio of quadratic forms, X′AX/X′BX, can readily be

determined from that of an indefinite quadratic form.

3 Various Approximations

3.1 Approximation via Pearson’s Approach

Let E(Qi) and σQi
denote the mean and standard deviation of the positive definite quadratic

form Qi. According to Pearson (1959), one can write Qi ≈ Ui with

Ui ∼
(χ2

νi
− νi√
2νi

)

σQi
+ E(Qi) , (3.1)

where the symbol ≈ means “is approximately distributed as” and νi is such that both Qi

and Ui have equal third cumulants. Since E(χ2
νi
) = νi and V ar(χ

2
νi
) = 2νi, E(Ui) = E(Qi)

and V ar(Ui) = σ2
Qi
. Letting θi be as defined in (2.4), the third cumulant of Ui is

8νi σ
3
Qi
/(2νi)

3/2 = 23/2ki(2)
3/2/

√
νi = 8θ

3/2
2 /

√
νi,

while the first and second cumulants of Ui coincide with those of Qi. On equating the third

cumulants of Ui and Qi, which according to (2.3) is 8 θ3, one has

νi = θ32/θ
2
3 . (3.2)

Thus,
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Qi ≈
θ3
θ2
χ2
νi
− θ32
θ23

+ θ1 (3.3)

or equivalently,

Qi ≈ ci χ
2
νi
+ τi, (3.4)

where ci = θ3/θ2 and τi = θ1 − θ32/θ
2
3 . That is, Pearson’s approximant to the exact density

of Qi is given by

fQi
(qi) =

(qi − τi)
νi/2−1 e−(qi−τi)/(2ci)

Γ( νi

2 )(2ci)
νi/2

I(τi,∞)(qi) . (3.5)

Accordingly, the density function of the indefinite quadratic form Q = Q1−Q2, where Q1

andQ2 are positive definite quadratic forms, can be approximated by making use of Equation

(2.6) where fQ1
(·) and fQ2

(·) respectively denote the Pearson-type density approximants of

Q1 and Q2 which are available from Equation (3.5). Explicit representations of hP (q) and

hN (q) as specified by Equations (2.7) and (2.8), respectively, can be derived as follows:

hN (q) =

∫ ∞

τ1

fQ1
(y) fQ2

(y − q) dy

=

∫ ∞

τ1

(y − τ1)
ν1/2−1 (y − q − τ2)

ν2/2−1 e−(y−τ1)/(2c1) e−(y−q−τ2)/(2c2)

Γ( ν1

2 ) Γ( ν2

2 ) (2c1)ν1/2 (2c2)ν2/2
dy

=
(c1)

−ν1/2 (c2)
−ν2/2 e(−τ1+τ2+q)/(2c2)

(τ1 − τ2 − q) Γ( ν1

2 ) Γ(1− ν2

2 ) Γ( ν2

2 )

( c1 c2
c1 + c2

)(ν1+ν2)/2 (

2(−ν1−ν2)/2 Γ
(ν1
2

)

× Γ
(

− ν1
2

− ν2
2

+ 1
)

1F1

(ν1
2
;
ν1 + ν2

2
;
(c1 + c2) (τ1 − τ2 − q)

2c1 c2

)

×
( (c1 + c2) (τ1 − τ2 − q)

c1 c2

)(ν1+ν2)/2

+
1

2c1 c2
(c1 + c2) (τ1 − τ2 − q)

× Γ
(

1− ν2
2

)

Γ
(1

2
(ν1 + ν2 − 2)

)

1F1

(

1− ν2
2
;
−ν1 − ν2 + 4

2
;
(c1 + c2) (τ1 − τ2 − q)

2c1 c2

))

(3.6)
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for q < τ1 − τ2, ν1 > 0, ν2 > 0 and (1/c1 + 1/c2) > 0 ; and

hP (q) =

∫ ∞

q+τ2

fQ1
(y) fQ2

(y − q) dy

=

∫ ∞

q+τ2

(y − τ1)
ν1/2−1 (y − q − τ2)

ν2/2−1 e−(y−τ1)/(2c1) e−(y−q−τ2)/(2c2)

