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SUMMARY

There has been extensive research interest in analysis of survival data with covariates sub-
ject to measurement error. The focus of the most discussions is on the proportional hazards
(PH) model, although there are some work concerning the accelerated failure time (AFT)
model and the additive hazards (AH) model. Relatively little attention has been directed to
studying the impact of measurement error on other models, such as the proportional odds
(PO) model. The proportional odds model is an important alternative when PH, AFT or
AH models are not appropriate to fit data. In this paper we discuss two inference methods
to accommodate measurement error effects under the PO model, in contrast to the naive
analysis that ignores the covariate measurement error. Numerical studies are conducted to
evaluate the performance of the proposed methods.
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1 Introduction

Covariate measurement error is a typical feature that is present with survival data. There has been
extensive research on addressing covariate measurement error in survival analysis, where the focus is
on proportional hazards (PH) models. Prentice (1982) pioneered the so-called regression calibration
method to correct for measurement error effects under the rare event assumption. A large body of
various inference methods have since then been developed by many authors, including Nakamura
(1992), Hu, Tsiatis and Davidian (1998), Zhou and Wang (2000), Huang and Wang (2000), Xie,
Wang and Prentice (2001), Song and Huang (2005), Li and Ryan (2004, 2006), and Yi and Lawless
(2007), among many others.

Recently, research attention has been extended to alternative models when the proportionality
assumption attached to the PH model fails. For instance, Giménez, Bolfarine and Colosimo (1999,
2006), Yi and He (2006), and He, Yi and Xiong (2007), among others, considered covariate measure-
ment error problems under the accelerated failure time (AFT) models; while with additive hazards
(AH) regression Kulich and Lin (2000), Sun, Zhang and Sun (2006), and Sun and Zhou (2008)
developed inference methods to accommodate covariate measurement error.

Relatively little attention has been directed to studying the impact of measurement error on other
models, such as the proportional odds (PO) model (Bennett 1983). The proportional odds model
is an important alternative when PH, AFT or AH models are not appropriate to fit data (Yang and
Prentice 1999). In this paper, in contrast to the naive analysis that ignores the covariate measurement
error, we discuss two inference methods to accommodate measurement error effects under the PO
model.

The remainder is organized as follows. Notation and model formulation are introduced in Sec-
tion 2. In Section 3 we describe two inference methods to account for measurement error in co-
variates. The performance of the proposed methods is assessed empirically in Section 4. General
discussion is included in Section 5.

2 Notation and Model Formulation

For the survival process, let 7; and C; be the survival and censoring times for subject ¢, respectively,
and ¢; be the censoring indicator variable taking 1 if 7; < C; and 0 otherwise, i = 1,2,...,n. Let
Y; = min(T;, C;) for ¢ = 1,...,n. Let X; be the vector of covariates subject to possible measure-
ment error, and Z; be the vector of covariates free of error. As a common practice, independent
censoring is assumed here. That is, conditional on covariates, 7; and C; are independent.

2.1 Proportional Odds Model

Let F'(t) be the distribution function of T;. Response variable T; is characterized by the proportional
odds model, given by

F(T)

1—F(T) é ()T) exp{B,;X; + B.Z;}, 2.1
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where 3 = (3},3,)" is the vector of regression parameters, and Fy(t) represents the baseline
distribution function that is known up to unknown parameter c, say. If Ro(t) = Fo(t)/(1 — Fo(t)),
then model (2.1) becomes

Ro(T;) exp{B,X; + B.7Z;}

F(T;) = , 22
) 1+ Ro(T3) exp{B,X; + B.Zi} @2
yielding, equivalently, the density function
ro(T;) exp{B.X; + BLZ;
71y = — AT eiB X + B 7:) 2.3)

(14 Ro(T;) exp{B,X; + BLZ:}|*’
where ro(t) = R} (t) = fo(t)/{1 — Fo(1)}? with fo(t) = (%)

2.2 Measurement Error Model

Let X be an observed version of covariate X;. X; and X are assumed to follow a classical additive
measurement error model, a model which is perhaps the most widely used in practice (e.g., Li and
Lin 2003; Greene and Cai 2004; Carroll et al. 2006). That is, conditional on covariates X; and Z;,
response T; and censoring time C;,

Xr = Xz +e;, (24)

where e; follows, independent of other variables, a normal distribution with mean 0 and covariance
matrix 3. = [o,]. To emphasize estimation on the response parameters which are of prime interest,
here we treat the parameters in 3, as known or estimated from an independent sample. Discussion
on this treatment is given in Section 5.

