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SUMMARY

In this paper, two different mathematical methods are used to derive skew distributions.
The results generalize Azzalini (1985) and Fernández and Steel (1998) skew distributions
generating new results in general, and skew normal distribution in particular. Some mathe-
matical properties, such as n-th moments, distribution function, moments generating func-
tion, are also given for the generalizations. Some known and new special cases are also
mentioned. Some graphs for skew distributions are included. Results areapplied to two
practical problems. Shannon and Renyi entropies as well as Fisher information are also
obtained.

Keywords and phrases:Generalization of skew normal distribution, Generalization of
Ferńandez and Steel distribution, Information theory
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1 Introduction

Skew symmetric models have been considered by several researchers. Skew normal distribution is a
classical example. Skew distributions are useful is many practical situations (see, for example Rathie
et al., 2008). For completeness of this paper, a definition isgiven in this section. The probability
density function of standard normal distribution will be denoted byφ(x) and its distribution function
by Φ(x). The error function (Kotz et al., 1994) erf[x] is defined as (Maclaurin series)

erf[z] ≡ 2√
π

∫ z

0

e−t2dt =
2√
π

∞
∑

n=0

(−1)n(z)2n+1

n!(2n+ 1)
. (1.1)

In this paper we generalized Azzalini skew distribution andobtained the moment generating
function, and distribution ofX2 in Section 2. Two applications, with real data, are given in Section
2.3. Ferńandez and Steel skew distribution is generalized in Section3 and some properties, in-
cluding Shannon entropy, Renyi entropy and Fisher information, are given. Results for asymmetric
normal distribution are also given. Several graphs are drawn to demonstrate the applicability of the
distributions.
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2 Generalization of Azzalini skew distributions

Azzalini (1985) obtained the following density function for skew distribution

h(x) = 2f(x)G(w(x)), x ∈ (−∞,∞), (2.1)

wheref(x) is symmetric (about the origin) probability density function of a random variable X,
G(x) is any cumulative distribution function of another symmetric (about the origin) density func-
tion g(x), andw(x) is an odd function ofx.

For f(x) = φ(x) andG(cx) = Φ(cx), we obtain the well known skew normal density function
(Azzalini, 1985)) given by

h(x) = 2φ(x)Φ(cx), c, x ∈ (−∞,∞). (2.2)

Generalizing with a position and a scale parameter,µ andσ, we get

Sk(x) =
2

σ
φ(

x− µ

σ
)Φ(c

x− µ

σ
), c, x ∈ (−∞,∞). (2.3)

The density function (2.2) withc = ρ(1− ρ2)−.5, can also be obtained from a bivariate normal
density function. Let(X,Y ) be distributed asN2(µ,Σ) with mean vectorµ = (0, 0)T and variance-
covariance matrixΣ = (1− ρ)I+ ρJ, whereρ is the correlation coefficient. It is easy to prove that

h(x) = P{X|Y > 0} = 2φ(x)Φ

(

ρ
√

1− ρ2
x

)

. (2.4)

Thus we can use the bivariate normal distribution to create anew class of Skew distributions
generalizing (2.4) by takinga, b ∈ R, a < b, such that,

h(x) = P{X|a < Y < b} =
P ({a < Y < b}, X)

P ({a < Y < b})

=
φ(x)

P ({a < Y < b})

∫ b

a

1
√

2π(1− ρ2)
exp







−1

2

(

y − ρx
√

1− ρ2

)2






dy

and using the substitutionz = (y − ρx)/
√

1− ρ2, we get

h(x) = φ(x)

{

Φ

[

b− ρx
√

1− ρ2

]

− Φ

[

a− ρx
√

1− ρ2

]}

{Φ(b)− Φ(a)}−1
. (2.5)

Clearly, fora = 0 andb → ∞, (2.5) reduces to (2.4). Similarly, forb = 0 anda → −∞ (2.5)
reduces to (2.4) withρ replaced by−ρ.

