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SUMMARY

A problem related to the estimation of population mean on the current occasion based on
the samples selected over two occasions is investigated. Some classes of estimators for es-
timating the population mean at the current occasion in two-occasion successive (rotation)
sampling have been proposed. Properties of the proposed classes of estimators have been
studied. Optimum replacement policies are discussed. Estimators in the proposed classes
are compared with (i) the sample mean estimator when no information is used from the
previous occasion (ii) the optimum estimator which is a linear combination of the means of
the matched and unmatched portions of the sample at the current occasion and (iii) a chain
type regression to ratio estimator when auxiliary information is used at both the occasions.
Empirical comparisons are shown to justify the propositions of the estimators and suitable
recommendations are made.
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1 Introduction

In many social, demographic, industrial and agricultural surveys, the same population is sampled
repeatedly and the same study variable is measured on each occasion so that development over
time can be followed. For examples, labor force surveys are conducted monthly to estimate the
number of people in employment, data on the prices of goods are collected monthly to determine a
consumer price index, political opinion surveys are conducted at regular intervals to know the voter
preferences, etc. In such studies, successive (rotation) sampling plays an important role to provide
the reliable and the cost effective estimates of real life (practical) situations at different successive
points of time (occasions). It also provides the effective (in terms of cost and precision) estimates of
the patterns of change over the period of time.

The problem of successive (rotation) sampling with a partial replacement of sampling units was
first considered by Jessen (1942) in the analysis of survey data related to agriculture farm. He pio-
neered using the entire information collected in the previous investigations (occasions). The theory
of successive (rotation) sampling was further extended by Patterson (1950), Rao and Graham (1964),
Gupta (1979), Das (1982) and Chaturvedi and Tripathi (1983), among others. Sen (1971) applied
this theory with success in designing the estimator for the population mean on the current occasion
using information on two auxiliary variables available on previous occasion. Sen (1972, 1973) ex-
tended his work for several auxiliary variables. Singh et al. (1991) and Singh and Singh (2001)
used the auxiliary information available only at the current occasion and proposed estimators for the
current population mean in two-occasion successive (rotation) sampling. Singh (2003) generalized
their work for h-occasions successive sampling. Feng and Zou (1997) and Biradar and Singh (2001)
used the auxiliary information on both the occasions for estimating the current population mean in
successive sampling.

In many situations, information on an auxiliary variable may be readily available on the first as
well as on the second occasions; for examples, tonnage (or seat capacity) of each vehicle or ship is
known in survey sampling of transportation, number of beds in different hospitals may be known
in hospital surveys, number of polluting industries and vehicles are known in environmental survey,
nature of employment status, educational status, food availability and medical aids of a locality are
well known in advance for estimating the various demographic parameters in demographic surveys.
Many other situations in biological (life) sciences could be explored to show the benefits of the
present study. Utilizing the auxiliary information on both the occasions, Singh (2005), Singh and
Priyanka (2006, 2007, 2008), Singh and Karna (2009a,b) have proposed several estimators for esti-
mating the population mean at the current (second) occasion in two-occasion successive (rotation)
sampling. Following the above works and utilizing the information on a stable auxiliary variable
readily available on both the occasions, the objective of the present work is to propose some more
performing and relevant chain-type estimators for estimating the current population mean in two-
occasion successive (rotation) sampling. Properties of the proposed estimators have been studied
through empirical means of comparison and subsequently suitable recommendations are made.
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2 Sample structures and notations

Let U = (U1, U2, . . . , UN ) be the finite population of N units, which has been sampled over two
occasions. The character under study is denoted by x(y) on the first (second) occasion, respectively.
It is assumed that the information on an auxiliary variable z(stable over occasion), whose population
mean is known, is available on both the occasions and is closely related(positively correlated)to x
and y on the first and second occasions respectively. Consider a simple random sample (without
replacement) of size n is drawn on the first occasion. A random sub-sample of size m = nλ is
retained (matched) from the sample selected on the first occasion for its use on the second occasion,
while a fresh sample (un-matched sample) of size u = (n − m) = nµ is selected on the second
occasion from the entire population by simple random sampling (without replacement) method so
that the sample size on the second occasion is also n. λ and µ ( λ+µ =1) are the fractions of the
matched and fresh sample, respectively, at the current(second) occasion. The values of λ or µ should
be chosen optimally. Hence, onwards, we use the following notations for their further use:
X̄ , Ȳ , Z̄ : The population means of x, y and z respectively.
x̄n, x̄m, ȳu, ȳm, z̄u, z̄n, z̄m:The sample means of the respective variables based on the sample sizes
shown in suffices.