2.3 Covariate Process
Assume that X; is modeled by the linear mixed model
Xi =vZ; + S;u;, (2.5)

where ~ is an array of regression parameters, S; is an array of covariates, and u; = (u;1, ..., us)" is a
vector of random effects that are independent of the errors e;. The model is flexible to cover a broad
class of random effects models. For instance, with - set to be zero, setting S; = (1,¢)" leads to the
linear growth-curve model that is often discussed in the literature (e.g., Wulfsohn and Tsiatis 1997;
Tseng, Heieh and Wang 2005), usually together with a multivariate normal distributional assumption
N, (p,, X,,) for random effects u;. Other specifications of S; can describe more complex nonlinear
form of X;.

3 Inference Methods

3.1 Regression Calibration

Let 7 = (87, a",~")" be the vector containing all the related parameters, where 3 is the vector of
regression parameters, c is the vector of parameters characterizing the baseline distribution function
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Fy(t), and -y is comprised of the parameters associated with the random effect model in the covariate
process. The likelihood function of 1 contributed from subject ¢ is then given by

Li(n) = {F(YilX;, Z:)}* {1 = F(Yi|X3, Zo) ', 3.1
and the likelihood function for 7 is

L(n) = H Li(n). (3.2)

If covariates X; are free of measurement error, inference about the 7 parameter can be carried out by
the maximum likelihood method. That is, maximizing L(n) with respect to 7 leads to the maximum
likelihood estimator of 7.

However, when X is subject to measurement error, the observed surrogate X7 may differ from
X, and replacing X; with X7 in the likelihood function to perform inference about the parameter
7 may lead to biased results. One strategy to correct the resulting bias is to employ the so-called
regression calibration method (Prentice 1982, Carroll et al. 2006). That is, we first replace X,; with
its conditional expectation E(X;|X?,Z;) in the likelihood function L(n), and then maximize the
resulting function with respect to 1. The bootstrap method can be used to determine the standard
error of the resulting estimator of 7).

To implement the regression calibration method, we need to determine E(X;|X}, Z;), which is
a direct result from the availability of the conditional distribution f(X;|X?,Z;). Given the model
setup described in the previous section, the condition distribution is given by

F(X7X4, Zi) f(Xi]Z;)

TOGIXE20) = T X, 20) £ (X 20) X,

where f(X¥|X;,Z;) is determined by (2.4) and (2.5), and f(X;|Z;) is determined by (2.5). In
particular, when u; ~ N(u,,, 3,,), we obtain that X;|Z; ~ N(S;u,, +vZ;,S;X%,S}). By the as-
sumption of additive measurement error model that X*|(X;, Z;) ~ N(X;, 3.), the conditional dis-
tribution of X; given (X7, Z;) is a normal distribution with mean S; u,, +~vZ; +S;3,S}(S;32,S; +
o) HX; - Sip, —VZy).

3.2 Observed Likelihood

Under the layout of these models, one may carry out the likelihood-based analysis to perform esti-
mation of the parameters. The likelihood function of 7 contributed from subject ¢ is given by

L) = {F (VX 20} {1 = FOGIXT 20},

where the probability density function is determined by

F(6IXE Z0) = / FtaIX, Z) (KA XE Z0)dX, (33)
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and the observed cumulative distribution function is determined accordingly by

F(t|X:,Z;)

t;
F(0[X;, Zo)do
0

/ / X0, Z0) F(Xi[X?, Z)dXd
0

/{f(xiXf,zi>-/0"'f<vxi,zi)dv}dxi

= / (XX, Z) F (X5, Z;)dX;

with the function F'(.) being determined by (2.2).
In the formulation here we assume nondifferential measurement error mechanism, i.e., f(¢;| X}, X;, Z;) =
f(t:|X;, Z;). Consequently, the observed likelihood function is

L*(n) =[] L), (3.4)
=1

where
1— 67

&y
Lin) = { / f(ti|xi7zi>f<xi|xr,zndxz} {1 - / f(xz-Xr,zi>F<ti|Xi,zi>dxi}

Inference about 1) can be performed based on the observed likelihood function L*(n). Max-
imizing L*(n) gives the maximum likelihood estimator of 1), denoted by 7. Under suitable con-
ditions, v/n(7n — 1) has an asymptotic normal distribution with mean 0 and covariance matrix
[E{(@E;‘ (m)/on")(0¢F (7])/817)}} 1, where £f(n) = log L¥(n). Some details are included in the
appendix.

