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SUMMARY

In this paper, two different mathematical methods are used to derawe distributions.
The results generalize Azzalini (1985) and Rerdez and Steel (1998) skew distributions
generating new results in general, and skew normal distribution in parti@dene mathe-
matical properties, such as n-th moments, distribution function, momengsating func-
tion, are also given for the generalizations. Some known and new kpasis are also
mentioned. Some graphs for skew distributions are included. Resulépplied to two
practical problems. Shannon and Renyi entropies as well as Fisloemition are also
obtained.
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1 Introduction

Skew symmetric models have been considered by severatchses: Skew normal distribution is a
classical example. Skew distributions are useful is maagtpral situations (see, for example Rathie
et al., 2008). For completeness of this paper, a definitiagivien in this section. The probability
density function of standard normal distribution will bendéed byg(x) and its distribution function
by ®(x). The error function (Kotz et al., 1994) é&tf is defined as (Maclaurin series)

_1)7L(Z)2n+1

_ 2 : —t2 5, 2 Oo(
erf[z]:ﬁ/o e dt—ﬁgm. (1.2)

In this paper we generalized Azzalini skew distribution atdained the moment generating
function, and distribution oX 2 in Section 2. Two applications, with real data, are givenect®n
2.3. Feriandez and Steel skew distribution is generalized in Se@iamd some properties, in-
cluding Shannon entropy, Renyi entropy and Fisher infolonagre given. Results for asymmetric
normal distribution are also given. Several graphs are dtavdemonstrate the applicability of the
distributions.
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2 Generalization of Azzalini skew distributions
Azzalini (1985) obtained the following density functiorr fekew distribution
hz) =2f(x)G(w(z)), x € (—00,00), (2.1)

where f(z) is symmetric (about the origin) probability density furctiof a random variable X,
G(z) is any cumulative distribution function of another symre¢about the origin) density func-
tion g(x), andw(x) is an odd function of.

For f(z) = ¢(z) andG(cz) = ®(cx), we obtain the well known skew normal density function
(Azzalini, 1985)) given by

h(z) = 2¢(x)®(cx), c¢,x € (—00,00). (2.2)

Generalizing with a position and a scale parametemdo, we get

2 x—p T — U
Sk(z) = —p(———)P(c— ,x € (—00,00). 2.3
(1) = Z6(——)B(c——=), .z € (~00,00) (23)
The density function (2.2) with = p(1 — p?)~?, can also be obtained from a bivariate normal
density function. Let X, Y") be distributed a8V, (1, ) with mean vectop: = (0,0)” and variance-
covariance matrixz = (1 — p)I + pJ, wherep is the correlation coefficient. It is easy to prove that

h(z) = P{X|Y > 0} = 2¢(x)® (m ) (2.4)

Thus we can use the bivariate normal distribution to createva class of Skew distributions
generalizing (2.4) by taking, b € R, a < b, such that,

P({a<Y <b}, X)
P{a<Y <b})

h(z) = P{X]a <Y < b} =

o) b 1 y—pe )
_P({a<Y<b})/a 1/—2W(1_p2)eXp{_2< 1—p2> }dy

and using the substitution= (y — pz)/+/1 — p?, we get

b— px a— px -1
h(z) =¢(x)< @ -o (b)) — @(a . 2.5
(x) ¢<>{ [m] [ 1_p2]}{ (b) ~ ®(a)} (25)

Clearly, fora = 0 andb — oo, (2.5) reduces to (2.4). Similarly, fér= 0 anda — —oo (2.5)
reduces to (2.4) witl replaced by-p.
The moment generating function for (2.5) is given by

M = g ey ] et A (26
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Or equivalently:

Ml = expitt/2) ST

where the error function is defined in (1.1).
The density functiork(z) in (2.5) is plotted for two sets of values of a,b gnth Figure 1, and
compared with the N(0,1) distribution.

h(x) h(x)

Figure 1:Skew-normal witlh = —1, b = 2 andp = 0.95 (left) and Skew-normal with = 1,5 = 2
andp = 0.95 (right). Both compared witlv (0, 1) distribution.

