
Journal of Statistical Research ISSN 0256 - 422 X
2011, Vol. 45, No. 1, pp. 1-6
Bangladesh

HYPOTHESIS TESTING AND VARIABLE SELECTION IN RIDGE
REGRESSION

JUNE LUO

Department of Mathematical Sciences, Clemson University, Clemson SC, 29634, USA
Email: jluo@clemson.edu

SUMMARY

There are discussions about variable selection when sample size n → ∞ and dimension p
fixed, but few dealing with n fixed and p → ∞. Recently, high dimensional data, such as
Microarray, exhibits very high dimension p and much smaller sample size n. In the present
paper, we consider data set with fixed sample size n and growing dimension p → ∞. We
also conduct a hypothesis testing for variable selection in ridge regression. We also prove
the consistency of the variable selection method for data with fixed sample size and infinite
number of variables.
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1 Introduction

Upon the arrival of microarray data, statisticians found a fatal mistake in the typical assumption of
statistical analysis regarding asymptotic properties of various estimators. The typical assumption
allows the sample size to go to infinity, but due to the huge expenses of microarray experiments,
the sample size in a microarray data is limited. Meanwhile, the number of gene variables could
be sufficiently large. The discovery makes the existing statistical methods inappropriate in this
situation.

In the current statistical literature, there has been discussions about variable selection using
shrinkage techniques (Knight and Fu 2000; Tibshiriani 19996; Zheng and Loh 1997). Almost all the
related discussions assume that sample size increases to infinity. However, the condition does not
hold in real microarray data, and it is hardly appropriate to consider asymptotic methods for n→∞
when in fact the sample size n is fairly small. Luo (2010) proposed a variable selection procedure
for fixed sample size n and infinite dimension p under the assumption that the random error has a
finite moment. In this paper, we will propose a variable screening method for fixed sample size and
infinite dimensions without assuming the finite moment on the random error. We will prove that the
new variable screening procedure is consistent as well.
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It has been proved by Shao and Chew (2007) that ridge estimators are mean square error (MSE)
consistent when both the sample size and dimensions go to infinity but with different rates. Con-
sidering the limited sample size, Luo (2010) proved that under some regularity conditions, ridge
estimator is mean square error consistent, but there was no explicit formula for the rate. Further-
more, how to reduce the assumptions for MSE consistency was one of the concerns in the discussion
part in Luo (2010). In the present article, we will make less assumptions for MSE consistency of
ridge estimator. Meanwhile, we will provide the explicit expression for the bias and variance of the
ridge estimator and thus conduct hypothesis tests for variable selection for high dimensional data in
ridge regression.

As a summary, we will provide explicit expressions for the asymptotic behaviors of ridge es-
timator, conduct hypothesis tests for variable selection and propose a screening method to select
significant variables. The addressed questions will be answered under the assumption that sample
size is fixed throughout the data and number of predictors is growing to infinity. Those three ques-
tions are lacking of study in the literature, so we believe that the results of the paper will fill in a
significant void in current statistical theory.

2 Asymptotic properties of ridge estimator

For a high dimensional data with p predictors, we consider the following regression model

Y = Xβ + ε ,

where ε has a multivariate normal distribution with E(ε) = 0 and Var(ε) = σ2
pIn. Also X is a n× p

matrix and β is a p× 1 unknown regression vector. Apply ridge regression to get the estimator of β
(Hoerl and Kennard 1970), i.e.

min
β

(Y −Xβ)′(Y −Xβ) + hp

p∑
j=1

β2
j ,

where hp is a ridge parameter. For estimating the ridge parameter, we refer Kibria (2003) and Muniz
and Kibria (2009) among others, so the ridge estimator is formulated as

β̂ = (X ′X + hpIp)
−1X ′Y .

We consider a fixed design in the paper. Since X ′X can have at most n positive eigenvalues,
without loss of generality, we let λip be the ith nonzero eigenvalue of X ′X and assume λip > 0 for
all i = 1, 2, . . . , n. Throughout the paper, sample size n is finite and dimension p→∞.

Assumption A. Let hp → ∞ as p → ∞. For sufficiently large p, there exists a constant δ > 0

such that each component of βp×1 is O(p−2−δ).

Theorem 1. Under the Assumption A, we have bias(β̂j) = o(1) for all j = 1, 2, . . . , p.
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Proof. When p is large enough, let Γ = (τij)p×p be an orthogonal matrix such that

Γ′X ′XΓ =

 Λn×n On×(p−n)

O(p−n)×n O(p−n)×(p−n)


p×p

,

where Λn×n is a diagonal matrix with elements λip, i = 1, 2, . . . , n. Then it follows that

bias(β̂) = E(β̂)− β
= (X ′X + hpIp)

−1X ′Xβ − β

= −
(
X ′X

hp
+ Ip

)−1

β

= −Γ

(
Γ′X ′XΓ

hp
+ Ip

)−1

Γ′β

=̂ −ΓAΓ′β ,

where A = (Γ′X′XΓ
hp

+ Ip)
−1 is a diagonal matrix with hp(hp + λip)

−1, i = 1, 2, . . . , n as first n
diagonal elements, and the rest (p−n) diagonal elements all equal to 1. Since hp(hp + λip)

−1 < 1

for all i = 1, 2, . . . , n and Γ is an orthogonal matrix, each component of matrix ΓA is O(1).
Under Assumption A, each component of matrix Γ′β is O(p−2−δp), which leads to

bias(β̂) = O(p−1−δp) = o(1) .

That completes the proof for Theorem 1.

Assumption B. For simplicity, we choose hp such that λip = o(hp) for all i = 1, 2, . . . , n.

