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SUMMARY

This paper proposes three composite estimators for small domains, which are the weighted
sum of direct and synthetic ratio estimators under Lahiri-Midzuno sampling scheme. Fur-
ther, it compares performance of the composite estimators empirically for estimating crop
acreage for small domains. The study shows that the composite estimator, which is a
weighted sum of the direct ratio and synthetic ratio estimators, performs better than the
other two estimators under certain conditions.
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1 Introduction
Gonzalez and Wakesberg (1973) and Schaible et al. (1977) compare errors of synthetic and direct
estimators for standard Metropolitan Statistical Areas and counties of U.S.A. The authors of both the
papers conclude that when in small domains sample sizes are relatively small the synthetic estimator
out performs the simple direct, whereas, when sample sizes are large the direct outperforms the
synthetic. These results suggest that a weighted sum of these two estimators, known as composite
estimator, can provide an alternative to choosing one over the other. Tikkiwal and Tikkiwal (1998)
and Tikkiwal and Ghiya (2004) define a generalized class of composite estimators for small domains
using auxiliary variable, under simple random sampling and stratified random sampling schemes.
Further, the authors compare the relative performance of the estimators belonging to the generalized
class with the corresponding direct and synthetic estimators. The study suggests the use of composite
estimator, combining direct and synthetic ratio estimators, as it has smaller relative bias and standard
error. Tikkiwal and Pandey (2007) under Lahiri-Midzuno (L.M) Scheme confirm these results.

In this paper we study the performance of three composite estimators for small domains, under
Lahiri-Midzuno scheme of sampling. These estimators are weighted sum of synthetic ratio and a
direct: unbiased, almost unbiased and ratio estimator respectively.
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2 Notations

Suppose that a finite population U = (1, . . . , i, . . . , N) is divided into ‘A’ non overlapping small
domains Ua of given size Na(a = 1, . . . , A) for which estimates are required. We denote that
characteristic under study by ‘y’. We further assume that the auxiliary information is available and
denote this by ‘x’. A random sample s of size n is selected through Larihi-Midzuno sampling
scheme (1951, 52) from population U such that na units in the sample ‘s’ comes from small domain
Ua(a = 1, . . . , A). Consequently,

∑A
a=1Na = N and

∑A
a=1 na = n We denote the various

population and sample means for characteristics Z = X,Y by

Z̄ = mean of the population based on N observations.

Z̄a = population mean of domain ‘a’ basted on Na observations.

z̄ = mean of the sample ‘s’ based on n observations

z̄a = sample mean of domain ‘a’ based on na observations.

Also, the various mean squares and coefficient of variations of the population ‘U ’ for characteristics
Z are denoted by

S2
z =

1

N − 1

N∑
i=1

(
zi − Z̄

)2
, Cz =

Sz
Z̄

The coefficient of covariance between X and Y is denoted by Cxy = Sxy/(X̄Ȳ ), where

Sxy =
1

N − 1

N∑
i=1

(
yi − Ȳ

) (
xi − X̄

)
.

The corresponding various mean squares and coefficient of variations of small domains Ua are
denoted by

S2
za =

1

Na − 1

Na∑
i=1

(
Zai − Z̄a

)2
, Cza =

Sza
Z̄a

and Cxaya =
Sxaya

X̄aȲa
,

where

Sxaya =
1

Na − 1

Na∑
i=1

(
yai − Ȳa

) (
xai − X̄a

)
and zai (a = 1, . . . , A; i = 1, . . . , Na) denote the ith observation of the small domain ‘a’ for the
characteristic Z = X,Y .

3 Synthetic ratio estimator

We consider here synthetic ratio estimator of population mean Ȳa , based on auxiliary informa-
tion under Lahiri-Midzuno sampling scheme, as described in previous section. The synthetic ratio
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estimator of population mean Ȳa of small area ‘a’ is defined as follows:

Ȳsyn,a =
ȳ

x̄
X̄a. (3.1)

This estimator may be heavily biased unless the following assumption(
Ȳa/ X̄a

)
≈
(
Ȳ / X̄

)
for all a ∈ A. (3.2)

is satisfied.