2.1 X, Distribution: generalization of chi-square distribution

It is well known that if X is a random variable with skew normal distribution, tHén= X? is a
random variable with Chi-Square distribution (Lin et al0(2)). So, letX be a random variable
with distribution given by (2.5), thed = X?2 is a random variable with distribution

dx dx
o) =) || ||
d d
:P(X|{a<Y<b})‘d:C +P(X[{a<Y <b}) di“"
3 2| gz

s ool ] ol

T Pla<Y <b}) 2z 2m(1 - p?) "
e e = =

Relations

If X ~ SkQ(a,b,p)andZ ~ x?, then
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() a =0andb - co = X — Z (convergence in distribution).
(i) b =0anda - —o0o = X — Z (convergence in distribution).
(i) p =0 = X — Z (convergence in distributionya, b € R

2.2 Other generalizations

There are other two generalizations that we will discuss rsing Eq.(2.5) withe = k andb — oo,
we get the extended skew-normal distribution which wasistuty Birnbaum (see Pourahmadi,
2007).

Skly] = o()@ | L= (1 - (k). (2.9
1—p?
The mean of this distribution is given by
_ plexp{—k*/2}]
ElY] = VIrb( k) (2.10)
Using the Eq.(2.6) we get
My[t] = ‘w {1 —erf [k\_/;tH . (2.11)
Or equivalently
—k
Mylt] = exp{t2/2}% (2.12)
Using the Eq.(2.5) witlh — —oc andb = k, we get
Skly] = 6(y)® [%l (@ (k)" (2.13)
The mean of this distribution is
_ plexp{=F/2}]
ElY] = N (2.14)
Using the Eq.(2.6), we get
My [t] = “5;)’5(21!)2} {Herf[k\_@pt”. (2.15)
Or equivalently
My [t] = exp{t? /2}M (2.16)

(k)

2.3 Applications

Two applications involving real data are detailed is thigties.
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2.3.1 Temperature of the ecological reserve of IBGE (Brazil

We have used the data of the maximum temperature in the dioggtal station of the IBGE eco-
logical reserve in 1985 (IBGE web sitéittp://www.recor.org.br/Estacao/estacao.htmWWe have
plotted the Q-Q plot of the data in Figure 2, in which we cantbe¢ the normal distribution does
not provide a good approximation because the left tail ofréa distribution of the data is longer
than the tail of the normal distribution.

We can see that the normal distribution does not provide diséfit because of the skewness of
the data. Thus, estimating the paramejers andc in Eq.(2.3) for the data withi = 28.155517,
6 = 3.276348 and¢ = —1.883828, we get a better approximation than using the normal distrib
tion. We can see from Figures 3 that the skew-normal has erbigttto the empirical distribution.

For the normal distribution the average deviation abouethgirical distribution i€.0257 and
the maximum deviation i8.0683. For the Skew normal distribution the average deviatioruatice
empirical distribution i€.01499 and the maximum deviation 50561. We used the Kolmogorov-
Smirnov goodness of fit test to check the adjustment at 1% &mdfsignificance.

2.3.2 Evaporation Data of the ecological reserve of IBGE (Bazil)

We used the evaporation data (mm) in the climatologicaicstaif the IBGE ecological reserve in
1988 for this application (IBGE web site). This data is vekgwed, so we fitted this data with the
generalized skew normal distribution given by (2.5) aloritihhwne location parameter and one scale
parameter.

To estimate the parameters, we first adjusted the skew naistebution and then, using these
initial parameters, we computationally maximized thelllkeod function, to a few decimal places

Normal Q-Q Plot Skew Normal Q-Q Plot

26 28 30 32
1 1 1

Sample Quantiles
24
1

Sample Quantiles

22
1

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1

Theoretical Quantiles Theoretical Quantiles

Figure 2: Quantile-Quantile Plot of the normal distribution (lefthd skew normal distribution
(right)
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Figure 3:Fit for the normal distribution (Left) and skew normal disuition (right).
of precision. This gave the estimation of the parameters as0.3, 6 = 4.1, @ = 0.2, b = 2.8,
p = 0.99. Figure 4 (left) shows the fit of the generalized skew nornigtrithution for the empirical
distribution of the data, and Figure 4 (right) shows the fitred normal distribution. The average
deviation about the empirical distributionis214 10~2, the maximum deviation i$.087 10~2 and

the mean square error221 10~*. We used the Kolmogorov-Smirnov goodness of fit test to check
the adjustment at 1% and 5% of significance.

