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SUMMARY

The paper proposes empirical likelihood confidence intervals for the density function in
the errors-in-variables model. We show that the empirical likelihood produces confidence
intervals having theoretically accurate coverage rate for both ordinary and super smooth
measurement errors. Some simulation studies are conducted to compare the finite sample
performances of the empirical likelihood confidence intervals and the z-type confidence
intervals based on Fan (1991)’s asymptotic normality theories.
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1 Introduction

Suppose X is a characteristic of interest from a random system and we want to estimate its prob-
ability density function fX(x). Many procedures exist in the literature for constructing either the
point or the confidence interval estimations for fX(x), as long as a sample from X is available.
From the simplest and intuitive graphical tools, such as the histogram, stem and leat plot, to the
more technical and powerful kernel smoothing methods, nonparametric density estimation and its
extension to various nonparametric curve estimations have attracted and still are drawing extensive
attentions from both theoretical and applied statisticians. See Silverman (1986) and Scott (1992)
for comprehensive introductions to the kernel density estimation. The existing literature mainly fo-
cuses on the point estimators and their asymptotic properties. The confidence interval, although not
investigated thoroughly, can be constructed based on those well developed theories. Hall (1991)
studied the coverage accuracy of the bootstrap confidence intervals by developing an Edgeworth
expansion for the kernel density estimator; Hall and Owen (1993) proposed an empirical likelihood
based simultaneous confidence interval for the density function, an analogue of Wilks’ Theorem
based on extreme value type asymptotic distribution was obtained. Inspired by a simulation study
which shows that confidence intervals produced by the kernel based percentile-t bootstrap do not
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have the coverage claimed by the theory, Chen (1996) suggested using empirical likelihood in con-
junction with the kernel method to construct confidence intervals for the density function. It is found
that the coverage discrepancy is due to a conflict between the prescribed undersmoothing and the
explicit variance estimate needed by the percentile-tmethod. Chen (1996) showed that the empirical
likelihood avoids this conflict by studentising internally, and the resulting confidence intervals have
theoretical coverage accuracy of the same order of magnitude! as the bootstrap. In the current re-
search, we will try to apply Chen (1996)’s method to errors-in-variable model in which the random
variable of interest cannot be observed directly, and the estimator of its density function has to be
constructed from the samples of the contaminated observations.

To be specific, the errors-in-variable model has the form of

Y = X + u, (1.1)

where X is the latent variable of interest but unobservable, instead, its surrogate Y , a contaminated
version of X by an additive measurement error u, can be observed. X and u are independent.
The distribution of u is usually assumed to be known. Although researchers tried to remove this
assumption in some other scenarios, it seems that in the case of estimating the density function of
X , assuming that the density function of u is known is necessary for the sake of identifiability.

It is well known that estimating the density function fX(x) of X is notorious difficult. The
commonly used method of estimating fX(x) is the so called deconvolution method. Suppose
Y1, Y2, . . . , Yn is a sample of size n from model (1.1). Let K be a kernel function, φK(t) be the
characteristic function of K, φu(t) be the characteristic function of u, and h be a positive number
depending on n. Define

Hn(z) =
1

2π

∫ ∞
−∞

exp(−itz) φK(t)

φu(t/h)
dt. (1.2)

Then the deconvolution kernel density estimator of X is given by

f̂n(x) =
1

nh

n∑
i=1

Hn

(
x− Yi
h

)
. (1.3)

It is easy to show that, if u is symmetric around 0, f̂n(x) is a real function. The limiting behavior
of the estimator (1.3) heavily depends on the tail of φu(t). The literature separate the measurement
error distributions into two cases:

(1). Ordinary smooth of order β: If the characteristic function φu(t) satisfies

d0|t|−β ≤ |φu(t)| ≤ d1|t|−β as t→∞, (1.4)

for positive constants d0, d1 and β.

(2). Super smooth of order β: If the characteristic function φu(t) satisfies

d0|t|β0 exp(−|t|β/γ) ≤ |φu(t)| ≤ d1|t|β1 exp(−|t|β/γ) as t→∞, (1.5)

for positive constants d0, d1, β and γ, real constants β0, β1.
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For more discussion on this classification and the impact on the limiting properties of (1.3), see Fan
(1991), Fan and Truong (1993) and the references therein. Typical examples of ordinary smooth
error distribution include double exponential distribution, symmetric gamma distribution, and ex-
amples of super smooth error distribution include normal distribution and Cauchy distribution.