The moment generating function for (2.5) is given by

MX [t] =
exp{t2/2}

2(Φ(b)− Φ(a))

[

erf

[

b− ρt√
2

]

− erf

[

a− ρt√
2

]]

. (2.6)
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Or equivalently:

MX [t] = exp{t2/2}Φ(b− ρt)− Φ(a− ρt)

Φ(b)− Φ(a)
. (2.7)

where the error function is defined in (1.1).
The density functionh(x) in (2.5) is plotted for two sets of values of a,b andρ in Figure 1, and

compared with the N(0,1) distribution.
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Figure 1:Skew-normal witha = −1, b = 2 andρ = 0.95 (left) and Skew-normal witha = 1, b = 2
andρ = 0.95 (right). Both compared withN(0, 1) distribution.

2.1 X2
(a,b) Distribution: generalization of chi-square distribution

It is well known that ifX is a random variable with skew normal distribution, thenY = X2 is a
random variable with Chi-Square distribution (Lin et al. (2004)). So, letX be a random variable
with distribution given by (2.5), thenZ = X2 is a random variable with distribution

g(z) = h(x)

∣

∣

∣

∣

dx

dz

∣

∣

∣

∣

x=
√
z

+ h(x)

∣

∣

∣

∣

dx

dz

∣

∣

∣

∣

x=−√
z

= P (X|{a < Y < b})
∣

∣

∣

∣

dx

dz

∣

∣

∣

∣

x=
√
z

+ P (X|{a < Y < b})
∣

∣

∣

∣

dx

dz

∣

∣

∣

∣

x=−√
z

=
1

P ({a < Y < b})
φ(
√
z)

2
√
z

∫ b

a

(

exp
[

− 1
2(1−ρ2) (y − ρ

√
z)
]

+ exp
[

− 1
2(1−ρ2) (y + ρ

√
z)
])

√

2π(1− ρ2)
dy

SkQ[z] =

φ[
√
z]

(

Φ

[

b−ρ
√
z√

1−ρ2

]

− Φ

[

a−ρ
√
z√

1−ρ2

]

+Φ

[

b+ρ
√
z√

1−ρ2

]

− Φ

[

a+ρ
√
z√

1−ρ2

])

2
√
z(Φ[b]− Φ[a])

. (2.8)

Relations

If X ∼ SkQ(a, b, ρ) andZ ∼ χ2
1, then
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(i) a = 0 andb → ∞ ⇒ X → Z (convergence in distribution).
(ii) b = 0 anda → −∞ ⇒ X → Z (convergence in distribution).
(iii) ρ = 0 ⇒ X → Z (convergence in distribution),∀a, b ∈ ℜ

2.2 Other generalizations

There are other two generalizations that we will discuss now. Using Eq.(2.5) witha = k andb → ∞,
we get the extended skew-normal distribution which was studied by Birnbaum (see Pourahmadi,
2007).

Sk[y] = φ(y)Φ

[

ρy − k
√

1− ρ2

]

(1− Φ(k))−1. (2.9)

The mean of this distribution is given by

E[Y ] =
ρ[exp{−k2/2}]√

2πΦ(−k)
. (2.10)

Using the Eq.(2.6) we get

MY [t] =
exp{t2/2}
2Φ(−k)

[

1− erf

[

k − ρt√
2

]]

. (2.11)

Or equivalently

MY [t] = exp{t2/2}Φ(ρt− k)

Φ(−k)
. (2.12)

Using the Eq.(2.5) witha → −∞ andb = k, we get

Sk[y] = φ(y)Φ

[

k − ρy
√

1− ρ2

]

(Φ(k))−1. (2.13)

The mean of this distribution is

E[Y ] = −ρ[exp{−k2/2}]√
2πΦ(k)

. (2.14)

Using the Eq.(2.6), we get

MY [t] =
exp{t2/2}
2Φ(k)

[

1 + erf

[

k − ρt√
2

]]

. (2.15)