Directly maximizing L*(n) however is not possible, since (3.4) does not have a closed form due
to the involvement of nonlinear functions in the integrations. A remedy to this complication is to

invoke numerical approximations such as the Monte Carlo algorithm. To be specific, let £*(n) =
ST 03 (m). Note that

1=1"
ti(m) = logLi(n)

Specify a large integer N. We generate xz(.l)7 reey xl(.N) from the distribution f(X;|X},Z;) fori =
1,...,n. Define

N N

~ 1 . 1 .

£ (m) = b log {N Zﬂmx?%zi)} +(1—6)log {1 -5 jF(WEJ%z»},
j=1 j=1
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and 0*(n) = > Zj(n) Then we use £*(n) to approximate £*(n) and maximize £*(n) to obtain

~ - —1
an estimator of 7. An estimate of the covariance matrix of 77 is given by | Y7, (9¢5 /On"™) (9} ] 377)] .

4 Empirical Studies

In this section we conduct simulation studies to assess the performance of the proposed approaches,
as opposed to the naive analysis which ignores covariate measurement error.

4.1 Design of Simulation

We consider a single covariate X; for simplicity. Sample size is set to be 200, and 500 simulations
are run for each of the parameter configurations. For each subject ¢, the covariate Z; is generated
from a binomial distribution Bin(1, 0.5), representing each subject is randomly assigned to either
treatment or control arms, for instance. The covariate X; is generated from the linear mixed model

Xi = w0 + v Zi,

where we set u; = (0, u;1)" to follow a bivariate normal distribution with mean g = (4.173, —0.0103)
and covariance matrix

1.24 —0.0114
—0.0114  0.003

> =

to mimic an HIV clinical trial as described in Tsiatis and Davidian (2004). Surrogate X is generated
from the error model X} = X; + ¢; with e; ~ N(0,02).
The survival times are generated based on the proportional odds model

F(T;) Fo(Ty)
1-F(T;) 1-Fy(Ty)

exp(BeX; + B.Z;), i =1,2,...,n

where Fy(t) is the baseline distribution function. We particularly consider two parametric modeling
for Fy(t) by using (1) a log-logistic distribution and (2) a Weibull distribution.
To be specific, in the first case, we set Fy(t) to be a log-logistic distribution

Fo(t) =1—{1+ (aat)**} !

with ay = 5 and ap = 2. That is, for the ith subject, we first generate a random variate v; ~ U[0, 1],
and calculate the survival time 7T; by

}1/012

T;= ] exp{— (8. Xi + B:Z;)}

i
af?(1 —v;
In the second case, we set F(t) to be a Weibull distribution

Fo(t) =1 — exp{—(a1t)*?}
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with oy = 1 and s = 1.5. The survival times can be generated similarly like the log-logistic case:

1 V; 1o

T, = —{log [ 2 exp{~ (8. Xi + B.Z)} +1|}
fo%1 1—wv;

where v; ~ U[0, 1].

The censoring times are generated independently from an exponential distribution with a fixed
mean to produce roughly 20% and 40% censoring rates. We assess the performance of the proposed
methods under a variety of situations. Different configurations for the magnitude o2 of measurement
error are considered, with 02 = 0,0.25, and 0.6 to feature increasing degrees of measurement error
in covariate X,;. The number N of the Monte Carlo simulations is chosen as 5000.

4.2 Simulation Results

We compare the performance of the three methods: (1) the naive method with the true covariate
X;; directly replaced by its surrogate X, (2) the regression calibration approach which replaces the
true covariate X; with its conditional expectation E(X;| X, Z;), and (3) the observed likelihood
method. Specifically, we report on the results of the bias of the estimates (Bias), the empirical
standard error (SEE), the model based standard error (SEM), and the coverage rate (CR) for 95%
confidence intervals of the parameters. In particular, for the case that the baseline distribution is
modeled by a log-logistic distribution, Tables 1.1 and 1.2 report the results for the 3 parameters by
varying the magnitude of the covariate effects, and Tables 1.3 and 1.4 report the results for the o
parameter related to the baseline distribution. Similarly, Tables 2.1 to 2.4 display the results for the
case that the baseline distribution is set as a Weibull distribution.