3.1 Bias and mean square error

Under Lahiri-Midzuno sampling scheme

E (ȳsyn,a) = E
( ȳ
x̄
X̄a

)
=
X̄a

X̄
E
( ȳ
x̄
X̄
)

=
X̄a

X̄
Ȳ . (3.3)

Therefore, design bias of ȳsyn,a is

B (ȳsyn,a) =

(
Ȳ

X̄
X̄a − Ȳa

)
= B1(say). (3.4)

The mean square error of ȳsyn,a is given by

MSE (ȳsyn,a) =
X̄2
a

X̄2
V
( ȳ
x̄
X̄
)

+B2
1 =

X̄2
a

X̄2

[
1(
N
n

) ∑
c

(
ȳ2

x̄

)
c

− Ȳ 2

]
+B2

1 , (3.5)

where
∑
c stands for summation over all possible samples.

Remark 1. The above expression of MSE (ȳsyn,a) is not in analytical form

3.2 Estimation of mean square error

The MSE (ȳsyn,a) can be estimated by the following expression

mse (ȳsyn,a) =
X̄2
a

X̄2
ν (ȳR) + B̂2

1

=
X̄2
a

X̄2

[
ȳ2
R −

X̄

x̄

{
ȳ −

(
1

n
− 1

N

)
s2
y

}]
+

(
X̄a

X̄
ȳ − ȳa

)2

. (3.6)

Further, if the synthetic assumption given in equations (3.2) satisfies then B1 = B (ȳsyn,a) = 0 and
hence consistent estimator of MSE (ȳsyn,a) is

mse (ȳsyn,a) =
X̄2
a

X̄2
v (ȳR) =

X̄2
a

X̄2

[
ȳ2
R −

X̄

x̄

{
ȳ −

(
1

n
− 1

N

)
s2
y

}]
, (3.7)

where ȳR = ȳ
x̄X̄
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3.3 Comparison under SRSWOR

The expressions of Bias and Mean Square Error of synthetic ratio estimator under SRSWOR scheme
is given by Tikkiwal and Ghiya (2000), while discussing the properties of generalized class of syn-
thetic estimator, as under

B2 = B (ȳsyn,a) =
Ȳ

X̄
X̄a

[
1 +

N − n
Nn

(
C2
x − Cxy

)]
− Ȳa (3.8)

and

MSE (ȳsyn,a) =

(
Ȳ

X̄
X̄a

)2 [
1 +

N − n
Nn

(
3C2

x + C2
y − 4Cxy

)]
− 2Ȳa

(
Ȳ

X̄
X̄a

)[
1 +

N − n
Nn

(
C2
x − Cxy

)]
+ Ȳ 2

a . (3.9)

Comparing the expression of biases B1 and B2 of (ȳsyn,a) under L-M and SRSWOR schemes, we
get from equations (3.4) and (3.8)

B2 −B1 =
N − n
Nn

Ȳ

X̄
X̄a

(
C2
x − Cxy

)
So, B2 ≥ B1 if C2

x − Cxy ≥ 0⇒ ρ
Cy

Cx
≤ 1.

Remark 2. If the synthetic assumption given in Eq. (3.2) satisfies then the expression of bias B2

given in Eq. (3.8) reduces to

B2 =
N − n
Nn

(
C2
x − Cxy

)
Ȳa. (3.10)

That is, B2 6= 0 even if synthetic assumption is satisfied. Whereas under this condition B1 = 0

Remark 3. If the synthetic assumption is satisfied then the expressions of MSE (ȳsyn,a) given in
equations (3.5) and (3.9) reduces respectively to

M1 = MSE (ȳsyn,a) =
X̄2
a

X̄2

[
1(
N
n

) ∑
c

(
ȳ2

x̄

)
c

− Ȳ 2

]
(3.11)

and
M2 = MSE (ȳsyn,a) =

N − n
Nn

(
C2
x + C2

y − 2Cxy
)
Ȳ 2
a . (3.12)

Tikkiwal and Pandey (2007) compares the performance of (ȳsyn,a) under the two schemes and noted
that the synthetic ratio estimator performs better under L-M scheme.