The literature seems scant in constructing the confidence intervals for fX(x) in errors-in-variables
model. Although Fan (1991)’s asymptotic normality results might help us to construct a z-type con-
fidence interval, the resulting confidence interval might not have the desired coverage, due to the
confliction between the prescribed undersmoothing and the explicit variance estimate needed by the
z-type procedure.

The paper is organized as follows. After a brief introduction to empirical likelihood method-
ology, we shall extend Chen (1996)’s method in Section 2 to construct the empirical likelihood
confidence intervals for the density function of X in the errors-in-variables model with both or-
dinary and super smooth measurement errors; z-type confidence intervals based on Fan (1991)’s
asymptotic normality theories are developed in Section 3; some simulation studies are conducted in
Section 4 to compare the finite performances of the empirical likelihood confidence intervals and
the z-type confidence intervals, which are constructed based on Fan (1991)’s asymptotic normality
theories; the proof of the main results is postponed to Section 5.

Throughout this paper, for any general random variable V , we use fV and φV to denote its
density function and characteristic function, “=⇒d” to denote the convergence in distribution, and
χ2
1 to denote the χ2 distribution with 1 degree of freedom.

2 Empirical Likelihood Confidence Interval

The empirical likelihood was introduced by Owen (1988). As an alternative to the bootstrap tech-
nique, empirical likelihood gained a striking success theoretically and practically in constructing the
confidence intervals for the unknown parameters in various statistical models. See Owen (2001) for
a comprehensive introduction to the empirical likelihood methodology. For the purpose of illustra-
tion, suppose X1, X2, . . . , Xn is a sample of size n from a population with mean µ. By assigning
weights pi to Xi, the empirical likelihood of µ is defined as L(µ) = sup

∏n
i=1 pi, where the supre-

mum is taken over the set {(p1, . . . , pn) :
∑n
i=1 pi = 1,

∑n
i=1 piXi = µ}. For each µ value, the

optimal pi are found by some optimization procedures, the confidence interval for µ is then con-
structed by contouring the empirical likelihood function. Unlike the z-type intervals, no explicit
variance estimation is required in the empirical likelihood procedure.

Let K be a smooth r-th order kernel function, that is, for some integer r ≥ 2 and a constant κ,

∫
vjK(v)dv =


1, if j = 0,

0, if 1 ≤ j ≤ r − 1,

κ, if j = r.

Define the deconvolution kernel Hn(z) and the corresponding deconvolution kernel density estima-
tor f̂n(x) as in (1.2) and (1.3). If we further assume that fX(x) has continuous derivatives up to
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the r-th order in a neighborhood of x, then one can show that for both ordinary and super smooth
measurement errors, Ef̂n(x) = u(x), where

u(x) = fX(x) +
1

r!
κf (r)(x)hr + op(h

r). (2.1)

Similar to Chen (1996), we first introduce the empirical likelihood for u(x) as the mean of

Hni(x) = h−1Hn((x− Yi)/h). (2.2)

Then by properly removing the bias, we convert them into the confidence intervals for fX(x).

2.1 Ordinary Smooth Case

For this case, we will adopt the following technical assumptions:

(O1). The measurement error u is symmetric around 0.

(O2). φu(t)tβ → c and φ′u(t)tβ+1 → −βc as t → ∞, with some constant c 6= 0 and β ≥ 0.
Moreover, φu(t) 6= 0 for all t.

(O3). φK(t) is a symmetric function around 0, having r + 2 bounded integrable derivatives and
φK(t) = 1 +O(|t|r) as t→ 0, where r ≥ 2 is fixed.

(O4).
∫∞
−∞[|φK(t)|+ |φ′K(t)|]|t|βdt <∞,

∫∞
−∞ |t|

2β |φK(t)|2dt <∞.

(O5). fX(x) has continuous derivatives up to the r-th order.

(O6). The r-th order derivative of fX(x) is bounded.