Γ( ν1

2 ) Γ( ν2

2 ) (2c1)ν1/2 (2c2)ν2/2
dy

=
(c1)

−ν1/2 (c2)
−ν2/2 e(−τ1+τ2+q)/(2c1)

(−τ1 + τ2 + q) Γ( ν1

2 ) Γ(1− ν1

2 ) Γ( ν2

2 )

( c1 c2
c1 + c2

)(ν1+ν2)/2 (

2(−ν1−ν2)/2 Γ
(ν2
2

)

× Γ
(

− ν1
2

− ν2
2

+ 1
)

1F1

(ν2
2
;
ν1 + ν2

2
;
(c1 + c2) (−τ1 + τ2 + q)

2c1 c2

)

×
( (c1 + c2) (−τ1 + τ2 + q)

c1 c2

)(ν1+ν2)/2

+
1

2c1 c2
(c1 + c2) (−τ1 + τ2 + q)

× Γ
(

1− ν1
2

)

Γ
(1

2
(ν1 + ν2 − 2)

)

× 1F1

(

1− ν1
2
;
−ν1 − ν2 + 4

2
;
(c1 + c2) (−τ1 + τ2 + q)

2c1 c2

))

(3.7)

for q ≥ τ1 − τ2, ν1 > 0, ν2 > 0 and (1/c1+1/c2) > 0 where 1F1(a, b, z) =
∑∞

k=0
Γ(a+k) Γ(b) zk

Γ(a) Γ(b+k) k! .

When q < τ1−τ2, the approximate cumulative distribution function of Q denoted by FN (y)

is then given by

FN (y) =

∫ y

−∞

hN (q) dq

=
c
−ν1/2
1 c

−ν2/2
2

Γ( ν1

2 ) Γ(1− ν2

2 ) Γ( ν2

2 )

( c1 c2
c1 + c2

)(ν1+ν2)/2 (

2(−ν1−ν2)/2 Γ
(ν1
2

)

Γ
(

1− ν2
2

− ν1
2

)

×
∫ y

−∞

1F1

(ν1
2
;
(ν1 + ν2)

2
;
(c1 + c2)(τ1 − τ2 − q)

2 c1 c2

)

e−(τ1−τ2−q)/(2 c2)

×
( (c1 + c2)(τ1 − τ2 − q)

c1 c2

)(ν1+ν2)/2 1

(τ1 − τ2 − q)
dq +

1

2 c1 c2
(c1 + c2)

× Γ
(

1− ν2
2

)

Γ
(ν1 + ν2 − 2

2

)

∫ y

−∞

e−(τ1−τ2−q)/(2 c2)

× 1F1

(

1− ν2
2
;
(−ν1 − ν2 + 4)

2
;
(c1 + c2)(τ1 − τ2 − q)

2 c1 c2

)

dq
)



322 Mohsenipour & Provost

=

∞
∑

k=0

c
−ν1/2
1 c

−ν2/2
2

Γ( ν1

2 ) Γ(1− ν2

2 ) Γ( ν2

2 )

( c1 c2
c1 + c2

)(ν1+ν2)/2 ( 2−k−1 (c1 + c2)

k! c1 c2 Γ(k +
1
2 (−ν1 − ν2 + 4))

×
(c1 + c2
c1 c2

)k

Γ
(

k − ν2
2

+ 1
)

Γ
(ν1 + ν2 − 2

2

)

Γ
(−ν1 − ν2 + 4

2

)

×
∫ y

−∞

(τ1 − τ2 − q)k e(−τ1+τ2+q)/(2 c2) dq +
2(−ν1−ν2)/2−k

k! Γ(k + ν1+ν2

2 )
Γ
(

k +
ν1
2

)

Γ
(ν1 + ν2

2

)

× Γ
(

1− ν1 + ν2
2

)(c1 + c2
c1 c2

)(ν1+ν2−4)/2

×
∫ y

−∞

(τ1 − τ2 − q)k+(ν1+ν2)/2−1 e(−τ1+τ2+q)/(2 c2) dq
)

=
∞
∑

k=0

2−(ν1+ν2+2)/2 c
−ν1/2−1
1 c

k−ν2/2−1
2

k! Γ( ν1

2 ) Γ(1− ν2

2 ) Γ( ν2

2 ) Γ(k + (ν1 + ν2 − 2)/2) Γ( ν1+ν2

2 + k)