4 Composite estimators
A natural way to balance the potential bias of synthetic estimator (ȳsyn,a) against the instability
of a direct estimator, say ȳd,a, is to take a weighted average of ȳd,a and ȳsyn,a. Such composite
estimators of population mean Ȳa of small area a may be written as

ȳc,a = waȳd,a + (1− wa) ȳsyn,a (4.1)
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for a suitably chosen weights wa (0 ≤ wa ≤ 1). Many of the estimators proposed in the literature,
both design-based and model-based, have the composite form (3.13). We in this section propose
three different composite estimators and study them under L-M design.

Let U be a population with N elements, and let Ua be a domain of U , that is, a sub-set of U ,
with Na < N . We assume that the elements belonging to Ua can not be identified before hand
but the domain size Na is known. The population parameter of interest here is Ȳa, the mean per
element in the domain Ua. Further, let a sample s of size n is selected from the whole of U through
Lahiri-Midzuno sampling design (1951, 52). Now, s will typically contain some elements from
Ua, and some from rest of U . Let sa be the sub-set of s consisting of the elements from Ua, that
is sa = s

⋂
Ua. The number of elements in sa is random; the probability that sa being empty is

assumed to be negligible.

4.1 Composite estimator -1

We define first composite estimator ȳ1a by taking ȳd,a = 1
Na

∑
k∈sa (yk/Πk) = ȳa,Π in the general

form of composite estimator (4.1). That is,

ȳ1a = wa

{
1

Na

∑
k∈sa

(yk/Πk)

}
+ (1− wa)

ȳ

x̄
X̄a, (4.2)

where the direct estimator ȳa,π is unbiased in general; and the synthetic estimator ȳsyn,a = (ȳ/x̄) X̄a

is design biased as discussed in Section 3. Further, the variance of ȳa,π is

V (ȳa,Π) =
1

N2
a

∑
k∈Ua

∑
l∈Ua

∆kl

(
yk
Πk

)(
yl
Πl

)
(4.3)

and the unbiased variance estimator is

v (ȳa,Π) =
1

N2
a

∑
k∈sa

∑
l∈sa

∆kl

Πkl

yk
Πk

yl
Πl
, (4.4)

where

∆kl = Πkl −ΠkΠl for all k, l

under the L - M design

Πk =
N − n
N − 1

pk +
n− 1

N − 1
for all k (4.5)

and

Πkl =


(n−1)
(N−1)

{(
N−n
N−2

)
(pi + pj) +

(
n−2
N−2

)}
, for all k 6= l

(N−n)
(N−1) pk + (n−1)

(N−1) for all, k = l.
(4.6)
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4.2 Composite estimator - 2

The second composite estimator ȳ2a of Ȳa we define by taking

ȳd,a =

∑
k∈sa (yk/Πk)∑
k∈sa (1/Πk)

= ỹs,a

in the form (4.1). That is,
ȳ2a = waỹs,a + (1− wa) ȳsyn,a. (4.7)

Hence, the direct estimator ỹs,a is approximately unbiased and its approximately variance is

AV (ŷs,a) =
1

N2
a

∑
k∈Ua

∑
l∈Ua

∆kl

(
yk − ȳa

Πk

)(
yl − ȳa

Πl

)
(4.8)

and the variance estimator is

v (ŷs,a) =
1

N2
a

∑
k∈sa

∑
l∈sa

∆kl

Πkl

(
yk − ỹsa

Πk

)(
yl − ỹsa

Πl

)
. (4.9)

4.3 Composite estimator - 3

The third composite estimator ȳ3a of Ȳa by taking ȳd,a = (ȳa/x̄a) X̄a = ȳar, a design biased
estimator of Ȳa. That is,

ȳ3a = waȳar + (1− wa) ȳsyn,a, (4.10)

where an estimator of the approximate variance of ȳar is

v (ȳar) =

{
X̄a∑

k∈sa (xk/Πk)

}2 ∑
k∈sa,

∑
l∈sa

∆kl

Πkl

(
yk − B̂axk

Πk

)(
yl − B̂axl

Πl

)
. (4.11)

The values of Πk and πkl for all k,l are given by equations (4.5) and (4.6).