Or equivalently

MY [t] = exp{t2/2}Φ(k − ρt)

Φ(k)
. (2.16)

2.3 Applications

Two applications involving real data are detailed is this section.
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2.3.1 Temperature of the ecological reserve of IBGE (Brazil)

We have used the data of the maximum temperature in the climatological station of the IBGE eco-
logical reserve in 1985 (IBGE web site:http://www.recor.org.br/Estacao/estacao.html). We have
plotted the Q-Q plot of the data in Figure 2, in which we can seethat the normal distribution does
not provide a good approximation because the left tail of thereal distribution of the data is longer
than the tail of the normal distribution.

We can see that the normal distribution does not provide the best fit because of the skewness of
the data. Thus, estimating the parametersµ, σ andc in Eq.(2.3) for the data witĥµ = 28.155517,
σ̂ = 3.276348 and ĉ = −1.883828, we get a better approximation than using the normal distribu-
tion. We can see from Figures 3 that the skew-normal has a better fit to the empirical distribution.

For the normal distribution the average deviation about theempirical distribution is0.0257 and
the maximum deviation is0.0683. For the Skew normal distribution the average deviation about the
empirical distribution is0.01499 and the maximum deviation is0.0561. We used the Kolmogorov-
Smirnov goodness of fit test to check the adjustment at 1% and 5% of significance.

2.3.2 Evaporation Data of the ecological reserve of IBGE (Brazil)

We used the evaporation data (mm) in the climatological station of the IBGE ecological reserve in
1988 for this application (IBGE web site). This data is very skewed, so we fitted this data with the
generalized skew normal distribution given by (2.5) along with one location parameter and one scale
parameter.

To estimate the parameters, we first adjusted the skew normaldistribution and then, using these
initial parameters, we computationally maximized the likelihood function, to a few decimal places
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Figure 2: Quantile-Quantile Plot of the normal distribution (left) and skew normal distribution
(right)
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Figure 3:Fit for the normal distribution (Left) and skew normal distribution (right).

of precision. This gave the estimation of the parameters asµ̂ = 0.3, σ̂ = 4.1, â = 0.2, b̂ = 2.8,
ρ̂ = 0.99. Figure 4 (left) shows the fit of the generalized skew normal distribution for the empirical
distribution of the data, and Figure 4 (right) shows the fit ofthe normal distribution. The average
deviation about the empirical distribution is1.214 10−2, the maximum deviation is4.087 10−2 and
the mean square error is2.21 10−4. We used the Kolmogorov-Smirnov goodness of fit test to check
the adjustment at 1% and 5% of significance.
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Figure 4:Fit of the generalized skew normal distribution (left) and normal distribution (right)

3 Generalization of Ferńandez and Steel skew distribution

Ferńandez and Steel (1998) introduced the following expression(See also Steel et al., 2006) for
generating skew density functions

h(x) =
2

α+ 1/α
f(xαsign[x]). (3.1)
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whereα > 0, x ∈ (−∞,∞), andf(x) is any symmetric density function.

The skew density in (3.1) is generalized here by taking

h(x) = cf(xa
1+|x|/x

2 b
1−|x|/x

2 ). (3.2)

wherea, b > 0, x ∈ (−∞,∞), andf(x) is any symmetric density function. Sinceh(x) is a density
function, hence we get

c =
2ab

a+ b
. (3.3)

Clearly, fora = b−1 = α, (3.2) reduces to (3.1). If we takea = b in (3.2), we arrive at the following
symmetric density functionh(x) = af(ax), wheref(x) is a symmetric density function ofX. The
nth moment about the origin for (3.2) is given by

E(Xn) =
2((−1)n.an+1 + bn+1)

(a+ b)(ab)n

∫ ∞

0

xnf(x)dx. (3.4)

The cumulative distribution function for (3.2) is

H(x) =











2aF (bx)/(a+ b), x < 0

2ab

[

1

2b
+

1

a
(F (ax)− 1/2)

]

/(a+ b), x > 0

=
2ab

a+ b

[

1

b
F

(

b

2
(x− |x|)

)

+
1

a
F
(a

2
(x+ |x|)

)

− 1

2a

]

, x ∈ (−∞,∞). (3.5)

whereF (x) is the distribution function corresponding tof(x).