×
( 1

c1
+

1

c2

)k ( c1 c2
c1 + c2

)(ν1+ν2)/2 (

4 c1 c
2
2 Γ

(ν1 + ν2
2

)

Γ
(

k +
ν1
2

)

× Γ
(

k +
ν1 + ν2 − 2

2

)

Γ
(

k + 1,−z − τ1 + τ2
2 c2

)( 1

c1
+

1

c2

)(ν1+ν2)/2

+ 2ν1+ν2 c
(ν1+ν2)/2
2 (c1 + c2) Γ

(

− ν1 + ν2 − 4

2

)

Γ
(

k + 1− ν2
2

)

Γ
(1

2
(ν1 + ν2 − 2)

)

× Γ
(

k +
ν1 + ν2

2

)

Γ
(1

2
(2 k + ν1 + ν2),−

z − τ1 + τ2
2 c2

))

, (3.8)

where Γ(α, z) =
∫∞

z
xα−1 e−x dx denotes the incomplete gamma function. Similarly, when

q ≥ τ1 − τ2, the approximate cumulative distribution function of Q denoted by FP (y) can

be expressed as

FP (y) = FN (τ1 − τ2) +

∫ y

τ1−τ2

hP (q) dq

= FN (τ1 − τ2)

+

∞
∑

k=0

c
−ν1/2
1 c

−ν2/2
2

Γ( ν1

2 ) Γ(1− ν1

2 ) Γ( ν2

2 )

( c1 c2
c1 + c2

)(ν1+ν2)/2 ( 2−k−1 (c1 + c2)

k! c1 c2 Γ(k +
1
2 (−ν1 − ν2 + 4))

×
(c1 + c2
c1 c2

)k

Γ
(

k − ν1
2

+ 1
)

Γ
(−ν1 − ν2 + 4

2

)

Γ
(ν1 + ν2 − 2

2

)

×
∫ y

τ1−τ2

(−τ1 + τ2 + q)k e−(−τ1+τ2+q)/(2 c1) dq +
2(−ν1−ν2)/2−k

k! Γ(k + ν1+ν2

2 )

× Γ
(−ν1

2
− ν2

2
+ 1

)

Γ
(

k +
ν2
2

)

Γ
(ν1 + ν2

2

)(c1 + c2
c1 c2

)k+(ν1+ν2)/2

×
∫ y

τ1−τ2

(−τ1 + τ2 + q)k+(ν1+ν2)/2−1 e−(−τ1+τ2+q)/(2 c1) dq
)
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= FN (τ1 − τ2)

+
∞
∑

k=0

c
k−ν1/2
1 c

−1−ν2/2
2

k! Γ(1− ν1

2 ) Γ( ν1

2 ) Γ( ν2

2 ) Γ(k + 2− ν1+ν2

2 ) Γ( ν1+ν2

2 + k)

×
( 1

c1
+

1

c2

)k ( c1 c2
c1 + c2

)(ν1+ν2)/2 (

c
(ν1+ν2)/2
1 c2 Γ

(

1− ν1
2

− ν2
2

)

× Γ
(

k + 2− ν1 + ν2
2

)

Γ
(

k +
ν2
2

)

Γ
(ν1 + ν2

2

)(

Γ
(1

2
(2 k + ν1 + ν2)

)

− Γ
(1

2
(2 k + ν1 + ν2),

z − τ1 + τ2
2 c1

))( 1

c1
+

1

c2

)(ν1+ν2)/2

+ (c1 + c2)

× Γ
(

k + 1− ν1
2

)

Γ
(1

2
(−ν1 − ν2 − 4)

)

Γ
(1

2
(ν1 + ν2 − 2)

)

Γ
(

k +
ν1 + ν2

2

)

×
(

Γ(k + 1)− Γ
(

k + 1,
z − τ1 + τ2

2 c1

)))

. (3.9)

It was observed that the infinite sums involved in the representations of the cumula-

tive distribution function approximants can be truncated to fifty terms for computational

purposes. It should also be noted that polynomially-adjusted Pearson-type approximants,

which can be determined by making use of the technique described in Section 3.3, generally

provide more accurate approximations.