ρyx, ρyz , ρxz : The correlation coefficient between the variables shown in suffices.
S2
x = (N − 1)−1

∑N
i=1(xi − X̄)2 : Population mean square of x.

S2
y , S2

z : Population mean squares of y, z respectively.

Syx = (N − 1)−1
∑N
i=1(yi − Ȳ )(xi − X̄) : Covariance between y and x.

Syz : Covariance between y and z.
βyx, βyz: Population regression coefficients between the variables shown in suffices.
Cx, Cy and Cz: Coefficients of variation for the variables shown in suffices.

3 Proposed classes of estimators

There are many ways for formulating the estimators. Different combinations of the available infor-
mation in successive sampling over two occasions may be used to propose the estimators for the
population mean but all such estimators may not be as precise as we desire, this require the need for
new combinations which may produce desire results.

Motivated with above arguments, we intend to propose some classes of estimators for population
mean of the study character y on the current (second) occasion. To estimate the population mean Ȳ
on the current(second)occasion, two different sets of estimators are considered. One set of estimators
Su = {T1u, T2u} based on sample of size u(= nµ) drawn afresh on the second occasion and the
second set of estimators Sm = {T1m, T2m} based on the matched sample of size m(= nλ), which
is common to both the occasions. Estimators of the sets Su and Sm are defined as:

T1u = ȳu + byz(u)(Z̄ − z̄u), T2u =
ȳu
z̄u
Z̄,

T1m = ȳ∗m + byx(m)(x̄∗n − x̄∗m), T2m = ȳ∗∗m + byx(m)(x̄∗n − x̄∗m),



24 Singh, Prasad, & Karna

where
ȳ∗m = ȳm + byz(m)(Z̄ − z̄m), ȳ∗∗m =

ȳm
z̄m

Z̄, x̄∗m =
x̄m
z̄m

Z̄ and x̄∗n =
x̄n
z̄n
Z̄,

and byz(u), byz(m), byx(m) are the sample regression coefficients between the variables shown in
suffices and based on the sample sizes shown in braces.

Considering the convex linear combinations of the estimators of sets Su and Sm, we propose the
following classes of estimators of population meanȲ at the current (second) occasion:

Tij = ϕijTiu + (1− ϕij)Tjm(i, j = 1, 2), (3.1)

where ϕij(i, j = 1, 2) are the unknown constants to be determined under certain criterion.

Remark 1. For estimating the population mean on each occasion the estimators Tiu(i = 1, 2) are
suitable, which implies that more belief on Tiu could be shown by choosing ϕij as 1(or close to
1), while for estimating the change over the occasions, the estimators Tjm(j = 1, 2) could be more
useful, so ϕij might be chosen as 0(or close to 0). For asserting both the problems simultaneously,
the suitable(optimum)choice of ϕij are required.

4 Properties of the estimators Tij(i, j = 1, 2)

Since, Tiu and Tjm are simple linear regression, ratio or chain-type ratio and regression estimators,
they are biased for population mean Ȳ . Therefore, the resulting classes of estimators Tij defined
in equation (3.1) are also biased estimators of Ȳ . The bias B(.) and mean square errors M(.)

are derived up-to order o(n−1) under the large sample approximations and using the following
transformations: ȳu = (1 + e1)Ȳ , ȳm = (1 + e2)Ȳ , x̄m = (1 + e3)X̄ , x̄n = (1 + e4)X̄ , z̄m =

(1 + e5)Z̄, z̄n = (1 + e6)Z̄, z̄u = (1 + e7)Z̄, syz(u) = (1 + e8)Syz , syz(m) = (1 + e9)Syz ,
syx(m) = (1 + e10)Syx, s2

z(u) = (1 + e11)S2
z , s2

z(m) = (1 + e12)S2
z , s2

x(m) = (1 + e13)S2
x ; Such

that E(ek) = 0 and |ek| ≤ 1∀k= 1,2,3,..., 13. Under the above transformation Tiu(i = 1, 2) and
Tjm(j = 1, 2) take the following forms:

T1u = Ȳ (1 + e1)− βyzZ̄e7(1 + e8)(1 + e11)−1 (4.1)

T2u = Ȳ (1 + e1)(1 + e7)−1 (4.2)

T1m = Ȳ (1 + e2)− βyzZ̄e5(1 + e9)(1 + e12)−1 + βyxX̄(1 + e10)

× (1 + e13)−1
{

(1 + e4)(1 + e6)−1 − (1 + e3)(1 + e5)−1
}

(4.3)

T2m = Ȳ (1 + e2)(1 + e5)−1 + βyxX̄(1 + e10)