Note: The justification of considering the three composite estimators is that under L-M design the
synthetic estimator ȳsyn,a under synthetic assumption is design unbiased. Further, the direct estima-
tors ȳa,Π is unbiased and the two other direct estimators ỹs,a and ȳar are approximately unbiased.

4.4 Estimation of weights

The optimum values w′a of wa may be obtained by minimizing the mean square error of ȳc,a with
respect to wa and it is given by

w′a =
MSE ((ȳsyn,a)− E

(
ȳd,a − Ȳa

) (
ȳsyn,a − Ȳa

)
MSE (ȳd,a) +MSE (ȳsyn,a)− 2E

(
ȳd,a − Ȳa

) (
ȳsyn,a − Ȳa

) .
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Under the assumption that E
(
Ȳd,a − Ȳa

) (
Ȳsyn,a − Ȳa

)
is small relative to MSE (ȳsyn,a), the w′a

reduces to

w∗a =
MSE ((ȳsyn,a)

MSE (ȳd,a) +MSE (ȳsyn,a)
. (4.12)

Since ȳsyn,a is not an unbiased estimator, therefore, an unbiased estimator of MSE (ȳsyn,a) under
the assumption that cov (ȳd,a, ȳsyn,a) = 0, is given by [cf.Rao (2003), equation (4.2.12)].

mse (ȳsyn,a) = (ȳsyn,a − ȳd,a)
2 − v (ȳd,a) (4.13)

Now, using equation (4.12) the weights w∗a can be estimated as follows:

ŵ∗a =
mse (ȳsyn,a)

(ȳsyn,a − ȳd,a)
2 (4.14)

But this estimator of w∗a can be very unstable. Schaible (1978) proposes an average weighting
scheme based on several variables or “similar” areas or both, to overcome this difficulty.

In our empirical study, presented in next section, we use both the methods for estimating the
weights.

5 Crop acreage estimation for small domains - A simulation
study

In this section we compare the relative performance of the three composite estimators ȳ1a, ȳ2a and
ȳ3a of Ȳa under L-M sampling scheme, through a simulation study, as the mean square errors of
ȳka (k = 1, 2, 3) are not in analytical form. This we do by taking up crop acreage data from the
State of Rajasthan, one of the States in India, for our case study.

5.1 Existing methodology for estimation

In order to improve timelines and quality of crop acreage statistics, a scheme known as Timely
Reporting Scheme (TRS) has been in vogue since early seventies in most of the States of India. The
TRS has the objective of providing quick and reliable estimates of crop acreage statistics and there-
by production of the principle crops during each agricultural season. Under the scheme the Patwari
(Village Accountant) is required to collect acreage statistics on a priority basis in a 20 percent sample
of villages. These statistics are further used to provide state level estimates using direct estimators
viz. unbiased (based on sample mean) and ratio estimators.

The performance of both the direct estimators in the State of Rajasthan, like in other states, is
satisfactory at state level, as the sampling error is within 5 percent. However, the sampling error of
both the direct estimators increases considerably, when they are used for estimating acreage statistics
of various principle crops even at district level, what to speak of levels lower than a district. For
example, the sampling error of direct ratio estimator for Kharif crops (the crop sown in June-July
and harvested in October-November every year) of Jodhpur district (of Rajasthan State) for the
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agricultural season 1991-92 varies approximately between 6 to 68 percent. Therefore, there is need
to use indirect estimators at district and lower levels for decentralized planning and other purposes
like crop insurance, bank loan to farmers.

5.2 Details of the simulation study

For collection of revenue and for administrative purposes, the State of Rajasthan, like most of the
other States of India, is divided into a number of districts.

Further, each district is divided into a number of Tehsils and each Tehsil is also divided into a
number of Inspector Land Revenue Circles (ILRCs). Each ILRC consists of a number of villages.
For the present study, we take ILRCs as small domains.