3.2 Approximations by Means of Gamma-Type Distributions

It is explained in this section that gamma-type approximations can also be used to ap-

proximate the distribution of a noncentral quadratic form. The density function of the

two-parameter gamma distribution is given by

ψ(x) =
xα−1 e−x/β

Γ(α)βα
, x > 0 , α > 0 and β > 0 . (3.10)

The parameters α and β can be estimated as follows on the basis of its first two raw moments

denoted µ(1) and µ(2): α = µ(1)2/(µ(2)− µ(1)2) and β = µ(2)/µ(1)− µ(1).

A three-parameter gamma or generalized gamma density function is given by

ψ(x) =
γ

βαγ Γ(α)
xαγ−1e−(x/β)γ I(0,∞)(x) , α > 0, β > 0, and γ > 0, (3.11)

where α > 0, γ > 0 and β > 0. Denoting its moments by m(j), j = 0, 1, . . . , one has,

m(j) =
βj Γ(α + j/γ)

Γ(α)
. (3.12)

Given the first three moments of the positive quadratic form Q1, the three parameters of

the generalized gamma distribution can readily be estimated by making use of the method

of moments. The estimates are thus obtained by solving simultaneously the equations

µQ1
(i) = m(i) , for i = 1, 2, 3, (3.13)
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which are nonlinear. We proceed similarly for approximating the density function of Q2

as defined in (2.3). Then (2.6) yields the approximate density function of Q1 − Q2 with

τ1 = τ2 = 0. Clearly, the gamma distribution is a particular case of the generalized gamma

distribution wherein the parameter γ equal one.

3.3 Polynomially-Adjusted Density Approximants

A density approximation technique that is based on the first n moments of an indefinite

quadratic form is being proposed in this section. In order to approximate the density

function of a noncentral quadratic form Q, one must first approximate the density functions

of the two positive definite quadratic forms Q1 and Q2, as defined in (2.3). According to

Equation (2.5), the moments of the positive definite quadratic form Q1 denoted by µQ1
(·)

are obtained recursively from its cumulants. Then, a moment-based density approximation

of the following form is assumed for Q1:

fn(x) = ψ(x)

n
∑

j=0

ξj x
j , (3.14)

where ψ(x) is an initial density approximant also referred to as base density function, which

could be for instance a gamma, generalized gamma or Pearson-type density function.

In order to determine the polynomial coefficients, ξj , we equate the hth moment of Q1

to the hth moment of the approximate distribution specified by fn(x). That is, we let

µQ1
(h) =

∫ ∞

τ1

xhψ(x)
n
∑

j=0

ξj x
j dx

=

n
∑

j=0

ξj

∫ ∞

τ1

xh+j ψ(x) dx (3.15)

=

n
∑

j=0

ξj m(h+ j), for h = 0, 1, . . . , n,

where m(h + j) denotes the (h + j)th moment determined from ψ(x) and τ1 is the lower

bound of the support of ψ(x). For the gamma and the generalized gamma, τ1 = 0 and m(j)

is given by (3.12) while in the case of the Pearson-type distribution,

m(j) =



































2−ν/2 ch eτ/(2 c)

Γ(1− ν
2 ) Γ(h+1+ ν

2 ) Γ(
ν
2 )

(

Γ(h+ 1)
(

Γ(−h− ν
2 ) Γ(h+ ν

2 + 1) (− τ
c )

h + ( τc )
h Γ(1− ν

2 )

× Γ( ν2 )
)

1F1

(

h+ 1;h+ ν
2 + 1;− τ

2c

)

(− τ
c )

ν/2 + 2h+ν/2 Γ(1− ν
2 ) Γ(h+ ν

2 )

× Γ(h+ ν
2 + 1) 1F1

(

1− ν
2 ;

1
2 (−2h− ν + 2);− τ

2c

))

for τ ≤ 0 ,

2h ch U
(

− h, 1− h− ν
2 ,

τ
2c

)

for τ > 0 ,
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where U(a, b, z) = 1
Γ(a)

∫∞

0
e−z t ta−1 (1 + t)b−a−1dt is the confluent hypergeometric func-

tion. This leads to a linear system of (n+1) equations in (n+1) unknowns whose solution

is















ξ0

ξ1
...