(O7). h→ 0 and nh2β+1 →∞ as n→∞.

(O8). h→ 0 and nh2β+2r+1 → 0 as n→∞.

Assumption (O2) is an alternative statement of (1.4) to indicate that the measurement error distribu-
tion is ordinary smooth. (O2)-(O5) are the same as in Fan (1991) to derive the asymptotic normality
of f̂n(x). Although Fan and Liu (1997) pointed out that a weaker condition than that used in Fan
(1991) might lead to the same conclusion, we decide to keep Fan (1991)’s version in that these two
set of assumptions are indeed equivalent because of (O1). (O3) is sufficient to ensure that the kernel
K is of the order of r. (O7) is a typical condition used in deconvolution smoothing literature to trade
off the asymptotic bias and variance of the deconvolution kernel density estimator. Assumptions
(O1)-(O5) and (O7) suffice for the validity of empirical likelihood confidence interval for u(x) as in
Theorem 1, while (O1)-(O6) and (O8) are needed to guarantee the result stated in Theorem 2.

The empirical likelihood for u(x) is defined by L(u(x)) = sup
∏n
i=1 pi, where the supremum

is over the set of {(p1, p2, . . . , pi) :
∑
pi = 1,

∑
piHni(x) = u(x)}. The maximizer of pi, i =
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1, 2, . . . , n is obtained by using Lagrangian multiplier, the log empirical likelihood ratio for u(x)

has the form of

l(u(x)) = −2 log[nnL(u(x))] = 2

n∑
i=1

log[1 + λ(Hni(x)− u(x))],

where λ satisfies the following equation

1

n

n∑
i=1

Hni(x)− u(x)

1 + λ[Hni(x)− u(x)]
= 0. (2.3)

The following theorem states the asymptotic distribution of l(u(x)):

Theorem 1. Suppose the conditions (O1)-(O5) and (O7) hold. Then for any fixed x, l(u(x)) =⇒d

χ2
1.

Thus an empirical likelihood confidence interval for u(x) with nominal confidence level 1 − α
is {u(x) : l(u(x)) ≤ χ2

1(1− α)}, where χ2
1(1− α) denotes the (1− α)100-th percentile of χ2

1.
The above confidence interval is for u(x), but what we want is a confidence interval for fX(x).

As pointed out by Hall (1991) and Chen (1996), there are two ways to obtain the confidence interval
for fX(x). The first method is to shift the confidence interval for u(x) by the estimated dominant
bias term κf̂ (r)(x)hr/r! as in (2.1), where f̂ (r)(x) is defined by

f̂ (r)(x) =
1

nhr+1

n∑
i=1

H(r)
n

(
x− Yi
h

)
;

The second approach to implicitly correct the bias by under-smoothing, which can be implemented
by choosing h properly to reduce the bias of u(x). For this purpose, similar to derive l(u(x)), define

l(fX(x)) = 2

n∑
i=1

log[1 + λ(Hni(x)− fX(x))],

and λ satisfies
n∑
i=1

Hni(x)− fX(x)

1 + λ[Hni(x)− fX(x)]
= 0. (2.4)

The following theorem states the asymptotic distribution of l(fX(x)):

Theorem 2. Suppose the conditions (O1)-(O6) and (O8) hold. Then for any fixed x, l(fX(x)) =⇒d

χ2
1.

Thus an empirical likelihood confidence interval for fX(x) with nominal confidence level 1−α
is {fX(x) : l(fX(x)) ≤ χ2

1(1− α)}.
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2.2 Super Smooth Case

In the super smooth case, the second moment of Hni(x) does not have an explicit order as in the
ordinary smooth case, which makes it much harder to obtain similar results as Theorem 1 and 2.
Denote δn = Var(Hni). To begin with, we state the following assumptions needed for developing
the empirical likelihood confidence intervals in the super smooth case:

(S1). The measurement error u is symmetric around 0.

(S2). c1 ≤ |φu(t)||t|−β0 exp(|t|β/γ) ≤ c2 as t → ∞ with β, γ, c1, c2 > 0 and some real number
β0. φu(t) 6= 0 for all t.

