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SUMMARY

We consider Cox proportional hazards model under covariate merasuat error and inves-
tigate a simultaneous estimation method for the baseline hazard and coparitecter.
We show the strong consistency of the estimators and we also estimate tieircanver-
gence. Simulation results are also presented to illustrate the theoretical ones
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1 Introduction

Cox semiparametric proportional hazards model is very [aopo biometrics and medical statis-
tics. Often the variables of interest cannot be observezttlirand actually the so called surrogate
data are observed instead. This is modeled by the presermeasgurement errors. Ignoring the
difference between the variables of interest and surradgtieleads to “naive” estimators of regres-
sion parameters that are usually severely biased. Rectmlgiscussion on measurement error in
the Cox model has become vivid, see e.g. the correspondjpey pdé Augustin [3] and references
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therein. However, still there are only few results on theststency of reasonable estimators in the
Cox model under measurement errors.

In the present paper we deal with censored observations nmekesurement error and propose
to estimate the baseline hazard function and regressi@nders simultaneously. The baseline
hazard function is not parameterized and belongs to a cdrsptof continuous positive functions.
We use the partial log-likelihood function and correct it é@nsoring and measurement error fol-
lowing the ideas of Augustin [3]. Our simultaneous estimat@ximizes the corrected objective
function on the compact parameter set. Under mild assumgptie prove the strong consistency
of the estimators and give the rate of convergence in ternkutiback-Leibler distance between
the true and estimated density ¢¥, A, X), where Y is the censored lifetimeA is the censor-
ship indicator, andX is the variable of interest. A computer simulation is présdno illustrate
theoretical findings.

The paper is organized as follows. Section 2 gives the mdd&dservations and constructs the
estimators. Our main consistency result is presented itidde®. The rate of convergence is derived
in Section 4, simulation results are reported in Sectiom#,%ection 6 concludes.

2 Model and Estimator

Consider the Cox proportional hazards model [5], wherentensity of failure for the survival time
T attime pointt of an individual given a covariate vectoX is specified as

At X5 A, 8) = A(t) exp(8' X), (2.1)

where 3 is ak-dimensional parameter belonging to a parameter@gtC R*, while A(t) €
O, C C[0,7], 7 > 0, is the baseline hazard function, i.e. the hazard functionX¥o= 0, and ©,
consists of positive functions. This means that the coowliti pdf of 7' given X equals

t
Frt| X0 8) = Mt X\ B)exp | — [ Al XiAB)ds (2.2)
0
and -
/.A(t|X;)\,[3)dt:oo.
0
Hence, " )
g4 gy = JTEIX5A B)
A(t|X7Aaﬂ)_ dtlogGT(t|X7Aaﬂ)_ GT(t|X,)\,ﬂ)7 (23)

where Gr(t| X; A, 8) :=1— Fr(t| X; A, B) is the conditional survival function of" given X.
However, instead of the lifetime¥ one can usually observe a censored lifetitie= min{T, C},
where C' is the censor distributed ofo), 7], together with the censorship indicatdy := 1;7<¢.
Obviously, Y is also distributed on the intervad, 7]. Further, the censo€' is independent ofX
and 7.
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The statistical problem is to estimate parameter and baseline hazard\ on the basis of
triples (Y;,A;, X;), i = 1,2,...n, of observations of censored lifetimes, corresponding cen-

sorship indicators and covariates, respectively. We asghat observed lifetimed?, Ts, ..., T},
censorsCy,Cs, ..., C, and covariatesXy, X»,..., X, are independent copies @f, C' and X,
respectively.

In the classical case, that is if the covariates can dirdmlypbserved,A\(t) and S can be
estimated by maximization of the partial (or Breslow’s)ddglihood function [4, 7]

n

QuAB) = - al¥i, A X\ ), 24

=1

where

Y
gV, A, X5, 8) == A(log A(Y) + 8T X) —ef X /)\(u)du.
0

In the present paper we assume the existence of measuremastie the covariates, that is
instead of X; we observe

WZ:Xz—f—U“ 221,27,71, (25)

where the errors{U;} are independent copies ofkadimensional random vectot/ with known
moment generating functiod/y; (5) := EeﬁTU, and independent of X;, T;, C;}. In this case,
according to the ideas of Augustin [3], objective functidh,(¢) has to be corrected for measure-
ment errors with the help of deconvolution method [10]. Togected objective function is defined
as

n

QN B) = - 0 (Vi A Wi A ), 26)
i=1
where
T Y
Y, A, Wi A, B) = A(log \(Y) + BTW) — o //\(u)du
q ( 9 I I I A g MU(ﬁ) / .