× (1 + e13)−1
{

(1 + e4)(1 + e6)−1 − (1 + e3)(1 + e5)−1
}

(4.4)

Thus, we have the following theorems:

Theorem 1. Bias of the classes of estimators Tij(i, j = 1, 2) to the first order of approximations
are obtained as

B(Tij) = ϕijB(Tiu) + (1− ϕij)B(Tjm); (i, j = 1, 2) (4.5)
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where

B(T1u) = βyz

(
1

u
− 1

N

)(
α003

S2
z

− α012

Syz

)
(4.6)

B(T2u) = Ȳ

(
1

u
− 1

N

)(
C2
z − ρyzCyCz

)
(4.7)

B(T1m) = βyz
(

1
m −

1
N

) (
α003

S2
z
− α012

Syz

)
+ βyxX̄

(
1
m −

1
n

) {
(ρxzCxCz − C2

z

)
+

1

X̄

(
α300

S2
x

− α210

Syx

)
+

1

Z̄

(
α111

Syx
− α201

S2
x

)
} (4.8)

and B(T2m) = Ȳ
(

1
m −

1
N

) (
C2
z − ρyzCyCz

)
+ βyxX̄

(
1
m −

1
n

) {
(ρxzCxCz − C2

z

)
+

1

X̄

(
α300

S2
x

− α210

Syx

)
+

1

Z̄

(
α111

Syx
− α201

S2
x

)
} (4.9)

where αrst = E[(x− X̄)r(y − Ȳ )s(z − Z̄)t]; (r, s, t ≥ 0) are integers.

Proof. The bias of the classes of estimators Tij(i, j = 1, 2) are given by

B(Tij) = E[Tij − Ȳ ] = ϕijE(Tiu − Ȳ ) + (1− ϕij)E(Tjm − Ȳ )

= ϕijB(Tiu) + (1− ϕij)B(Tjm) (4.10)

where B(Tiu) = E(Tiu − Ȳ ) and B(Tjm) = E(Tjm − Ȳ ). Substituting the expressions of Tiu(i =

1, 2) and Tjm(j = 1, 2) from equations (4.1) - (4.4) in the equation (4.10), expanding the terms
binomially and taking expectations up to o(n−1), we have the expressions for the bias of the classes
of estimators Tij(i, j = 1, 2) as described in equation (4.5).

Theorem 2. Mean square errors of the classes of estimators Tij(i, j = 1, 2) to the first order of
approximations are obtained as

M(Tij) = ϕ2
ijM(Tiu) + (1− ϕij)2M(Tjm) + 2ϕij(1− ϕij)Cij ; (i, j = 1, 2) (4.11)

where

M(T1u) =

(
1

u
− 1

N

)
(1− ρ2

yz)S
2
y (4.12)

M(T2u) =

(
1

u
− 1

N

)
(2(1− ρyz))S2

y (4.13)

M(T1m) =

[(
1

m
− 1

N

)
(1− ρ2

yz) +

(
1

m
− 1

n

)
(2ρxzρyx(ρyz − ρyx))

]
S2
y (4.14)

M(T2m) =

[(
1

m
− 1

N

)
2(1− ρyz) +

(
1

m
− 1

n

)
(2ρxzρyx + 2ρyzρyx − 2ρxzρ

2
yx − 2ρyx)

]
S2
y

(4.15)
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C11 = −
S2
y

N
(1− ρ2

yz) (4.16)

C12 = −
S2
y

N
(1− ρ2

yz) (4.17)

C21 = −
S2
y

N
(1− ρ2

yz) (4.18)

C22 = −
S2
y

N
(2(1− ρyz)) (4.19)

Proof. It is obvious that mean square errors of the classes of estimators Tij(i, j = 1, 2) are given by

M(Tij) = E[Tij − Ȳ ]2 = E[ϕij(Tiu − Ȳ ) + (1− ϕij)(Tjm − Ȳ )]2 (4.20)

= ϕ2
ijM(Tiu) + (1− ϕij)2M(Tjm) + 2ϕij(1− ϕij)Cij

where M(Tiu) = E[Tiu − Ȳ ]2, M(Tjm) = E[Tjm − Ȳ ]2 and Cij = E[(Tiu − Ȳ )(Tjm − Ȳ )]

(i, j = 1, 2). Substituting the expressions of Tiu (i = 1, 2) and Tjm (j = 1, 2) given in equations
(4.1) - (4.4), in the equation(4.20), expanding the terms binomially and taking expectations up to
o(n−1), we have the expressions of mean square errors of the classes of estimators Tij given in
equation (4.11).

Remark 2. The mean square errors of Tij given in equation (4.11) are derived under the assumptions
that the coefficients of variation of x, y and z are approximately equal.