3.1 Renyi and Shannon entropies and Fisher information

The Shannon entropy (Thomas et al., 2006) for (3.2) is

Sh(X) = −
∫ ∞

−∞
h(x). lnh(x)dx = Shf (X)− ln(c), (3.6)

whereShf (X) is the Shannon entropy for the symmetric density functionf(x), andc is as given in
(3.3). The Renyi entropy (Thomas et al., 2006) for (3.2) is

Rα(X) =
1

1− α
ln

[
∫ ∞

−∞
[h(x)]αdx

]

= Rf (X)− ln(c), (3.7)

whereRf (X) is the Renyi entropy for the symmetric density functionf(x).

The Fisher information (Thomas et al., 2006) for (3.2) whichdepends on a parameterθ of f(x)
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is

I(θ) = E

[

(

d

dθ
lnh(x)

)2
]

=

∫ ∞

∞
c

(

d

dθ
ln f(xa

1+|x|/x
2 b

1−|x|/x
2 )

)2

f(xa
1+|x|/x

2 b
1−|x|/x

2 )dx

= c

∫ 0

−∞

(

d

dθ
ln f(xb)

)2

f(xb)dx+ c

∫ ∞

0

(

d

dθ
ln f(xa)

)2

f(xa)dx = IF (θ), (3.8)

whereIF (θ) is the Fisher information for the parameterθ of the symmetric density functionf(x).
The Fisher information for the parametera of the distributionh(x) given by (3.2) is

I(a) = k2 + 2kc

∫ ∞

0

d

da
f(ax)dx+ c

∫ ∞

0

[

d

da
ln f(ax)

]2

f(ax)dx, (3.9)

wherek = b/(a(a+ b)) andc is given by (3.3). The Fisher information for the parameterb of the
distributionh(x) given by (3.2) is

I(b) = k2 + 2kc

∫ 0

−∞

d

db
f(bx)dx+ c

∫ 0

−∞

[

d

db
ln f(bx)

]2

f(bx)dx, (3.10)

wherek = b/(a(a+ b)) andc is given by (3.3).
The Fisher information forX, of the distributionh(x) given by (3.2), is

I(X) = abIF (X), (3.11)

whereIF (X) is the Fisher information for the symmetric density function f(x).

3.2 Asymmetric normal distribution

Taking the normal distribution in (3.2), we have the following asymmetric normal distribution

h(x) =
2ab√

2π(a+ b)
exp

[

−x2

2
a1+|x|/xb1−|x|/x

]

. (3.12)

A few graphs for the asymmetric normal density function (3.12) and its distribution function ob-
tained using (3.5), for certain values ofa andb, are given in Figures 5 and 6. For a=b, (3.12) reduces
to the normal symmetric density function

h(x) = aφ(ax) = ae−x2a2/2/
√
2π, a > 0, x ∈ (−∞,∞). (3.13)

Thenth moments for (3.12), utilizing (3.4), is given by

E(Xn) =
2n/2((−1)n.an+1 + bn+1)

(a+ b)(ab)n
Γ((n+ 1)/2)√

π
. (3.14)
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The Moment Generating function for (3.12) is

MX(t) =
a

a+ b
et

2/2b2
[

1− erf

[

t√
2b

]]

+
b

a+ b
et

2/2a2

[

1 + erf

[

t√
2a

]]

(3.15)

or equivalently

MX(t) =
2a

a+ b
et

2/2b2Φ(−t/b) +
2b

a+ b
et

2/2a2

Φ(t/a). (3.16)

The mean and variance are given by

E(X) =
2(b− a)

ab

∫ ∞

0

xe−x2/2

√
2π

dx =
2(b− a)√

2πab
(3.17)