Naturally, we have
E(¢" (Y, A, WX, 8) |V, A, X) = q(Y,A, X5, ),
almost surely, implying
Eq*" (Y, A, W; A, B) = Eq(Y, A, X5 ), B) = goo (A, B). (2.7)

The corrected estimator(sin, En) of (A, 3) are defined as

~ o~

(An, Bn) := arg e QY (N B), (2.8)

where © := O, x ©g. If the parameter sets are compact, th®nwill also be a compact set in
C[0, 7] x R*. Since Q¢°" is continuous, the maximum in (2.8) will obviously be attin
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3 Strong Consistency
We prove the strong consistency of the estimators define@.6Yy nder the assumptions below
(i) ©x c Co,7] is the following compact convex set of positive functions
Ox:={f:[0,7] = R| f(t) > a,vt € [0,7] and|f(t) — f(s)| < L|t — s|,Vt,s € [0,7]},
wherea > 0 and L > 0 are fixed constants.
(i) ©s C R* is compact and convex.
(i) Measurement errol/ has zero mean and for a fixed> 0,

EePIUl < oo where D := max ||| +e.
BEOg

(iv) EePlIXI < o0, where D > 0 is the constant defined in (iii).

(v) 7 isthe right endpoint of the distribution of’, i.e. P(C > 7) =0 andforalle > 0 we
have P(C > 1t —¢) > 0.

(vi) The covariance matrixSx of the random vectotX is positive definite.

Theorem 1. Consider the Cox proportional hazards model with measurgmeor defined by2.1)
and (2.5) with true parametersiq(t) and (o, and assume that conditions (i)—(vi) are satisfied.
Then (\,, 8,,) are strongly consistent estimators of the true parametexs 5,), that is

sup () —Xo(®)] =0 and B, — Bo
te[0,7]

almost surely asn — oo.
Proof. In order to prove the strong consistency of the estima(ar,g En) one has to prove

(@ sup |Q"(A B) = goo(A B)| — 0 almost surely asy — oc;
\,B)EO

(b) goo(A, B) < goo(Xo, Bo), and equality holds if and only if\ = \g and 8 = 5.

Let 22 denote the Rechet derivative of;°" with respect to the functiom which is a linear

N
functional on C[0,7]. Hence, || 8%/\ | is the norm of this linear functional corresponding to the
supremum norm orC'[0, 7], while forh € C[0, 7] the expressio a%#? h) means the effect of

the functional 22" on h. E.g. if

q“"(\) = / A2(t)dt, then <‘9g;m“,h> =2 / A(t)h(t)dt.
0 0

According to results of [8] to verify (a) it suffices to show
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(@l) Qy"(A,B) = ¢oo(A, B) almost surely asy — oo forall (A, 8) € ©;

coT

99
1))

cor

(a2) Esup g B

(A,B)EO
(@3) ¢so(A, B) is continuous in(A, 3).

By conditions (i)—(iv) for all fixed (A, 3) € © we have E|¢°" (Y, A, W; A, B)| < co. As our
observations(Y;, A;,, W;), i = 1,2,...n, arei.id., the strong law of large numbers applies, so
Q" (N, B) — Eq"(Y,A,W; \, 3) almost surely asn — oo, that together with (2.7) implies
(al1).