5 Minimum MSEs of the classes of estimators Tij(i, j = 1, 2)

Since, mean square errors of Tij (i, j = 1, 2) in equation (4.11) are functions of unknown constants
ϕij(i, j = 1, 2) , therefore, to get the optimum values of ϕij , the mean square errors of Tij given
in equation (4.11)are differentiated with respect to ϕij and equated to zero. The optimum values of
ϕij are obtained as

ϕijopt =
M(Tjm)− Cij

M(Tiu) +M(Tjm)− 2Cij
; (i, j = 1, 2) (5.1)

Now substituting the value of ϕijopt (i, j = 1, 2) in equation (4.11), we get the optimum mean
square errors of Tij as

M(Tij)opt =
M(Tiu).M(Tjm)− C2

ij

M(Tiu) +M(Tjm)− 2Cij
; (i, j = 1, 2) (5.2)
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Further, substituting the values from equations (4.12)-(4.19) in equations (5.1) and (5.2), the simpli-
fied values of ϕijopt and M(Tij)opt are shown below:

ϕ11opt =
µ11[A1 + µ11A2]

A1 + µ2
11A2

(5.3)

M(T11)opt = A1

[
A1 + µ11A2

A1 + µ2
11A2

− f
]
S2
y

n
(5.4)

ϕ12opt =
µ12[A6 + µ12A8]

[A1 + µ12A7 + µ2
12A8]

(5.5)

M(T12)opt =

[
A11 + µ12A10 + µ2

12A9

A1 + µ12A7 + µ2
12A8

]
S2
y

n
(5.6)

ϕ21opt =
µ21[A1 + µ21A2]

[A3 + µ21A14 + µ2
21A15]

(5.7)

M(T21)opt =

[
A11 + µ21A12 + µ2

21A13

A3 + µ21A14 + µ2
21A15

]
S2
y

n
(5.8)

ϕ22opt =
µ22[A3 + µ22A4]

A3 + µ2
22A4

(5.9)

M(T22)opt = A3

[
A3 + µ22A4

A3 + µ2
22A4

− f
]
S2
y

n
(5.10)

where A1 = (1− ρ2
yz), A2 = 2ρxzρyx(ρyz − ρyx), A3 = 2(1− ρyz), A4 = 2(ρxzρyx + ρyzρyx −

ρxzρ
2
yx − ρyx), A5 = A1 − A3, A6 = A3 + fA5, A7 = −(1 − f)A5, A8 = A4 − fA5, A9 =

−fA8A1, A10 = (A4−f2A5)A1, A11 = (1−f)A1A3, A12 = f2A1A5+A3A2, A13 = f(fA1A5−
A2A3), A14 = (1 + f)A5, A15 = A2 − fA5 and f = n

N .

Remark 3. The optimum values of ϕijopt(i, j = 1, 2) given in equations (5.3), (5.5), (5.7) and (5.9)
are the functions of ρxz, ρyz and ρyx . The ϕijopt may be estimated with the help of corresponding
sample correlation coefficients.

Remark 4. The optimum mean square errors of Tij(i, j = 1, 2) given in equations (5.4), (5.6), (5.8)
and (5.10) are the functions of S2

y , ρxz , ρyz and ρyx . Therefore, the mean square errors of Tij can
be estimated with the help of their corresponding sample estimates.

6 Optimum replacement policy

To determine the optimum values of µij(i, j = 1, 2) (fraction of samples to be taken afresh at
the current (second) occasion) so that population mean Ȳ may be estimated with the maximum
precision, we minimize mean square errors of Tij (i, j = 1, 2) given in equations (5.4), (5.6), (5.8)
and (5.10) respectively with respect to µij , which result in quadratic equations in µij . The quadratic
equations and respective solutions of µij say µ̂ij (i, j = 1, 2) are given below:

A2µ
2
11 + 2A1µ11 −A1 = 0 (6.1)
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µ̂11 =
−A1 ±

√
A2

1 +A1A2

A2
(6.2)

Q1µ
2
12 + 2Q2µ12 +Q3 = 0 (6.3)

µ̂12 =
−Q2 ±

√
Q2

2 −Q1Q3

Q1
(6.4)

Q4µ
2
21 + 2Q5µ21 +Q6 = 0 (6.5)

µ̂21 =
−Q5 ±

√
Q2

5 −Q4Q6

Q4
(6.6)

A4µ
2
22 + 2A3µ22 −A3 = 0 (6.7)

µ̂22 =
−A3 ±

√
A2

3 +A3A4

A4
(6.8)

where Q1 = A7A9 − A8A10, Q2 = A1A9 − A8A11, Q3 = A1A10 − A7A11, Q4 = A14A13 −
A12A15, Q5 = A3A13 −A11A15 and Q6 = A3A12 −A11A14.