(S3). φK(t) is symmetric and supported with [−1, 1], having the first r + 2 continuous derivatives.
Moreover, φK(t) ≥ c3(1− t)r+3 for t ∈ [1− η, 1] for some c3, η > 0.

(S4). φK(t) = 1 +O(|t|r) as t→∞.

(S5). fX(x) has continuous derivatives up to the r-th order.

(S6). δn →∞ and n/δn →∞ as n→∞.

(S7). δn →∞ and h2rn/δn → 0 as n→∞.

Assumption (S2) is an alternative statement of (1.5) to indicate that the measurement error distri-
bution is super smooth. It is slightly different from the one in Fan (1991) because of (S1). (S2)-(S5)
are similar to the conditions adopted in Fan (1991) to derive the asymptotic normality of f̂n(x). As
an example of a compacted support characteristic function of a kernel function, see Example 1 in
Fan and Truong (1993) or Simulation 2 in Section 4. Condition (S6) is needed for constructing the
empirical likelihood confidence interval of u(x), and (S7) is for fX(x), they depend on the band-
width h and play the same role in the super smooth case as (O6) and (O7) in ordinary smooth case.
Based on the upper and lower bounds of δn provided in Fan (1991), one may state (S6) and (S7) in
terms of n and h. We are not going to do so here for the sake of brevity.

The following theorem states the asymptotic distribution of l(u(x)):

Theorem 3. Suppose the conditions (S1)-(S6) hold. Then for any fixed x, l(u(x)) =⇒d χ
2
1.

Like the ordinary smooth case, one can obtain the confidence interval for fX(x) by shifting an
estimator of the dominant bias term in the expansion of u(x), which is the same as in the ordinary
smooth case, or implicitly correcting the bias by undersmoothing using the bandwidth suggested in
(S7). In fact, we have the following result:

Theorem 4. Suppose the conditions (S1)-(S5), and (S7) hold. Then for any fixed x, l(fX(x)) =⇒d

χ2
1.

As a consequence, the empirical likelihood confidence intervals for u(x) and fX(x) can be
constructed in a similar fashion as in the ordinary smooth case.
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3 Normal Theory Based Confidence Interval
Different confidence intervals for fX(x) can be constructed based on the asymptotic normality the-
ories developed in Fan (1991). For the sake of completeness, below we reproduce the results in Fan
(1991). For the ordinary smooth case, we have

Lemma 3.1. Under assumptions (O2)-(O6), if h = o(n−1/(2β+2r+1)), then

√
n(f̂n(x)− fX(x))

sn
=⇒d N(0, 1), (3.1)

where s2n = n−1
∑n
i=1H

2
ni(x) or the sample variance defined by

s2n = n−1
n∑
i=1

[
Hni(x)− H̄n(x)

]2
,

and H̄n(x) = n−1
∑n
i=1Hni(x), Hni(x) is defined by (2.2).

For the super smooth case, we have

Lemma 3.2. Under assumptions (S2)-(S5), if h ∼ (aγ log n/2)−1/β for some a > 1, then

√
n(f̂n(x)− fX(x))

sn
=⇒d N(0, 1), (3.2)

where s2n = n−1
∑n
i=1H

2
ni(x), Hni(x) is defined by (2.2), and β, γ are defined in (S2).

Therefore, by (3.1) and (3.2), a confidence interval of fX(x) with confidence level 1 − α for
both ordinary and super smooth measurement errors can be constructed as follows:

[f̂n(x)− z1−α/2sn, f̂n(x) + z1−α/2sn], (3.3)

where z1−α/2 is the (1− α/2)100-th percentile of standard normal distribution.
It is easy to see that explicit estimators of the variance of f̂n(x) are required in order to construct

the confidence interval (3.3), while these estimators are not needed in constructing the empirical
likelihood confidence interval.

4 Simulation Studies
In this section, we conduct two simulation studies to examine the finite sample performance of
the empirical likelihood confidence intervals proposed in Section 2, and compare them with the
z-type confidence intervals proposed in Section 3. In both simulation studies, 100 samples with
sample sizes n = 50, 100, 200 are generated from Y = X + u with ordinary and super smooth
measurement error distributions. The distribution fX(x) of X is chosen to be the standard normal,
and the confidence intervals are constructed for fX(0). The nominal confidence level is chosen to
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be 0.95, and for each simulation, we report the empirical coverage rate and the average length of
confidence interval. The computation for empirical likelihood method is made possible by the R
package emplik.