Next, for h € C[0, 7]

Tw Y
<an°T(YA WA B) > AR(Y eﬂ /h
0

(Y7 A? W; )\7 /8)

’ < oo, Esup (Y, A, W; )\,B)H < 00

(\,B)e0

O\ A(Y)
yielding
aqcm H H FeDUXI+IU)
(Y, A, W; A, < su + — ,
H #) reon || AY) mingeeo, My (5)
so by (i)—(iv) the first condition of (a2) holds.
Further,
8 cor v
gﬂ (Y, A W3 B) =AW — (MU(B)W — E(UeﬁTU) BTW 2 //\
0

which directly implies the second condition of (a2). We reknihat the extra terme > 0 in the
definition of the constant) used in conditions (iii) and (iv) is needed to ensure

E sup ||Ue6 U|| < o0 and E sup HXeBTXH < 00,
BEOs BEBg

respectively.
Finally, by definition (2.7)

Y
G\, B) = Eq(Y, A, X3\, B) = E<A(log AY)+B8TX) - eﬂTX/)\(u)du)
0

Obviously, ¢(Y, A, X; A\, 8) is continuous in(8, A), and by conditions (i) and (ii)

B’ X / Aw)du
0

where C is a positive constant. Conditions (iii) and (iv) imply thike right hand side of (3.1) has a
finite mean, that together with the dominated convergernearém implies (a3).

To verify (b) we are going to use the following general reshéit is quite well known in infor-
mation theory (see e.g. [1, Lemma 8.3.1]).

a(Y. A, X0, 8)] < [A(log A(Y) + 87 X) ’ + <c(1+]x)+eP1¥1), 3.2)




82 Kukush, Baran, Fazekas, & Usoltseva

Lemma 3.1. Let ¢ and g, be arbitrary densities with respect to&finite measurex on the
o-field B(RF). If

/go(z)log o(x)du(x) isfinite, then /go(x) log 0o (z)du(x)
Rk Rk

exists and

/m@wa%MMZ/mwbw@WM) (3.2)

Rk Rk

/QO(I) log go(x)du(x) is finite, then /Qo((E) log o(z)dp(z)
R* Rk
exists and3.2) holds.
Equality in(3.2) is attained if and only ifo(z) = oo(x) for almost all = with respect to the
measure .

Consider the coupléY, A) that is distributed on¥ := Rt x {0,1} with Rt := (0, 00), and
consider onX measureu = Ay X A\., where \; and )\, denote the Lebesgue and the counting
measure, respectively.

To simplify notation, for a moment let us fix the covariate teec X. First we show that the
joint pdf of (Y, A) with respect tou equals

F(y,81X5 00, Bo) := f2(y| X5 Moy Bo) G * (|1 X3 Mo, Bo) f& P (W)GL(y),  (y,6) € X, (3.3)

where fr and fo are the densities, whilé€s; and G are the survival functions of” and C,
respectively. Now, to verify (3.3) it suffices to prove that &Il A € B(R™)

/f@ﬁWMm%NM%®=HY€AA=®, (3.4)
Ax{0}
/f@ﬁWMm%NM%®=HY€AA=U (3.5)
Ax{1}

hold. For the left hand side of (3.4) we have
[ 1081530 80) ity ) = [ ely)Grl)dy = ELACIG(O),
Ax{0} A
while for the right hand side

P(Y € A,A=0)=P(C € A,T > C) = E(14(C)1r>c})
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which clearly proves (3.4). Equality (3.5) can be provechi@a $ame way.

Further, as the distribution o is concentrated on the intervd0, 7], for y > 7 we have
fe(ly) =0 and Ge(y) = 0, implying f(y,d|X;\,8) =0 for y > 7, § € {0,1}. Hence,
fly,0|X; A\, B) and the corresponding log-likelihood function

Uy, 0| XX, B) :=log f(y,0| X\, B) = Lr(y, 6| X; N\, B) + Le(y, 6), (3.6)
where
Cr(y, 0| X\, B) == dlog fr(y|X; X, B) + (1 — 6)log Gr(y| X; A, B),
le(y,0) :== (1= 6)log fo(y) + dlog Ge(y),

depends on the values ofr(y|X; A, 8) only on the interval [0,7]. Applying Lemma 3.1 for
f(y,6|X; Xo, Bo) and f(y,d]X; A, 8) we obtain

EA(Y, AIX; A, B) < EU(Y, A[X; Ao, o). (3.7)
which is equivalent to
Elr(Y,A|X; N, B) < Elr(Y,AlX; o, Bo), (3.8)
and equalities in (3.7) and (3.8) hold if and only if
FFWIX5 Mo, Bo) G2 (I X5 Mo, Bo) o ° () G (y) (3.9)

= [RI X5 A B)Gr (W1 X5 A, B)f6° (9)GE(y)
almost everywhere o0, 7| with respect to measurg. For § =1 condition (3.9) reduces to
S| X5 Ao, Bo)Ge(y) = fr(ylX; A, B)Ge(y) (3.10)

almost everywhere with respect to the Lebesgue measyreand by condition (v) — since for
y < 7 we have G¢(y) > 0— (3.10) is equivalent to

fr(W|X; Mo, Bo) = fr(y|X; A\, B) almost everywhere with respect to, . (3.11)

If (3.11) is valid, then (3.9) is true fob = 0. Hence, we have equality in (3.8) if and only if (3.11)
holds.