In the simulation study, we undertake the problem of crop acreage estimation for all Inspector
Land Revenue Circles (ILRCs) of Jodhpur Tehsil of Rajasthan. They are seven in number and these
ILRCs contain respectively 29, 44, 32, 30, 33, 40 and 44 villages. These ILRCs are small domains
from the TRS point of view. The crop under consideration is Bajra (Indian corn or millet) for the
agriculture season 1993-94. The bajra crop acreage for agriculture season 1992-93 is taken as the
auxiliary characteristic x.

To assess the relative performance of the estimators ȳ1a, ȳ2a and ȳ3a under L-M sampling
scheme, their Absolute Relative Bias (ARB) and Simulated relative standard error (Srse) are cal-
culated for each ILRC as follows:

ARB (ȳka) =

∣∣∣ 1
10000

∑10000
t=1 ȳtka − Ȳa

∣∣∣
Ȳa

and Srse (ȳka) =

√
SMSE (ȳka)

Ȳa
, (5.1)

where

SMSE (ȳka) =
1

10000

10000∑
t=1

(
ȳtka − Ȳa

)2
, for k = 1, 2, 3 and a = 1, . . . , 7. (5.2)

5.3 Results

We present the results of ARB and Srse of composite estimators ȳ1a, ȳ2a and ȳ3a in Table 2 and
Table 3. The total number of villages in Jodhpur Tehsil is 252. We take n = 25, 50, 63 and 100
i.e. samples, approximately, of 10%, 20%, 25% and 40% villages. It may be noted that a sample
of 20% villages are presently adopted in TRS. Before simulation, we first examined the validity of
synthetic assumption given in Eq. (3.2). The results of these are presented in Table 1. From this we
note that the assumption closely meets for ILRCs (3), (4) and (6). Where as, the assumption deviate
moderately for ILRC (7), and deviate considerably for ILRCs (1), (2), (5). In case of composite
estimators, we estimate the weights for each small domain using Eq. (4.14) but for estimating Ȳa of
small domains of ILRCs (3), (4) and (6) we take average of ŵ∗a over these domains, being “similar”.

1. We observe from both the Tables (Table 5.2 and Table 5.3) that Srse of the composite esti-
mator ȳ3a is around 5% (except for n = 25 where it is around 7%) and considerably smaller
than Srse of ȳ1a and also of Srse of ȳ2a for the ILRCs 3, 4 and 6; where synthetic assumption
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closely meets. This is some what true for ILRC 7 also but the Srse is much larger than 5% in
this case, where the deviation from the synthetic assumption is not much. This is even true for
other ILRCs also.

The ARB (ȳ3a) is considerably small for the three ILRCs 3,4 and 6 but not the smallest when
we compare it with ARB (ȳ1 a) and ARB (ȳ2 a). But the difference in the percentage of ARBs
is not much.

Further for n = 50 (i.e., a sample of 20% villages that is being selected under TRS scheme)
the ARB(ȳ3a) varies between 0.21% to 1.99% whereas the Srse (ȳ3a) is around 5% for the
ILRCs 3,4 and 6.

2. We, further, note that percentage of ARBs and Srses of the three composite estimators, when
weights are estimated through averaging over similar ILRCs 3, 4 and 6, is smaller than the
case when weights are not averaged.

3. When we compare the Srse (ȳ1 a) and Srse (ȳ2 a) than Srse (ȳ1 a) is smaller. This is some
what true for ARB (ȳ1 a), in most of the cases.

Finally, we suggest the use of the composite estimator ȳ3a when the synthetic assumption
meets. But when the synthetic assumption is not valid one should look for other types of
estimators. Such as those obtained through the SICURE Model (Tikkiwal, 1993) or presented
by Ghosh and Rao (1994).

Table 1: Absolute Differences (Relative) under Synthetic Assumption of Synthetic Ratio Estimator
for Various ILRCs

ILRC Ȳa/X̄a

[∣∣Ȳa/X̄a − Ȳ /X̄
∣∣ / (Ȳa/X̄a

)]
× 100

1 0.7304 18.1681

2 0.9416 8.3368

3 0.8596 0.4071

4 0.8663 0.3693

5 0.9667 10.7168

6 0.8816 2.0984

7 0.8917 3.2073

Note. Ȳ /X̄ = 0.8631
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