Theorem 2. Under Assumption B, we claim that

var(β̂j)→
σ2
p

h2
p

diag(X ′X)j for all j = 1, 2, . . . , p ,

where diag(X ′X)j means the jth diagonal element of X ′X .

Proof. For the ridge estimator β̂, we have the covariance matrix of β̂

Cov (β̂) = (X ′X + hpIp)
−1X ′σ2

pX(X ′X + hpIp)
−1

=
σ2
p

hp

(
X ′X

hp
+ Ip

)−1
X ′X

hp

(
X ′X

hp
+ Ip

)−1

=
σ2
p

hp

[(
X ′X

hp
+ Ip

)−1

−
(
X ′X

hp
+ Ip

)−1(
X ′X

hp
+ Ip

)−1
]

=
σ2
p

hp
[ΓAΓ′ − ΓAΓ′ΓAΓ′]

=
σ2
p

hp
[Γ(A−A2)Γ′] ,



4 Luo

where Γ and A are defined in Theorem 1. So

var(β̂j) =
σ2
p

h2
p

n∑
i=1

τ2
ji

h2
pλip

(hp + λip)2
for all j = 1, 2, . . . , p .

Under Assumption B,

lim
p→∞

h2
p

(hp + λip)2
= 1 for all i = 1, 2, . . . , n .

Recall that n is finite and the
∑n
i=1 τ

2
jiλip is the jth diagonal element of X ′X , i.e.

var(β̂j)→
σ2
p

h2
p

diag(X ′X)j

for all j = 1, 2, . . . , p as p→∞, where diag(X ′X)j means the jth diagonal element ofX ′X . That
finishes the proof for Theorem 2.

3 Hypothesis testing and variable selection
Since the discovery of microarray, as a primary goal in high dimensional data analysis, variable
selection has received extensive attention in statistics. We will propose two consistent methods to
eliminate insignificant variables in the ridge regression.

Assumption C. Choose σp = o(hp) and p−δhp = o(σp).
Assumption C guarantees that the bias part of ridge estimator goes to 0 faster than the stan-

dard deviation of the ridge estimator. Because the random error ε is multivariate normal, β̂ has a
multivariate normal. Therefore we have the following result.

Theorem 3. Under the Assumption A, B and C, for sufficiently large p, consider the following
hypothesis testing:

H0 : βj = 0 vs Ha : βj 6= 0.

The p-value of the test is

2Φ

(
− |β̂j |
σp

hp

√
diag(X ′X)j

)
,

where function Φ is the standard normal distribution function.

Theorem 3 can serve as a variable selection method. We will also propose a screening method
and prove the consistency of the screening method. Let ap be a sequence of positive numbers
satisfying ap = o(1). For each p value, we screen out the jth gene if and only if |β̂j | ≤ ap.
Therefore, after applying the screening out procedure, only genes associated with |β̂j | > ap are kept
in the model as predictors. The sequence ap acts as a filter in the process and eliminates genes with
relatively small coefficients.
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Theorem 4. Under Assumption A, B and C, when ap is chosen so that

h2
pa

2
p

σ2
p log(p)

→∞ as p→∞ ,

the variable screening method is consistent in the sense that

lim
p→∞

P (|β̂j | > ap) = 1 for any j with βj 6= 0 (3.1)

and
lim
p→∞

P (|β̂j | ≤ ap for all j with βj = 0) = 1 . (3.2)

Proof. Assumption A and B guarantee that β̂j is mean square error consistent for βj , which implies
for any η > 0,

lim
p→∞

P (|β̂j − βj | > η) = 0 .

When βj 6= 0, since ap = o(1), we have

lim
p→∞

P (|β̂j | > ap) = 1 ,

and this finishes the proof for (3.1).
If βj = 0, following the result is Theorem 3,

P (|β̂j | > ap) = Φ

(
bias(β̂j)− ap

sd(β̂j)

)
+ Φ

(
−bias(β̂j)− ap

sd(β̂j)

)
,

where Φ is the standard normal distribution function. It is proven that bias(β̂j) = O(p−δ). Under
the assumption h2

pa
2
p/(σ

2
p log(p))→∞, we have σp = o(hpap) and thus

bias(β̂j) = O(p−δ) = o(
σp
hp

) = o(ap)for all j = 1, 2, . . . , p.

In Theorem 2, we proved sd(β̂j) → fj where fj =
σp

hp

√
diag(X ′X)j for all j = 1, 2, . . . , p,

which tells us
±bias(β̂j)−ap

sd(β̂j)
/(
ap
fj

)→ −1 as p→∞ ,

so for a large enough p value, there exists a positive constant µ ∈ (0, 1) such that

P (|β̂j | > ap) ≤ 2Φ (−µap/fj) .

Recall the fact that diag(X ′X) are all finite constants. For a sufficiently large p, we have the follow-
ing

µap
fj

=
µ

diag(X ′X)j

hpap
σp
≥
√

2q log(p) ≥ 1 for a q > 1 .
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Now we apply the inequality 2Φ(−x) ≤ e−x2/2 for any x ≥ 1. The probability of interest becomes

P (|β̂i| > ap) ≤ 2Φ(−µap/fj) ≤ 2Φ(−
√

2q log(p)) ≤ e−q log(p) = p−q .

Then it follows

P (|β̂j | > ap for at least one j with βj = 0) ≤
∑

all j withβj=0

P (|β̂j | > ap) ≤ p1−q → 0 as p→∞ ,

and thus

lim
p→∞

P (|β̂j | ≤ ap for all j with βj = 0) = 1 .

That finishes the proof for (3.2).
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