Now, using (2.3) one can easily see that, (\, 5) = Er (Y, A|X; A, 8), so from inequality
(3.8) we obtain

doo (N, B) = Elr (Y, A|X; X, B) < Elr (Y, AlX; Xo, Bo) = Goo (Mo, Bo), (3.12)
where equality is attained if and only if
Fr(t1X; Mo, Bo) = fr(t| X\, B) almost surely for almost alt € [0, 7]. (3.13)
Suppose now that (3.13) holds. Representation (2.3) isiet

A(t| X5 Mo, Bo) = A(E| X\, B) almost surely for almost alt € [0, 7], (3.14)
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so exp ((8 — Bo) T X) is constant, and in this ways — ) ' X is also constant with probability
one. Hence Var((8 — )" X) = 0 that together with condition (vi) yields = 3,. Obviously,
using again (3.14) one can see that 5, implies Ao(t) = A(¢), ¢ € [0, 7], which together with
(3.12) and (3.13) completes the proof of condition (b). O

Remarkl. It is not necessary for the censar’ to have a pdf. It can have any (e.g. discrete)
distribution p on [0, 7] provided the survival functiorG¢(y) is positive for ally < 7. Inthis
case the reasoning concerning the joint density (3.3)¥0fA) has to be corrected. Couplg’, A)

is distributed on¥’ = (0, 7]x{0, 1} = ((0, 7] x{0})U((0, 7]x{1}) =: A UX;, and measure: on

X hasto be defined separately &3 and X; as u(Ax{1}) := A1 (A4) and u(Ax{1}) := pc(A),
respectively, whereA € B((O, 7-]). Using symbolic notationu = Ay x 01 + puo X &g, Where §;
and 9§, are Dirac measures concentrated ahd0, respectively. In this way the density ¢f with
respecttouc is fo(y) =1, and (3.3) takes the form

F(y. 31X X0, Bo) := F2(y1X5 Mo, Bo) G (Y| X Mo, Bo)GL(y),  (y,0) € X, (3.15)

specifying a density ont’ with respect to measurg. Now, the validity of (3.4) and (3.5) for the
density defined by (3.15) can be checked in the same way asebefo

4 Kullback-Leibler Distance of the True and Estimated Density
Functions
To estimate the rate of convergence of the estima(t&r;s Bn) defined by (2.8) to the true parameter

values (Ao, fo), besides conditions (i) — (vi) of the strong consistency wechan additional one,
namely

(vii) Sn(X, B8)/+/n converges in distribution irC(©) to a Gaussian measure, where

n

Su(A B) = (Q5 (N B) = oo (M B) = (0" (Vi Asy Wis A, B) —Eq°" (Y, A, W A, B)).
=1
(4.1)

However, according to the statement of Lemma 4.1, which iagpiication of Theorem 2 of
[11], the following assumption is sufficient to check theig#y of condition (vii).

(vit) Ee?PelIXIl < 0o and Ee?P# IVl < 0o, where Dg := maxgce, ||8]| > 0.

Lemmad4.1. Consider the Cox proportional hazards model with measurgmeor defined by2.1)
and (2.5). Under assumptions (i) — (iv) condition (vii") is a suffictaondition for (vii).