Simulation 1 (Ordinary Smooth Case): In this simulation, u follows the double exponential distribu-
tion with variance 1. The characteristic function φu(t) of u has the form of 2/(2 + t2) which is an
ordinary smooth distribution of order β = 2. The kernel function K is chosen to be standard normal
which is a second order kernel (r = 2). Based on the assumptions (O7) and (O8), the band width h
is chosen to be n−1/7, and from Fan and Truong (1993), the deconvolution kernel function Hn(z)

has the form of

Hn(z) =
1√
2π

exp

(
z2

2

)[
1− 1

2h2
(z2 − 1)

]
. (4.1)

The simulation results are reported in Table 1.

Table 1: Ordinary Smooth Case: Double Exponential Distribution

Sample Size n = 50 n = 100 n = 200

Types of CI EL-CI z-CI EL-CI z-CI EL-CI z-CI

Cov. Rate 0.92 0.90 0.94 0.93 0.95 0.94

Ave. Length 0.3771 0.4267 0.3296 0.3609 0.2918 0.3101

In Table 1, EL is the abbreviation for empirical likelihood, CI for confidence interval, Cov. for
coverage and Ave. for average. Similar abbreviations are used in Table 2.

From Table 1, we can see that the empirical coverage rates of empirical likelihood confidence
intervals are slightly closer to the nominal confidence level 0.95 than that of z-type confidence
intervals, and the average lengths of empirical coverage rates of empirical likelihood confidence
intervals are less than than that of z-type confidence intervals. This indicates that the empirical
likelihood confidence intervals outperforms the z-type confidence intervals.

Simulation 2 (Super Smooth Case): In this simulation, u has the standard normal distribution. The
characteristic function φu(t) of u has the form of exp(−t2/2) which is a super smooth distribution
of order β = 2. The kernel function K is chosen so that it has the characteristic function φK(t) =

(1−t2)3, 0 ≤ t ≤ 1, and and from Fan and Truong (1993), the deconvolution kernel functionHn(z)

has the form of

Hn(z) =
1

π

∫ 1

0

cos(tz)(1− t2)3 exp

(
t2

2h2

)
dt.

Based on the assumptions (S6) and (S7), the band width h is chosen to be (2 log n)−1/2. The
simulation results are reported in Table 2.

It is well known that estimating the density function fX(x) in super smooth measurement error
models is rather difficult, the simulation results in Table 2 also confirm this point. From Table 2, we
can see that the empirical coverage rates from both methods are all less than the nominal confidence
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Table 2: Super Smooth Case: Standard Normal Distribution

Sample Size n = 50 n = 100 n = 200

Types of CI EL-CI z-CI EL-CI z-CI EL-CI z-CI

Cov. Rate 0.85 0.86 0.88 0.87 0.93 0.93

Ave. Length 0.3734 0.4492 0.4058 0.4916 0.4545 0.5780

level 0.95 when the sample size is small, but they approach to 0.95 as the sample size gets bigger.
Like Simulation 1, the average lengths of empirical coverage rates of empirical likelihood confidence
intervals are all less than than that of z-type confidence intervals. Once again, this indicates that the
empirical likelihood confidence intervals behave better than the z-type confidence intervals.

One interesting phenomenon found in the simulation studies above is that the average length
of the both types of confidence intervals are decreasing in Table 1 and increasing in Table 2 when
sample size gets bigger.

5 Proofs of Main Results
This section includes the proofs of main results in Section 2.

Proof of Theorem 1: To derive the asymptotic distribution of l(u(x)), we have to find the magnitude
of λ first. For this purpose, let Zni = Hni(x)− u(x), Mn = max1≤i≤n |Zni|. Then equation (2.3)
can be written as

0 =

∣∣∣∣∣ 1n
n∑
i=1

Zni −
λ

n

n∑
i=1

Z2
ni

1 + λZni

∣∣∣∣∣ .
Applying triangular inequality on the right hand side, we have

|λ|
n

n∑
i=1

Z2
ni

1 + λ|Zni|
≤

∣∣∣∣∣ 1n
n∑
i=1

Zni

∣∣∣∣∣ . (5.1)

From Fan (1991), one can show that

EZ2
ni = E|Hni(x)− u(x)|2 =

v(x)

h2β+1
[1 + o(1)],

where

v(x) =
fX(x)

2π|c|

∫ ∞
−∞
|t|2β |φK(t)|2dt, 0 6= c = lim

t→∞
tβφu(t).