ξn















=















m(0) m(1) · · · m(n− 1) m(n)

m(1) m(2) · · · m(n) m(n+ 1)

· · · · · · · · · · · · · · ·
m(n) m(n+ 1) · · · m(2n− 1) m(2n)















−1 













µQ1
(0)

µQ1
(1)
...

µQ1
(n)















. (3.16)

The resulting representation of the density function ofQ1 will be referred to as a polynomially-

adjusted density approximant, which can be readily evaluated. As long as higher moments

are available, more accurate approximations can always be obtained by making use of ad-

ditional exact moments.

The same procedure will produce a polynomially-adjusted density approximant for Q2.

The density approximant to the noncentral indefinite quadratic form Q = Q1 −Q2 is then

obtained from Equation (2.6). Note that in the case of gamma-type base density functions,

one should set τ1 and τ2 equal to zero in (2.6), (2.7), (2.8) and (3.15).

4 The Algorithm

The following algorithm can be utilized to approximate the density function of the quadratic

form Q = X′AX where X ∼ N p(µ, Σ), Σ > 0, and A is a symmetric indefinite matrix.

1. The eigenvalues of AΣ denoted by λ1 ≥ · · · ≥ λr > 0 > λr+θ+1 ≥ · · · ≥ λp, and the

corresponding normalized eigenvectors, ν1, . . . ,νp, are determined.

2. Letting P = (ν1, . . . ,νp), γ1, . . . , γp be the eigenvalues of Σ, t1, . . . , tp be the normal-

ized eigenvectors corresponding to γ1, . . . , γp, T = (t1, . . . , tp),

Σ−1/2 = T Diag(γ
−1/2
1 , . . . , γ−1/2

p )T ′,

b = (b1, · · · , bp)′ = P ′ Σ−1/2 µ and U1, . . . , Up be independently distributed standard

normal variables, one has the decomposition

Q =

r
∑

j=1

λj(Uj + bj)
2 −

p
∑

j=r+θ+1

|λj |(Uj + bj)
2 ≡ Q1 −Q2,

where Q1 ≡ W′

1A1W1, W1 ∼ N r(b1, I), b1 = (b1, . . . , br)
′, A1 = Diag(λ1, . . . , λr),

andQ2 ≡ W′

2A2W2,W2 ∼ N p−r−θ(b2, I), b2 = (br+θ+1, . . . , bp)
′, A2 = Diag(|λr+θ+1|, . . . , |λp|).

Clearly, b = 0 whenever µ = 0 and, in that case, there is no need to determine the

matrices P or T .
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3. The cumulants and the moments of Q1 and Q2 are determined from Equations (2.4)

and (2.5), respectively.

4. Density approximants are obtained for each of the positive definite quadratic forms

Q1 and Q2 on the basis of their respective moments and denoted by fQ1
(·) and fQ2

(·).

5. Given fQ1
(·) and fQ2

(·), the approximate density of Q is determined from Equation

(2.6) where hP (·) and hN (·) are respectively specified by Equations (2.7) and (2.8). In

the case of Pearson-type approximants, hP (·) and hN (·) are explicitly given by (3.6)

and (3.7). When explicit representations of hP (·) and hN (·) are unavailable, numerical

integration can be used.

6. As explained in Section 3.3, the accuracy of the approximants of Q1 and Q2 can be

improved upon by making use of polynomial adjustments. Then again, (2.6) can be

used to obtain an approximate density function for Q.

7. The cumulative distribution function of Q can then be evaluated from Equations (3.8)

and (3.9) in the case of Pearson’s approximation and by numerical integration in other

cases.

Remark 1. For the nonnegative definite quadratic form, Q = X′AX, A ≥ 0, whose eigen-

values are all nonnegative, only the distribution of Q1 needs be approximated.

5 Numerical Examples

We present two numerical examples in this section. The first involves a noncentral indefi-

nite quadratic form while the second approximates the distribution of the Durbin-Watson

statistic, which is shown to be expressible as a ratio of quadratic forms.