Proof. Let us considerg°" (Y, A, W; ), ) as arandom elemento® = 0, x ©5 C C[0, 7] x R¥
and let

p((A1,81), (A1, 1)) := sup [Ar(t) = Xa(8)| + (|81 — Ba|-

te[0.7]
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By conditions (i) and (ii), (©, ) is a compact metric space, so according to Theorem 2 of [11] ap
plied to centered random elemeni®” (Y;, A;, Wi; A, B) — Eq°°" (Y, A, W; X\, B) to prove asymp-
totic normality of S, (), ) it suffices to show

(c1) P(¢®" € Lip(o)) = 1, where Lip(g) C C(©) is the set of Lipschitz functions o® with
respect to metrico;

1
(c2) fH;/Q(@,v)dv < 00,
0

where for a compact metric spadgs, ¢), function H,(S,e) (or simply H(S,¢)) is the
e-entropy of S, thatis H,(S,¢) :=log N,(S,¢), and N,(S,e) (or simply N(S,¢)) isthe
minimum number of balls with diameter not greater thzin which cover S (see e.g. [6]);

(c3) E|lg=r (v, A, W;)\,ﬁ)HZ < oo, where || - ||, is the norm induced by the metrig, that is
for g € Lip(©) we have||g||, := d(g) + |g(\*, *)|, where

sup lg(A1, B1) — g(A2, B2)
OnBD#CeB2) 0((A1,51), (A2, B2))

and (\*, 8*) is some fixed element ii®.

d(g) =

Now, as a consequence of condition (a2) of the proof of Thradreve have
8q(}07' cor
—— (Y, A, W; )\,ﬂ)H <oo and sup

oA (\B)€d

dq
ap

sup
(\,B)€®

(Y,A,W;A,B)H < 00

almost surely, that directly implies (c1).
Next, consider the compact metric spadge@s and © with the supremum norm and with the
Euclidean norm, respectively, and let< ¢ be an arbitrary constant. Obviously,

Ny(0,2¢) < N(Oy,6)N (O, ¢),
hence
Hl/?(0,2) < V2(HY?(O5,¢) + H?(0p,¢)).

Now, as for ¢ < 1 we have N(Og,c) < Ce~* with some positive constant, implying
H(Ogs,¢) <logC — kloge, using fol(—log u)'/2du < oo, we obtain

1
/Hl/Q(G)B,u)du < 0. (4.2)
0

Further, according to the results of Potapov [9], @, is of “uniform type”, that is there exist
b>1,C >0 and vy > 0, such that for all0 < v < vy, inequality

H(©y,bv) +C < H(O,,v) (4.3)
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holds, then fore < 1 we have H(©,,¢) < Ce~! implying

1
/ HY2(0,,u)du < oc. (4.4)
0

However, as©, is compact and since convex, it is also connected, by Lemnfd9] there
exists 1o > 0 such that for all0 < v < /4

H(@,\,4V) +1< H(@)\, I/)

is satisfied, which proves (4.3).
In this way, since

1 1/2 1/2 1/2
/H;/Q(@,v)dvzQ/H;/Q(@,Zu)du§23/2 /Hl/Q(@,\,u)du—l—/Hl/z(@g,u)du ,
0 0 0 0

(c2) follows from (4.2) and (4.4).
Finally, using conditions (i) and (ii) after short calcudats one can see that there exists a positive
constantC such that

e (v, A, W 0, B < €1+ W]+ P21,
thus (c3) is a direct consequence of (vii'). O

Now, we can formulate our result about the rate of convergefthe estimators.

Theorem 2. Consider the Cox proportional hazards model with measurd@eor defined by2.1)
and (2.5) with true parametersi(¢) and 3o, and assume that conditions (i), (ii), (iv) — (vi) and
(vii") hold. Then

D(F(Y. A X: Mo, fo). (Y. A, X; X, Ba)) = O"f;”,
where for densitiesf; and f> with respect to a measurg,
,_ fi(@)
Do) = [ fila)ton P auta)

denotes the Kullback-Leibler distance ¢f and fs.