Therefore, E
(
h(2β+1)/2Zni

)2
= O(1), which implies Mn = sup1≤i≤n |Zni| = op(

√
nh−β−1/2).

Also, one can easily show that

1

n

n∑
i=1

Zni = Op

(
1√

nh2β+1

)
,

1

n

n∑
i=1

Z2
ni = Op

(
1

h2β+1

)
. (5.2)
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By (5.1), one has

|λ|
1 + λMn

· 1

n

n∑
i=1

Z2
ni ≤

∣∣∣∣∣ 1n
n∑
i=1

Zni

∣∣∣∣∣
and from (5.2), we obtain

|λ| ·Op(h−2β−1) ≤ [1 + |λ|op(
√
nh−β−1/2)] ·Op(n−1/2h−β−1/2)

which implies

|λ| = Op

(
hβ+1/2

√
n

)
. (5.3)

Denote rni = λZni, then from (5.3)

max
1≤i≤n

|rni| = λMn = Op(n
−1/2hβ+1/2) · op(n1/2h−β−1/2) = op(1). (5.4)

Using the notations defined above, (2.3) can be written as

1

n

n∑
i=1

Zni

(
1− rni +

r2ni
1 + rni

)
=

1

n

n∑
i=1

Zni −
λ

n

n∑
i=1

Z2
ni +

λ2

n

n∑
i=1

Z3
ni

1 + rni
= 0.

Note that∣∣∣∣∣λ2n
n∑
i=1

Z3
ni

1 + rni

∣∣∣∣∣ ≤ λ2Mn

n

n∑
i=1

Z2
ni(1 + rni)

−1 = n−1h2β+1 ·Op(h−2β−1) · op(n1/2h−β−1/2)

= op(1/
√
nh2β+1).

Therefore, we may write

λ =

(
1

n

n∑
i=1

Z2
ni

)−1
· 1

n

n∑
i=1

Zni + βn, βn = op

(√
h2β+1

n

)
. (5.5)

Also, from (5.4) we can obtain that

log(1 + rni) = rni −
r2ni
2

+ ηni,

where
P (|ηni| ≤ B|rni|3, 1 ≤ i ≤ n)→ 1, for some finite B > 0 (5.6)

as n→∞.
Denote

Sn1 =
1

n

n∑
i=1

Zni, Sn2 =
1

n

n∑
i=1

Z2
ni.
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Then from (5.5), we obtain

l(u(x)) = 2

n∑
i=1

log(1 + rni) = 2

n∑
i=1

rni −
n∑
i=1

r2ni + 2

n∑
i=1

ηni

= 2nSn1[S−1n2 Sn1 + βn]− n[S−1n2 Sn1 + βn]2Sn2 + 2

n∑
i=1

ηni

= nS2
n1S

−1
n2 − nβ2

nSn2 + 2

n∑
i=1

ηni

= nS2
n1S

−1
n2 + 2

n∑
i=1

ηni + op(1)

from (5.2) and (5.5). By (5.6),

|2
n∑
i=1

ηni| ≤ 2B

n∑
i=1

|rni|3 = 2B|λ|3
n∑
i=1

|Zni|3 ≤ 2nB|λ|3MnSn2 = op(1)

from (5.2), (5.5) and the fact Mn = sup1≤i≤n |Zni| = op(
√
nh−β−1/2).

From Theorem 2.1 in Fan (1991), we have nS2
n1S

−1
n2 =⇒d N(0, 1). Therefore, we finally obtain

l(u(x)) =⇒d χ
2
1.

This finishes the proof. �

Proof of Theorem 2: Similar to Chen (1996), let

wi(x) = Hni(x)− fX(x), w̄j =
1

n

n∑
i=1

wji (x), j = 1, 2.