V ar(X) =
1

a2b2

[

a3 + b3

a+ b
− 2(b− a)2

π

]

. (3.18)

Consider that we have a sampleX1, X2, . . . , Xn and we want to estimatea andb. LetX1, X2, . . . , Xn′

be the negative observations andXn′+1, . . . , Xn the positive observations. Thus, the maximum like-
lihood estimator (Bickel et al., 2007)̂a for a is the solution of the equation

â3
n
∑

i=n′+1

X2
i + â2b

n
∑

i=n′+1

X2
i = nb. (3.19)

The maximum likelihood estimator̂b for b is the solution of the equation

b̂3
n′
∑

i=0

X2
i + b̂2a

n′
∑

i=0

X2
i = na. (3.20)
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Figure 5:Asymmetric normal (PDF and CDF)a = 3 andb = 1
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Figure 6:Asymmetric normal (PDF and CDF)a = 1 andb = 3

3.2.1 Renyi and Shannon entropies and Fisher information for the asymmetric normal dis-
tribution

The Shannon Entropy for the distribution given by (3.12), using (3.6), is

Sh(X) =
1

2
ln(2πe)− ln(c). (3.21)

The Renyi Entropy for this distribution, using (3.7) is

Rα(X) =
1

2
ln(2π)− ln(α)

2(1− α)
− ln(c). (3.22)

The Fisher information fora, b andX, using (3.12), (3.9), (3.10) and (3.11) respectively, are

I(a) =
b(3a+ 2b)

a2(a+ b)2
, I(b) =

a(3b+ 2a)

b2(b+ a)2
, I(X) = ab. (3.23)

We calculated the relative Fisher information (Yáńez, 2008) which is defined for two probability
densitiesρ1(X) andρ2(X) by

I(p1, p2) =

∫

R

f1(x)

[

d

dx
ln

(

f1(x)

f2(x)

)]2

dx. (3.24)

Let ρ1(X) be the distribution given by (3.12) with parametersa andb andρ2(X) be the distribution
given by (3.12) with parametersc andd, thus we have the relative Fisher information as

I(ρ1, ρ2) =
a3
(

b2 − d2
)2

+ b3
(

a2 − c2
)2

a2b2(a+ b)
. (3.25)

We have plotted the Relative Fisher information function for the parametersa, b, c, d in Figure 7 and
Figure 8 .
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Figure 7:I(ρ1, ρ2) for b = 2, c = 1, d = 1, andI(ρ1, ρ2) for a = 1, c = 2, d = 0.5
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Figure 8:I(ρ1, ρ2) for a = 6, b = 2, d = 2, andI(ρ1, ρ2) for a = 2, b = 5, c = 1

3.2.2 Distribution of X2 (another generalization for the chi-square distribution)

If the random variableX has distributionh(x), thenY = X2 has probability density function, mean,
moments, cumulative distribution function and moment generating function given, respectively, by

• PDF:

aq(y) =
ab

(a+ b)
√
y
[f(a

√
y) + f(b

√
y)], y ∈ (0,∞). (3.26)

• Mean:
a3 + b3

a2b2(a+ b)
. (3.27)

• Moments:

E(Xn) =
2nΓ[n+ 1/2]

(a+ b)
√
π

(

a

b2n
+

b

a2n

)

. (3.28)

• CDF:

AQ(y) =
1

(a+ b)

{

b. erf

[

a
√
y√
2

]

+ a. erf

[

b
√
y√
2

]}

, y ∈ (0,∞). (3.29)
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Figure 9:aq(y) andAQ(y) for a = 8 andb = 1

• Moment Generating Function:

MY (t) =
ab

(a+ b)

{

1√
a2 − 2t

+
1√

b2 − 2t

}

, t < a2/2 andt < b2/2. (3.30)

We plotted the density function given by (3.26) and the distribution function given by (3.29) in
Figure 9.
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