From equations (6.2), (6.4), (6.6) and (6.8), it is obvious that real values of µ̂ij (i, j = 1, 2)

exist, iff, the quantities under square roots are greater than or equal to zero. For any combinations of
correlations ρyx, ρxz and ρyz , which satisfy the conditions of real solutions; two real values of µ̂ij
are possible. Hence, while choosing the values of µ̂ij , it should be remembered that 0 ≤ µ̂ij ≤ 1.
All the other values of µ̂ij are said to be inadmissible. Substituting the admissible values of µ̂ij say
µ

(0)
ij (i, j = 1, 2) from equations (6.2), (6.4), (6.6) and (6.8) into equations (5.4), (5.6), (5.8) and

(5.10) respectively, we have the following optimum values of mean square errors of Tij(i, j = 1, 2).

M(T 0
11)opt = A1

[
A1 + µ

(0)
11 A2

A1 + µ
(0)2
11 A2

− f

]
S2
y

n

M(T 0
12)opt =

A11 + µ
(0)
12 A10 + µ

(0)2
12 A9

A1 + µ
(0)
12 A7 + µ

(0)2
12 A8

S2
y

n

M(T 0
21)opt =

A11 + µ
(0)
21 A12 + µ

(0)2
21 A13

A3 + µ
(0)
21 A14 + µ

(0)2
21 A15

S2
y

n

M(T 0
22)opt = A3

[
A3 + µ

(0)
22 A4

A3 + µ
(0)2
22 A4

− f

]
S2
y

n

7 Efficiency comparison
The percent relative efficiencies of the estimators Tij(i, j = 1, 2) with respect to (i) sample mean
ȳn, when there is no matching (ii) ˆ̄Y = ϕ∗ȳu + (1−ϕ∗)ȳ

′

m , when no auxiliary information is used
at any occasion, where ȳ

′

m = ȳm + βyx(x̄n− x̄m), (Sukhatme et.al.(1984)) and (iii) ∆ = ϕ∗∗∆1 +

(1 − ϕ∗∗)∆2, where ∆1 = ȳu
z̄u
Z̄ and ∆2 = ȳ∗∗∗m ( Z̄

z̄m
) where ȳ∗∗∗m = ȳm + byx(x̄n − x̄m), when

auxiliary information is used at both the occasions (Singh and Karna(2009a)) have been obtained for
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different choices of ρyx, ρxz and ρyz . Since ȳn and ˆ̄Y are unbiased estimators of Ȳ . The variance
of ȳn, the optimum variance of ˆ̄Y and the optimum mean square error of ∆ are given by

V (ȳn) =

(
1

n
− 1

N

)
S2
y

V ( ˆ̄Y )opt∗ =
[
1 +

√
(1− ρ2

yx)
] S2

y

2n
−
S2
y

N

M(∆)opt∗ = B1

[
B1 + µ∗∗B2

B1 + µ∗∗2B2
− f

]
S2
y

n

where µ∗∗ = {−B1 ±
√
B2

1 +B1B2}B2
−1, B1 = 2(1 − ρyz), B2 = (2ρxzρyx − ρ2

yx) and µ∗∗

is the optimum fraction of fresh sample at the current occasion for the estimator ∆. For different
choices of ρyx, ρyz and ρxz , the optimum values of µ(0)

ij (i, j = 1, 2) and percent relative efficiencies

E
(1)
ij , E(2)

ij and E(3)
ij of Tij(i, j = 1, 2) with respect to ȳn , ˆ̄Y and ∆ respectively have been computed

for f = 0.1 and shown in Tables 1-4, where

E
(1)
ij =

V (ȳn)

M(T 0
ij)opt

×100, E
(2)
ij =

V ( ˆ̄Y )opt∗

M(T 0
ij)opt

×100, and E(3)
ij =

M(∆)opt∗

M(T 0
ij)opt

×100; (i, j = 1, 2).