First we need to find the order of w̄1 and w̄2. Consider the expectation of w̄2,

Ew̄2 = E[Hni(x)−EHni(x)]2+[EHni(x)−fX(x)]2 = O

(
1

h2β+1

)
+O(h2r) = O

(
1

h2β+1

)
,

therefore, w̄2 = Op(1/h
2β+1). For w̄1, we have

Ew̄2
1 = E

[
1

n

n∑
i=1

Hni(x)− EHni(x) + EHni(x)− fX(x)

]2

≤ 2E

[
1

n

n∑
i=1

Hni(x)− EHni(x)

]2
+ 2 [EHni(x)− fX(x)]

2

= O

(
1

nh2β+1

)
+O(h2r)
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which implies w̄1 = Op(1/
√
nh2β+1 + hr). Based on the result for w̄2, we can also verify that

sup
1≤i≤n

|Hni(x)− fX(x)| = op(n
1/2h−β−1/2). (5.7)

By similar argument as in u(x) case, we get

|λ|w̄2

1 + |λ| sup1≤i≤n |Hni(x)− fX(x)|
≤ |w̄1|.

Therefore, based on the asymptotic order of w̄1, w̄2 and (5.7), by (O7), we obtain that

λ = Op

(√
h2β+1

n
+ h2β+r+1

)
. (5.8)

Similar to the case of u(x), we can write (2.4) as

w̄1 − λw̄2 + λ2
1

n

n∑
i=1

w3
i

1 + λwi
= 0.

Note that

|λ| · sup
1≤i≤n

|wi| = Op

(√
h2β+1

n
+ h2β+r+1

)
· op(n1/2h−β−1/2) = op(1),

we have∣∣∣∣∣λ2n
n∑
i=1

w3
i

1 + λwi

∣∣∣∣∣ ≤ λ2 sup1≤i≤n |wi|
n

n∑
i=1

w2
i (1 + λwi)

−1

= Op

(√h2β+1

n
+ h2β+r+1

)2
 ·Op(h−2β−1) · op(n1/2h−β−1/2)

= op

(
1√

nh2β+1

)
+ op(

√
nhβ+2r+1/2) + op(h

r) = op(1).

Therefore, we may write

λ = w̄−12 w̄1 + βn, βn = op

(√
h2β+1

n

)
+ op(

√
nh3β+2r+3/2) + op(h

2β+r+1). (5.9)

Also, from the fact that max1≤i≤n |λwi| = op(1), we can obtain that

log(1 + λwi) = λwi −
λ2w2

i

2
+ ηni,

where
P (|ηni| ≤ B|λwi|3, 1 ≤ i ≤ n)→ 1, for some finite B > 0 (5.10)
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as n→∞.
Then from (5.9), we obtain

l(fX(x)) = 2

n∑
i=1

log(1 + λwi) = 2λ

n∑
i=1

wi − λ2
n∑
i=1

w2
i + 2

n∑
i=1

ηni

= 2nw̄2[w̄−12 w̄1 + βn]− n[w̄−12 w̄1 + βn]2w̄2 + 2

n∑
i=1

ηni

= nw̄2
1w̄
−1
2 − nβ2

nw̄2 + 2

n∑
i=1

ηni

= nw̄2
1w̄
−1
2 + 2

n∑
i=1

ηni + op(1)

from the order of w̄2 and (5.9). By (5.10),∣∣∣∣∣2
n∑
i=1

ηni

∣∣∣∣∣ ≤ 2Bλ3
n∑
i=1

|wi|3 = 2B|λ|3
n∑
i=1

|wi|3 ≤ 2nB|λ|3w̄2 · sup
1≤i≤n

|wi| = op(1) (5.11)

from (5.8), the order of w̄2 and the fact sup1≤i≤n |wi| = op(
√
nh−β−1/2).

From Corollary 2.1 in Fan (1991), we have nw̄2
1w̄
−1
2 =⇒d N(0, 1). The result of Theorem 2

follows. �

Proof of Theorem 3: As in the ordinary smooth case, denote Zni = Hni(x) − u(x), where u(x) =

EHni(x). We have

Mn = sup
1≤i≤n

|Zni| = op(
√
nδn), Sn1 =

1

n

n∑
i=1

Zni = Op(
√
δn/n), Sn2 =

1

n

n∑
i=1

Z2
ni = Op(δn).