Example 1

Consider the noncentral indefinite quadratic form, Q = X′AX, where

A =















1 2 2 5

2 8 0 4

2 0 −1/4 1

5 4 1 −2















and X ∼ N4(µ, Σ) with µ = (1, 2, 3, 4)′ and

Σ =















1 −1/2 2/5 1/2

−1/2 1 1/4 −3/8

2/5 1/4 1 1/3

1/2 −3/8 1/3 1















.
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Figure 1: Three Density Approximants: Pearson’s (light solid line), Generalized Gamma
(dark solid line) and Gamma (dashed line)

In light of Equation (2.3), Q can be re-expressed as

Q = Q1 −Q2 =

2
∑

i=1

λi(Ui + bi)
2 −

4
∑

j=3

|λj |(Uj + bj)
2 , (5.1)

where the Ui’s, i = 1, 2, 3, 4, are standard normal random variables, λ1 = 8.29749, λ2 =

4.61802, λ3 = −3.25405, λ4 = −0.644806, b1 = 2.13221, b2 = 0.519464, b3 = −1.67346, and

b4 = −2.52353. In this case, the matrices Σ1/2 and P are respectively

Σ1/2 =















0.909305 −0.272122 0.222592 0.222637

−0.272122 0.926505 0.182801 −0.184722

0.222592 0.182801 0.942687 0.168459

0.222637 −0.184722 0.168459 0.942301















and

P =















0.593908 0.3517 0.53923 0.482506

−0.399612 0.90875 −0.111034 −0.0464278

0.472832 0.179678 0.125688 −0.853433

0.513822 0.134896 −0.825291 0.191533















.
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Figure 2: Gamma cdf approximation (dotted curve) and simulated cdf

Figure 3: Generalized gamma cdf approximation (dotted curve) and simulated cdf
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Figure 4: Pearson’s cdf approximation (dotted curve) and simulated cdf

The approximate density functions of Q1 and Q2 were obtained by making use of the

gamma, generalized gamma and Pearson’s density functions. The resulting approximations

of the density function of Q, as evaluated from Steps 4 and 5 of the proposed algorithm,

are plotted in Figure 1. The corresponding cumulative distribution functions which were

determined by making use of the last step of the algorithm, are respectively plotted in

Figures 2, 3 and 4 where they are superimposed on the simulated distribution function

which was generated from 100,000 replications. It is apparent that Pearson’s approximation

is the most accurate.

Example 2

The statistic originally proposed by Durbin and Watson (1950), which assesses whether the

disturbances in the linear regression model

Y = Xβ + ǫ (5.2)

are uncorrelated, can be expressed as

D =
ǫ̂
′A∗ǫ̂

ǫ̂
′
ǫ̂

, (5.3)

where

ǫ̂ = Y −Xβ̂ (5.4)

is the vector of residuals,

β̂ = (X ′X)−1X ′Y (5.5)
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Table 1: Approximate cdf’s evaluated from (5.8) at certain simulated percentiles

CDF Simulated P-A Gamma P-A Gen. Gamma P-A Pearson

0.01 1.36069 0.010435 0.010420 0.010197

0.05 1.64792 0.050280 0.050277 0.050286

0.1 1.80977 0.099761 0.099770 0.100059

0.2 2.00943 0.198599 0.198625 0.198878

0.25 2.08536 0.247875 0.247909 0.248167

0.4 2.27598 0.396053 0.396086 0.396270

0.5 2.39014 0.495934 0.495953 0.496051

0.6 2.50282 0.596315 0.596317 0.596184

0.75 2.6861 0.748343 0.748288 0.747567

0.8 2.75694 0.799397 0.799323 0.798449

0.9 2.93742 0.902156 0.902100 0.901533

0.95 3.07679 0.952783 0.952788 0.952592

0.99 3.31005 0.991466 0.991457 0.992064

being the ordinary least-squares estimator of β, and A∗ = (a∗ij) is a symmetric tridiagonal

matrix with a∗11 = a∗pp = 1; a∗ii = 2, for i = 2, . . . , p− 1; a∗ij = −1 if |i− j| = 1; and a∗ij = 0

if |i− j| ≥ 2. Assuming that the error vector is normally distributed, one has ǫ ∼ Np(0, I)

under the null hypothesis.