8 Conclusion
From Table 1 following interpretation may be read out: (a) For the fixed values of ρxz and ρyz ,
the values of E(1)

11 , E(3)
11 and µ(0)

11 are increasing with the increasing values of ρyx while the values
of E(2)

11 are decreasing with the increasing values of ρyx. This behavior is in agreement with the
Sukhatme et.al (1984) results, which explains that the more the value of ρyx, more the fraction of
fresh sample is required at the current occasion. (b) For the fixed values of ρxz and ρyx, the values
of E(1)

11 and E(2)
11 are increasing while the values of µ(0)

11 and E(3)
11 are decreasing with the increasing

values of ρyz . This behavior is highly desirable, since, it concludes that if the information on highly
correlated auxiliary variable is available, it pays in terms of enhance precision of estimates as well
as reduces the cost of the survey. (c) For the fixed values of ρyz and ρyx, the values of E(1)

11 and E(2)
11

are increasing for some choices of ρxz while decreasing pattern may also be seen for few choices
ρxz . Similar behavior is visible for µ(0)

11 but the values of E(3)
11 are increasing with the increasing

values of ρxz . (d) Minimum value of µ(0)
11 is 0.3702, which indicates that only 37 percent of the

total sample size is to be replaced at the current (second)occasion for the corresponding choices of
correlations.

From Table 2 it may be observed that (a) For the fixed values of ρxz and ρyz , no definite patterns
for µ(0)

12 , E(1)
12 and E(2)

12 are observed, as the value of ρyx is increased while the values of E(3)
12 are

increasing with the increasing values of ρyx . (b) For the fixed values of ρxz and ρyx, the values of
E

(1)
12 and E(2)

12 are increasing while no definite trends are observed in µ(0)
12 with increasing choices of

ρyz but the values of E(3)
12 are decreasing with the increasing values of ρyz . (c) For the fixed values
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of ρyz and ρyx, the values of E(1)
12 and E(2)

12 are decreasing as the value of ρxz is increased while
the values of µ(0)

12 are increasing for some choices of ρxz and decreasing for few choices of ρxz but
the values of E(3)

12 are increasing with the increasing values of ρxz . (d) µ(0)
12 attains minimum value

0.3607, which indicates that only 36 percent of the total sample size is to be replaced at the current
(second) occasion.

From Table 3 we may conclude that (a) For the fixed values of ρxz and ρyz , µ(0)
21 , E(1)

21 and E(2)
21

do not follow any pattern when the value of ρyx is increased while the values of E(3)
21 are increasing

with the increasing values of ρyx . (b) For the fixed values of ρxz and ρyx, the values of E(1)
21 and

E
(2)
21 are increasing while the values of µ(0)

21 and E(3)
21 are decreasing with the increasing values of

ρyz , which is highly desirable. (c) For the fixed values of ρyz and ρyx, the values of µ(0)
21 , E(1)

21

and E(2)
21 do not follow any pattern when the value of ρxz is increased but the values of E(3)

21 are
increasing with the increasing values of ρxz . (d) Minimum value of µ(0)

21 is 0.0463, which indicates
that the fraction to be replaced at the current occasion is low as about 5 percent of the total sample
size, leading to appreciable reduction in cost.

From Table 4 it can be seen that: (a) For fixed values of ρxz and ρyz , the values of µ(0)
22 , E(1)

22 and
E

(3)
22 are increasing while E(2)

22 do not follow any pattern with the increasing value of ρyx. (b) For
the fixed values of ρxz and ρyx, the values of µ(0)

22 and E(3)
22 are decreasing while the values of E(1)

22

and E(2)
22 increase with the increasing trends of ρyz . This behavior is desirable. (c) For the fixed

values of ρyz and ρyx, the values of µ(0)
22 , E(1)

22 , E(2)
22 and E(3)

22 decrease with the increasing values of
ρxz . (d) Minimum value of µ(0)

22 is 0.3762, which indicates that only 38 percent of the total sample
size is to be replaced at the current (second)occasion.

Thus, it is clear that the use of an auxiliary variable is highly rewarding in terms of the proposed
classes of estimators. It is also clear that if a highly correlated auxiliary variable is used, relatively,
only a smaller fraction of the sample on the current (second) occasion is required to be replaced by
a fresh sample, which is reducing the cost of the survey.
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Table 1: Optimum values of µ11 and percent relative efficiencies of T11 with respect to ȳn, ˆ̄Y and
∆.