By assumption (S6), one can obtain that

λ = Op(1/
√
nδn). (5.12)

Let ri = λ[Hni(x)− u(x)]. From (5.12), we have

max
1≤i≤n

|ri| = λ max
1≤i≤n

|Hni(x)− u(x)| = Op(1/
√
nδn) ·Op(

√
nδn) = op(1). (5.13)

Therefore,
λ2

n

n∑
i=1

[Hni(x)− u(x)]3

1 + ri
= op(

√
δn/n).

Similar to the ordinary smooth case, by expanding (2.3), we have

λ = S−1n2 Sn1 + βn, βn = op(1/
√
nδn).
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From (5.13), one also has

log(1 + ri) = ri −
r2i
2

+ ηi,

where
P (|ηi| ≤ B|ri|3, 1 ≤ i ≤ n)→ 1

for some finite B as n→∞. As in the ordinary smooth case, we have

l(u(x)) = nS−1n2 S
2
n1 − nβ2

nSn2 + 2

n∑
i=1

ηi.

But

nβ2
nSn2 = n · op(1/nδn) · δn = op(1), |2

n∑
i=1

ηi| ≤ 2B|λ|3Mn = op(1).

Therefore, l(u(x)) = nS−1n2 S
2
n1 + op(1). Hence Theorem 3 follows from

√
nS
−1/2
n2 Sn1 =⇒d

N(0, 1), see Fan (1991). �

Proof of Theorem 4: The second approach is made possible by the facts

Ew̄2
1 = O(δn/n+ h2r)

which implies w̄1 = Op(
√
δn/n+ hr), and Ew̄2 = δn. Therefore,

|λ|Op(δn)

1 + |λ|op(
√
nδn)

= Op

(√
δn/n+ hr

)
.

Then from (S7), we have

λ = Op

(
1√
nδn

+
hr

δ2n

)
. (5.14)

Note that sup1≤i≤n |wi| = op(
√
nδn +

√
nh2r) = op(

√
nδn), hence

|λ| · sup
1≤i≤n

|wi| = Op

(√
1

nδn
+
hr

δn

)
· op(

√
nδn) = op(1),

we have ∣∣∣∣∣λ2n
n∑
i=1

w3
i

1 + λwi

∣∣∣∣∣ ≤ λ2 sup1≤i≤n |wi|
n

n∑
i=1

w2
i (1 + λwi)

−1

= Op

((
1√
nδn

+
hr

δn

)2
)
·Op(δn) · op(

√
nδn).

Therefore, from

w̄1 − λw̄2 + λ2
1

n

n∑
i=1

w3
i

1 + λwi
= 0,
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we have

λ = w̄−12 w̄1 + βn, βn = op

(
1√
nδn

)
+ op(

√
nh2r/

√
δ3n) + op(h

r/δn). (5.15)

Also, from the fact that max1≤i≤n |λwi| = op(1), we can obtain that

log(1 + λwi) = λwi −
λ2w2

i

2
+ ηni,

where
P (|ηni| ≤ B|λwi|3, 1 ≤ i ≤ n)→ 1, for some finite B > 0 (5.16)

as n→∞.
Then from (5.15) and w2 = Op(δn), we obtain

l(fX(x)) = nw̄2
1w̄
−1
2 + 2

n∑
i=1

ηni + op(1).

By (5.16),∣∣∣∣∣2
n∑
i=1

ηni

∣∣∣∣∣ ≤ 2Bλ3
n∑
i=1

|wi|3 = 2B|λ|3
n∑
i=1

|wi|3 ≤ 2nB|λ|3w̄2 · sup
1≤i≤n

|wi| = op(1)

from (5.14), the order of w̄2 and the fact sup1≤i≤n |wi| = op(
√
nδn).

From Corollary 2.2 in Fan (1991), we have nw̄2
1w̄
−1
2 =⇒d N(0, 1). Therefore, we finally obtain

l(fX(x)) =⇒d χ
2
1. This finishes the proof. �
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