Then, on writing ǫ̂ as MY where

Mp×p = I −X(X ′X)−1X ′ =M ′ (5.6)

is an idempotent matrix of rank p − k, the test statistic can be expressed as the ratio of

quadratic forms,

D =
Z′MA∗MZ

Z′MZ
, (5.7)

where Z ∼ Np(0, I); this can be seen from the fact that MY and MZ are identically

distributed singular normal vectors with mean vector 0 and covariance matrix MM ′. We

note that the distribution function of D at t0 can be determined as follows:
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Table 2: Approximate cdf’s based directly on the moments of D

CDF Simulated Gen. Gamma P-A Gen. Gamma

0.01 1.36069 0.011744 0.010365

0.05 1.64792 0.050061 0.050308

0.1 1.80977 0.097460 0.099875

0.2 2.00943 0.194079 0.198706

0.25 2.08536 0.243139 0.247947

0.3 2.15357 0.292786 0.297291

0.5 2.39014 0.495703 0.495807

0.7 2.62156 0.702657 0.697458

0.75 2.68610 0.754125 0.748325

0.8 2.75694 0.805216 0.799434

0.9 2.93742 0.905234 0.902239

0.95 3.07679 0.952770 0.952814

0.99 3.31005 0.989273 0.991458

Pr (D < t0) = Pr
(

Z′MA∗MZ < t0Z
′MZ

)

= Pr
(

Z′M(A∗M − t0I)Z < 0
)

. (5.8)

On letting U = Z′M(A∗M − t0I)Z, U can be re-expressed as Q1−Q2, the difference of two

positive quadratic forms, by applying Steps 1 and 2 of the algorithm described in Section 3,

with A = M(A∗M − t0I), µ = 0 and Σ = I. Polynomially-adjusted density approximants

of degree 10 were then obtained by applying Steps 3 and 6 of the methodology.

We make use of a data set that is provided in Hildreth and Lu (1960, p. 58). In this case,

there are k = 5 independent variables, p = 18, the observed value of D is 0.96, and the 13

non-zero eigenvalues of M(A∗M − t0I) are those of MA∗M minus t0. The non-zero eigen-

values of MA∗M are 3.92807, 3.82025, 3.68089, 3.38335, 3.22043, 2.95724, 2.35303, 2.25696,

1.79483, 1.48804, 0.948635, 0.742294 and 0.378736. For instance, when t0 = 1.8099, which

corresponds to the 10th percentile of the simulated cumulative distribution function result-

ing from 1,000,000 replications, the eigenvalues of the positive definite quadratic form Q1

are 2.11817, 2.01035, 1.87099, 1.57345, 1.41053, 1.14734, 0.54313 and 0.44706, while those

of Q2 are 0.01507, 0.32186, 0.861265, 1.06761 and 1.43116. The density function approxi-

mations of D were obtained on the basis of gamma, generalized gamma and Pearson-type
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initial density functions. The corresponding polynomially-adjusted cumulative distribution

functions were evaluated at certain percentiles of the simulated distribution. The results

reported in Table 1 indicate that the polynomially-adjusted Pearson-type (P-A Pearson)

approximation is generally the most accurate.

Since M , the matrix of quadratic form appearing in the denominator of D as defined

in (5.7), is idempotent, we can apply a result stated in Hannan (1970), namely that, in

this case, the moments of the ratio of the quadratic forms are equal to the ratio of the

moments. Thus, the hth moment of D can be obtained as E(Z′MA∗MZ)h/E(Z′MZ)h and

a polynomially-adjusted generalized gamma density approximant as defined in Section (3.3)

can be directly determined from the exact moments of D.

The approximate cumulative distribution function for the generalized gamma (Gen.

Gamma) as well as the tenth-degree polynomially-adjusted generalized gamma (P-A Gen.

Gamma) were evaluated at certain percentiles obtained from the distribution of the ratio,

which was generated from 1,000,000 replications. The results reported in Table 2 indicate

that the proposed approximations are indeed very accurate. All the calculations were car-

ried out with the symbolic computational package Mathematica, the code being available

from the authors upon request.
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