ρxz↓ ρyz↓ ρyx→ 0.3 0.4 0.6 0.8 0.9

0.5 0.5 µ
(0)
11 0.4904 0.4935 0.5104 0.5481 0.5810

E
(1)
11 130.49 131.41 136.43 147.73 157.78

E
(2)
11 127.15 125.32 121.27 114.89 108.33

E
(3)
11 137.74 139.70 145.03 154.05 161.63

0.7 µ
(0)
11 0.4736 0.4736 0.4861 0.5213 0.5542

E
(1)
11 184.65 184.65 190.04 205.41 219.98

E
(2)
11 179.92 176.08 168.92 159.76 151.04

E
(3)
11 120.75 122.06 125.63 131.84 137.29

0.9 µ
(0)
11 0.4175 0.4111 0.4175 0.4562 0.5556

E
(1)
11 431.51 424.31 431.51 475.57 526.31

E
(2)
11 420.47 404.63 383.56 369.89 361.37

E
(3)
11 107.00 107.64 109.47 113.16 117.20

0.7 0.5 µ
(0)
11 0.4867 0.4910 0.5148 0.5737 0.6358

E
(1)
11 129.41 130.67 137.75 155.54 174.84

E
(2)
11 126.10 124.61 122.44 120.98 120.04

E
(3)
11 140.43 143.97 154.32 174.25 194.66

0.7 µ
(0)
11 0.4645 0.4645 0.4810 0.5310 0.5844

E
(1)
11 180.72 180.72 187.81 209.66 233.54

E
(2)
11 176.09 172.33 166.94 163.07 160.35

E
(3)
11 123.18 125.95 134.07 149.67 165.26

0.9 µ
(0)
11 0.3960 0.3887 0.3960 0.4423 0.5952

E
(1)
11 407.43 399.26 407.43 459.72 526.31

E
(2)
11 397.00 380.74 362.16 357.56 361.37

E
(3)
11 109.91 112.32 119.68 135.05 152.20

0.9 0.5 µ
(0)
11 0.4832 0.4885 0.5194 0.6056 0.7306

E
(1)
11 128.37 129.95 139.11 165.38 205.34

E
(2)
11 125.09 123.92 123.66 128.63 140.99

E
(3)
11 142.93 147.92 163.18 196.77 244.74

0.7 µ
(0)
11 0.4560 0.4560 0.4760 0.5414 0.6235

E
(1)
11 177.08 177.08 185.68 214.27 251.39

E
(2)
11 172.55 168.87 165.05 166.66 172.61

E
(3)
11 125.30 129.29 141.31 166.24 195.50

0.9 µ
(0)
11 0.3781 0.3702 0.3781 0.4299 0.4630

E
(1)
11 387.51 378.74 387.51 445.64 526.31

E
(2)
11 377.59 361.17 344.45 346.61 361.37

E
(3)
11 112.06 115.69 126.79 150.33 178.20
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Table 2: Optimum values of µ12 and percent relative efficiencies of T12 with respect to ȳn, ˆ̄Y and
∆.

ρxz ↓ ρyz ↓ ρyx → 0.6 0.7 0.8 0.9

0.5 0.5 µ
(0)
12 0.8423 0.7667 0.7405 0.7612

E
(1)
12 135.26 140.72 150.60 169.19

E
(2)
12 120.23 118.37 117.13 116.17

E
(3)
12 143.79 148.54 157.04 173.32

0.7 µ
(0)
12 0.8669 0.7215 0.6852 0.7130

E
(1)
12 196.97 204.83 220.35 205.31

E
(2)
12 175.08 172.30 171.38 171.87

E
(3)
12 130.21 133.95 141.42 156.22

0.9 µ
(0)
12 0.3932 0.3873 * 0.6116

E
(1)
12 446.13 469.20 - 598.68

E
(2)
12 396.56 394.69 - 411.05

E
(3)
12 113.18 116.35 - 133.31

0.7 0.5 µ
(0)
12 0.9708 0.8072 0.7461 0.7521

E
(1)
12 133.37 136.87 145.86 164.21

E
(2)
12 118.55 115.14 113.45 112.75

E
(3)
12 149.42 153.65 163.41 182.84

0.7 µ
(0)
12 * 0.8490 0.6969 0.6988

E
(1)
12 - 197.30 210.55 240.09

E
(2)
12 - 165.97 163.76 164.84

E
(3)
12 - 141.26 150.30 169.89

0.9 µ
(0)
12 0.3785 0.3893 0.3841 0.6122

E
(1)
12 411.08 432.53 472.25 558.44

E
(2)
12 365.40 363.84 367.31 383.42

E
(3)
12 120.76 127.71 138.73 161.49

0.9 0.5 µ
(0)
12 * 0.8818 0.7598 0.7457

E
(1)
12 - 134.24 141.92 159.91

E
(2)
12 - 112.92 110.38 109.81

E
(3)
12 - 158.88 168.85 190.59

0.9 µ
(0)
12 0.3607 0.3744 0.3926 0.7672

E
(1)
12 384.15 404.32 442.80 529.28

E
(2)
12 341.46 340.11 344.40 363.40

E
(3)
12 125.69 134.87 149.37 179.20

Note: “*” indicates that the admissible values of µ(0)
12 do not exist.
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Table 3: Optimum values of µ21 and percent relative efficiencies of T21 with respect to ȳn, ˆ̄Y and
∆.