h(x)

0.8-
06r
04r

02r

X X

Figure 4:Fit of the generalized skew normal distribution (left) aratmal distribution (right)

3 Generalization of Fermandez and Steel skew distribution

Ferrandez and Steel (1998) introduced the following exprestsme also Steel et al., 2006) for
generating skew density functions

2

Mz) = a+1l/a

f(zasoml=ly, (3.1)
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wherea > 0,z € (—o0, 00), andf(z) is any symmetric density function.
The skew density in (3.1) is generalized here by taking

1t|z|/z  1-|z|/z

h(z) =cf(za™2 b2 ). (3.2)

wherea,b > 0,2 € (—o0,00), andf(x) is any symmetric density function. Singéz) is a density
function, hence we get
2ab

c:a+b. (3.3)

Clearly, fora = b=! = «, (3.2) reduces to (3.1). If we take= b in (3.2), we arrive at the following
symmetric density functioh(z) = af(ax), wheref(x) is a symmetric density function of. The
n'" moment about the origin for (3.2) is given by

ny __ 2((71)n'an+1 +bn+1) > n
E(X™) = (a T D))" /o 2" f(z)dz. (3.4)

The cumulative distribution function for (3.2) is

2aF (bx)/(a+b),z <0

H(x) = 9ab {21})+(11(F(am)—1/2)} /(a+1b),z>0
:lﬁﬂ[ip(;x—a®)+iF(gw+aw)—;J’x€@“%W> (35)

whereF'(z) is the distribution function corresponding fdx).

3.1 Renyi and Shannon entropies and Fisher information

The Shannon entropy (Thomas et al., 2006) for (3.2) is
Sh(X) = —/ h(z).Inh(z)dz = Shy(X) —In(c), (3.6)

whereSh(X) is the Shannon entropy for the symmetric density funcfion), andc is as given in
(3.3). The Renyi entropy (Thomas et al., 2006) for (3.2) is

1
l—«

Ro(X) = mvﬁmmﬂzaapm@ 3.7)

— 00

whereR;(X) is the Renyi entropy for the symmetric density functitx).
The Fisher information (Thomas et al., 2006) for (3.2) widelpends on a parameteof f(x)
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I0)=E

d 2
:/ c(ddelnf(xaH|2|/ izl )> f(a:am’z‘/ izl o

:c/o (C;fglnf(xb))Qf(a:b)dx—l—c/Ooc (;lglnf(xa))Qf(xa)dx _IF), (3.8)

— 0o

wherel F() is the Fisher information for the parameteof the symmetric density functiofi(z).
The Fisher information for the parameteof the distributionh(x) given by (3.2) is

2

I(a) = k* + ch/ooo diaf(ax)dx + C/OOO L;la In f(ax)} f(ax)dz, (3.9)

wherek = b/(a(a + b)) andc is given by (3.3). The Fisher information for the parameétef the
distributionk(x) given by (3.2) is

0

0 2
%f(bx)dm + c/ [jb In f(bx)] f(bx)dx, (3.10)

— 00

I(b) =k + 2k:c/

— 00

wherek = b/(a(a + b)) andc is given by (3.3).
The Fisher information foX', of the distribution:(z) given by (3.2), is

I(X) = abl F(X), (3.11)

wherel F'(X) is the Fisher information for the symmetric density funotj{z).