Proof. By the definition of the estimator(sinﬁn) we havle;”“(Xn,Bn) > Q5" (Mo, Bo) imply-
ing
0< qOO(/\Oaﬁo) — Goo(An, Bn) <2 sup ’QZOT()\vﬁ) - QOO()‘aB)’ (4.5)
(A,B)€o
According to Lemma 4.1, condition (vii’) implies the asyrapit normality of S, (X, 3)/v/n
where S, (), 8) is the sum defined by (4.1). Hence, the right hand side of {4.8),(1)/v/n.
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UY, AIX; Mo, Bo) — LY, A|X: N, B) \X)) —E (E(log

I
m

(4.6)

log

o

I
m

log (TgC’X)>+E<log

Let (A, 8) € ©. Using the same ideas as in the proof (3.12) with the help.8) gnhd (3.6) we
f(Ya A‘X§ )\0»50) X))
FY,A[X3 A, 8) FRYIXA, B)Gr 2 (YIX; A, B)
fr(T|X; Ao, Bo) /\oﬂo) GT(C|X§)\0750)P(T S C’|X))

obtain

0 < e (Y0, fo) = 4o (A B) = E(E(6r(Y: AIX: 20, 50)|X) ) — E(E(er(Y. AIX: 2, 8)|X))

= E(E( JV.AIX:AB)

( FY,ALX; Ao,ﬁo>> _ E<1O fTA<Y|X;Ao,ﬁo>G1TA<Y|X;Ao,ﬂo>>

fT (Y|X;5 Xo, Bo) _ ) ( Gr(Y[X; o, Bo) _ >

E(l g (Y TXN B) P(A=1|X))+E IOg—GT(Y\X;)\,B) P(A=0|X)

( Fr{TIXAB) Gr(CIX:,5)

¢ T

—¢( 0/ (X0, o tog TP ) e C/fT(ﬂX;)\o,ﬂo)lOg )

C

Jr (] X; Xo, Bo) ) Gr(C|X; Ao, Bo)
~e( frrencono s GRS (o e G )

Further, let f(y,d, 2|\, 3) be the joint density of the triple of censored lifetime, aanship
indicator and covariateX on [0, 7] x {0,1} x R*, which by (3.3) equals

f(y7 57 LL‘|)\7 ﬁ) = f(yv 5|X7 )‘07 5())fX (SL’)
= [2(U1X5 X0, Bo) G (91X Ao, Bo) f&° () GE(y) fx (),
where fx (x) is the density ofX. However, we do not assume that has a pdf with respect to the
Lebesgue measure. Letx be the distribution ofX on R* and one can considef(y, 6, z|\, 5)
as a density with respect to the product meashye< A\, x ux. Hence, from (4.6) we obtain
f(}/’ AaX;)\()?BO)
FY,A, X350, 8)

doo (Mo, fo) — qw(A,m:E(log ) _D(F(Y, A X: Mo, o). F(Y, A, Xi A, B)),

that completes the proof. O

5 Simulation Results

To illustrate the behavior of the proposed estimator wequaréd computer simulations using Mat-
lab (version 2008a). For optimization Matlab functibrm ncon was used. Naturally, objective
function Q2" (), 5) can not be maximized numerically with respect to a functin) € C[0, 7],

so we applied two approximation methods af based onm points wherem is an increasing
function of the sample size. The first method is spline irdkfion on m equidistant points, the
second is Chebyshev interpolation, that is polynomiakpdtation, where the nodes are roots of the
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mth Chebyshev polynomial of the first kind. In both cases thedailve function is maximized with
respect to3 and to the values of(¢) in the node points.

In our exampld 00 independent samples were simulated and using subsamihesessing size
the estimates of the parameters were calculated. For pteaththe mean, the standard deviation
and the mean absolute error (MAE) was calculated for eacplgssize considered. For the function
A(t) first the means of the estimated values at node points werelatdd and the approximations
were based on these mean values. To check the fit of the apmtiein we estimated the deviation
in supremum norm from the true function. We remark thatilifiesT were generated with the help
of inversion method.

Example 5.1. Consider the Cox proportional hazards model with measunesreor where s is
one-dimensional with true valug, = 1, while \o(¢) = 10 + ¢. Covariate X and measurement
error U are both normal with means4 and0 and standard deviatioris4 and0.1, respectively.
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Figure 1: Means, standard deviations and MAEs of the estisnait 3.
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Figure 2: Estimates of\y(¢) based on a) spline approximation; b) Chebyshev approximati
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Figure 3: Detrended estimates of(¢) based on a) spline approximation; b) Chebyshev approxi-

mation.