ρxz↓ ρyz↓ ρyx→ 0.3 0.5 0.7 0.9

0.5 0.7 µ
(0)
21 0.8061 0.8647 * 0.3814

E
(1)
21 165.69 166.52 - 205.33

E
(2)
21 161.45 154.13 - 140.98

E
(3)
21 108.35 110.47 - 128.15

0.9 µ
(0)
21 0.4520 0.4431 0.4731 *

E
(1)
21 419.93 412.96 435.23 -

E
(2)
21 409.18 382.22 366.11 -

E
(3)
21 104.13 105.53 107.92 -

0.7 0.5 µ
(0)
21 * * 0.0463 0.5256

E
(1)
21 - - 133.39 154.03

E
(2)
21 - - 112.21 105.76

E
(3)
21 - - 149.74 171.50

0.7 µ
(0)
21 0.7163 0.7623 * 0.4788

E
(1)
21 163.19 164.70 - 216.93

E
(2)
21 159.02 152.44 - 148.95

E
(3)
21 111.24 116.54 - 153.51

0.9 µ
(0)
21 0.4232 0.4140 0.4448 *

E
(1)
21 396.58 388.65 414.32 -

E
(2)
21 386.43 359.72 348.52 -

E
(3)
21 106.98 112.39 122.33 -

0.9 0.5 µ
(0)
21 * * 0.2006 0.6850

E
(1)
21 - - 134.74 180.20

E
(2)
21 - - 113.34 123.72

E
(3)
21 - - 159.47 214.77

0.7 µ
(0)
21 0.6614 0.7003 * 0.5566

E
(1)
21 160.49 162.53 - 232.94

E
(2)
21 156.38 150.43 - 159.94

E
(3)
21 113.56 121.53 - 181.10

0.9 µ
(0)
21 0.4010 0.3916 0.4232 *

E
(1)
21 377.23 368.71 396.58 -

E
(2)
21 367.58 341.26 333.60 -

E
(3)
21 109.09 117.23 132.29 -

Note: “*” indicates µ(0)
21 do not exist.
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Table 4: Optimum values of µ22 and percent relative efficiencies of T22 with respect to ȳn, ̂̄Y and
∆.

ρxz↓ ρyz↓ ρyx→ 0.3 0.5 0.7 0.9

0.5 0.5 µ
(0)
22 0.5118 0.5359 0.5834 0.6964

E
(1)
22 102.62 108.04 118.87 145.64

E
(2)
22 100.00 100.00 100.00 100.00

E
(3)
22 108.32 115.12 125.48 149.20

0.7 µ
(0)
22 0.4939 0.5109 0.5536 0.6667

E
(1)
22 164.41 170.70 186.77 230.77

E
(2)
22 160.20 157.99 157.11 158.45

E
(3)
22 107.51 113.24 122.14 144.02

0.9 µ
(0)
22 0.4305 0.4305 0.4626 0.5742

E
(1)
22 423.95 423.95 458.74 583.80

E
(2)
22 413.10 392.39 385.89 400.84

E
(3)
22 105.13 108.34 113.75 130.00

0.7 0.5 µ
(0)
22 0.5008 0.5203 0.5647 0.6778

E
(1)
22 100.16 104.53 114.60 141.13

E
(2)
22 ** ** ** **

E
(3)
22 108.69 116.38 128.65 157.14

0.7 µ
(0)
22 0.4783 0.4900 0.5294 0.6424

E
(1)
22 158.65 162.97 177.64 221.11

E
(2)
22 154.59 150.84 149.43 151.83

E
(3)
22 108.15 115.32 127.17 156.46

0.9 µ
(0)
22 0.4044 0.4000 0.4291 0.5393

E
(1)
22 395.93 391.30 422.45 544.00

E
(2)
22 385.80 362.18 355.36 373.52

E
(3)
22 106.80 113.16 124.73 157.32

0.9 0.5 µ
(0)
22 0.4906 0.5064 0.5484 0.6614

E
(1)
22 ** 101.43 110.88 137.21

E
(2)
22 ** ** ** **

E
(3)
22 109.02 117.45 131.23 163.53

0.7 µ
(0)
22 0.4644 0.4721 0.5091 0.6218

E
(1)
22 153.59 156.41 170.03 213.03

E
(2)
22 149.65 144.77 143.03 146.26

E
(3)
22 108.68 116.96 130.98 165.66

0.9 µ
(0)
22 0.3832 0.3762 0.4032 0.5118

E
(1)
22 373.54 366.10 394.76 513.13

E
(2)
22 363.98 338.85 332.07 352.32

E
(3)
22 108.02 116.40 131.68 173.73

Note: “**” indicate no gain.