3.2 Asymmetric normal distribution

Taking the normal distribution in (3.2), we have the follagiasymmetric normal distribution

2ab 1'2 1+|z|/zpl—|z|/x
r) = —F——_¢€ ——a I/ ||/ . 3.12
(2) a0 P72 (3.12)

A few graphs for the asymmetric normal density function 23.&nd its distribution function ob-
tained using (3.5), for certain values®andb, are given in Figures 5 and 6. For a=b, (3.12) reduces
to the normal symmetric density function

h

h(z) = ad(azx) = ae_””2a2/2/\/ﬂ, a>0,z € (—00,00). (3.13)
Then™ moments for (3.12), utilizing (3.4), is given by

wy _ 2MA((=0)ma™ T 0 T((n 4 1)/2)
B(X") = PR N (3.14)
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The Moment Generating function for (3.12) is

a 2 2 t b 2 2 t
Mx(t) = — et /2 {1—erf[” /2 [1 erf{” 3.15
x() = e V)] Tase’ T Vo #19

or equivalently
2 > 2b
il 6t2/2b2 P

7 (—t/b) + ——€' 2" ®(t/a). (3.16)

Mx (t) =
x(t) a+b

The mean and variance are given by

2(b — > pe—a’/2 2(b —
Bx) = Ab-a) / ve " gy = 2= ) (3.17)
ab o Vor V2mab
1 [a®+b3  2(b—a)?
Var(X) = - . 3.18
ar(X) a?b? { a+bd T } (3.18)
Consider that we have a sample, X5, ..., X,, and we want to estimateandb. Let X1, X5,..., X,/
be the negative observations akig. , 1, . . . , X,, the positive observations. Thus, the maximum like-
lihood estimator (Bickel et al., 2007&)for « is the solution of the equation
@ Y XP+a* » X7 =nb. (3.19)
i=n’+1 i=n'+1
The maximum likelihood estimatarfor b is the solution of the equation
B> X7P+b%a) X? =na. (3.20)
=0 =0

Hix]

Figure 5:Asymmetric normal (PDF and CDR)= 3 andb = 1
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h(x) Hix]
0.7 1.0+ o —
9st 0.8F

par
0.6

Figure 6:Asymmetric normal (PDF and CDF)= 1 andb = 3

3.2.1 Renyi and Shannon entropies and Fisher information fothe asymmetric normal dis-
tribution

The Shannon Entropy for the distribution given by (3.12)ng$3.6), is
Sh(X) = % In(27e) — In(c). (3.22)

The Renyi Entropy for this distribution, using (3.7) is

Ra(X) = %m(%) - 2(1?(_0‘)@ = no). (3.22)

The Fisher information fos, b and X, using (3.12), (3.9), (3.10) and (3.11) respectively, are

b(3a + 2b)  a(3b+ 2a)

@)= Garnr 0= ppyap (X)=ab (3.23)

We calculated the relative Fisher informationaféz, 2008) which is defined for two probability
densitiesp; (X) andps(X) by

I(p1,pa) :/Rfl(x) [diln<jz;g;>rdx. (3.24)

Let p; (X)) be the distribution given by (3.12) with parametersndb andp, (X ) be the distribution
given by (3.12) with parametetsandd, thus we have the relative Fisher information as

a® (b2 — d? 2+b3 a? — 2 2

We have plotted the Relative Fisher information functiontf@ parameters, b, c, d in Figure 7 and
Figure 8 .
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Figure 7:1(p1,p2) forb=2,c=1,d=1,andI(py,p2)fora=1,¢=2,d =0.5
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Figure 8:1(p1,p2) fora =6,b=2,d=2,andI(py,p2)fora=2,b=5,c=1

3.2.2 Distribution of X? (another generalization for the chi-square distribution)

If the random variabléX has distributiorh(z), thenY = X? has probability density function, mean,
moments, cumulative distribution function and moment getireg function given, respectively, by

e PDF:
ab

aq(y) = m[f(a\/@ + f(bvy)l, v €(0,00). (3.26)
e Mean: 5
a
7a2b2(a ) (3.27)
e Moments: onr| 1/2] )
n _ " n + a
e CDF:

AQ(y) = @ Jlr D {b. erf [a\\//g] + a. erf {b\\//ﬂ } . y€(0,00). (3.29)
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0.8r
0.6
0.4r

0.2

L L L L L
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Figure 9:aq(y) and AQ(y) fora =8 andb =1

e Moment Generating Function:

- ab { 1 N 1
Ta+b) \Vad—2t VR — 2t

We plotted the density function given by (3.26) and the diation function given by (3.29) in
Figure 9.

My (t

} ,  t<a?/2andt < b?/2. (3.30)
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