Censor(C' is defined on the intervalo, 10], and has a pdf of triangular shape, i.e.

x/50, if z € [0,10];

fc((ﬂ) =

0, otherwise.
Using this settings approximately 25% of the lifetimes a@asored. Sample size varies between

1000 and 15000 with steps of1000 and the number of nodes: := |log(n) + 0.5], that is the
logarithm of the sample size rounded to the nearest integer.
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Figures 1a, 1b and 1c show the means, standard deviationglARd of the estimated values
of the parameters for both approximation methods, plotted versus the sanipée $hese figures
clearly show the convergence of the estimator to the truarpeter value and also show a slight
advantage of the spline interpolation.

Concerning the other parameter, Figures 2a and 2b showtiheéss of \o(¢) based on spline
and Chebyshev approximation, respectively, for four défeé sample sizes, while on Figures 3a and
3b the detrended estimates, i.e. the deviations from tleepasameter function, are given. Observe,
that Chebyshev approximation gives slightly better reshith is more clearly observable on Figure
4, where the deviations in supremum norm of the estimates the true \o(¢) are plotted versus
the sample size.

Example5.2. Consider the settings of Example 5.1 but assumerthat |n'/3 + 0.5, thatis the
cube root of the sample size rounded to the nearest integihtisicase numbein of nodes increases
with the increase of the sample size more drastically thaExample 5.1, so e.g. for sample size
n = 15000 the order of the approximating polynomial in Chebyshev apipnation is24. However,
the high order (in practice orders higher tiinshould be avoided) induces some extra fluctuation
in the Chebyshev approximation and the results became wlasethe results for smaller sample
sizes. In this way large deviations ofy(¢) from its estimator might be consequences of the error
of the approximation.
Naturally, for spline approximation the higher the numblemades, the better results we obtain.
For this reason in the present example we consider only thétseof the spline approximation.
Figure 5a shows the means, while 5b the standard deviatimhtha MAEs of estimates of.
On Figures 6a and 6b the estimates)af and their detrended versions are plotted for four different
sample sizes, while Figure 7 shows deviations in supremum rod the estimates from the true
baseline hazard. Comparing Figures 6a, 6b and 7 with Fijdag8a and 4, respectively, one can
clearly see the advantage of the increase of the nodes nésgbproximation.

——spline interpolation
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S A

. . . . . . Y-y

0 2000 4000 6000 8000 10000 12000 14000
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Figure 4: Deviations in supremum norm of the estimates\@ft) from the true function.
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Figure 5: Means, standard deviations and MAEs of the estisnatt 5.

Example 5.3. Let the covariatesX, measurement errorg§/ and censorsC' be the same as in
Example 5.1,5, = 1 but now we have a Weibull hazard function, thatig(t) = 3/2t2. In this

case similarly to the previous examples approximately 25%elifetimes are censored. Sample
size varies betweer00 and10000 with steps 0500 and the number of nodes := [n'/? +0.5].

We remark that compared to case of the linear baseline hatteedptimization algorithm used
considerably fewer steps to find the optimal points of thecdije function.

Again, on Figure 8a the means, while on Figure 8b the standewitions and the MAEs of
estimates of 3 are plotted against the sample size. Here one can cleargnabthe convergence
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Figure 7: Deviations in supremum norm of the estimates\@ft) from the true function.

of the estimatorj,. Further, Figures 9a and 9b show the estimateaft) and their detrended
versions for four different sample sizes, while on Figureoh@ can see the deviations in supremum
norm of the estimates from the true baseline hazard.

6 Conclusion

We dealt with Cox proportional hazards model under cengaimd measurement error and proved
the consistency of simultaneous estimators of the baskazard function and regression param-
eters. The estimators are constructed via maximization theeinfinite-dimensional compact set.
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Figure 8: Means, standard deviations and MAEs of the estisnait 3.
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Figure 9: Estimates and detrended estimate3f)

The recurrent algorithms for searching the maximum poirgsantained in [2] and can be applied
in this case.

In future research we intend to elaborate specific numemedhods to compute the estimates.
Also we intend to give the rate of convergence in terms ofatewn of the estimators from the true
values and show the asymptotic normality of some lineartfanals of the estimators.

Besides this based on our simulation results we are alsgdoioheck the consistency for the
regression spline or polynomial interpolation estimatairs\.
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Figure 10: Deviations in supremum norm of the estimates ) from the true function.
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