The impact of ignoring measurement error depends on the magnitude of error as well as the
covariate effects, and this is evident from the results obtained from the naive analysis. If the true
error-prone covariate effect is not zero, it is seen that as the magnitude of the measurement error
becomes severe, the bias of the estimate for the error prone covariate effect increases while the
associated standard error tends to get smaller; consequently, the corresponding coverage rate for the
95% confidence intervals becomes farther off the nominal level 95%. When the covariate effect of
the error prone covariate is zero, then ignoring measurement error does not appear to have impact on
estimation. The point estimate, standard error and the coverage rate all seem to be satisfactory, and
they are not shown to be obviously affected by varying degrees of measurement error. The impact on
estimation of the error-free covariate effect is not apparent. The finite sample bias and the associated
standard error for the estimate of 3, are fairly reasonable and stable as the degree in error changes,
and the coverage rate for the confidence intervals agrees well with the nominal level 95%.

On the other hand, it is interesting to see that ignoring covariate measurement error has an effect
on estimation of the parameters of the baseline distribution function. If the true error-prone covariate
effect exists, then the finite sample bias tends to increase as the magnitude of error increases, whereas
the standard error seems to be relatively stable to the change of the error degree. The joint impact is
also evident from the discrepancy between the coverage rate of the 95% confidence intervals and the
nominal level. However, when the true error-prone covariate effect does not exist, the naive analysis
does not appear to influence estimation of the « parameter. When the censoring percentage and the
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baseline distribution change, we observe the similar impact of measurement error on estimation of
the parameters.

In implementing the regression calibration approach, we employ the bootstrap method with 1000
runs for each setting to calculate the model-based standard error (SEM). As the error effect is par-
tially adjusted through the replacement of the error contaminated covariate by its expected value
given the observed covariate, the performance of the regression calibration method on estimation of
the 3 parameters is greatly improved in contrast to that of the naive method. In the case that 3, is not
zero, the regression calibration produces much smaller finite sample biases for the estimates of both
the 3, and 3, parameters than the naive method does; if 3, is zero, the estimates from both methods
are quite comparable. The standard errors obtained from the regression calibration are greater than
those obtained from the naive analysis, but the corresponding coverage rates are reasonably close
to the nominal value, regardless of the value of 3,. The effect of the censoring percentage and
the magnitude of measurement error on the performance of the regression calibration seems quite
similar to that on the naive analysis. Although it is observed that the regression calibration method
can correct or partially correct for the bias induced by measurement error when estimating the 3
parameters, it is interesting to see that it does not necessarily do this for estimation of the parameters
of the baseline distribution. See the settings with 2 = 0.6 in Table 1.3, for example.

Finally, we examine the performance of the observed likelihood approach which fully accom-
modates the measurement error effects in inferential procedures. In actual implementation, 5000
simulations are run for each configuration when using the Monte Carlo integration algorithm. It is
seen that the performance of this method is satisfactory in all the settings. This method further im-
proves the results obtained from the regression calibration method. Unlike the regression calibration
approach, the observed likelihood method gives good estimates for the parameters of the baseline
distribution functions. The observed likelihood approach produces reasonably small finite sample
biases for both the 3 and « parameters and good coverage rates for the 95% confidence intervals.
The standard errors resulted from the observed likelihood and the regression calibration methods are
fairly close in most settings. The censoring percentage and the degree of measurement error have
the similar effects on the performance of the observed likelihood method to those for the regression
calibration approach.

In summary, the naive analysis with covariate measurement error ignored would often lead to
biased results, whereas the regression calibration approach improves the results a lot, and its per-
formance is reasonably satisfactory for many settings but not all. The observed likelihood method
behaves the best and outperforms the other two methods. It can not only adjust for the measurement
error effects on estimation of the covariate effects, but also produce reasonable estimates for the
parameters of the baseline distribution function.

5 Discussion

The impact of covariate measurement error is well documented for survival models such as propor-
tional hazards, accelerated failure time and additive hazards models. Various methods have been
developed to correct for effects induced by mismeasured covariates. In this paper, we consider an
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alternative, the proportional odds model, which is useful for survival analysis. Our numerical stud-
ies demonstrate that the naive analysis with covariate error ignored would lead to biased results. To
correct for error effects, we describe two methods: the regression calibration and the observed like-
lihood methods. Empirical studies demonstrate satisfactory performance of the observed likelihood
method. They also suggest that the regression calibration approach dramatically outperforms the
naive method, and the performance of the regression calibration is quite comparable to the observed
likelihood in most of the settings we consider.

Covariate measurement error is a common feature in many applications. In specific applications,
often it is known that some covariates are subject to measurement error, but there is a lack of addi-
tional data sources, such as a validation subsample or replicated measurements for those covariates,
that can be used feasibly to facilitate the estimation of the measurement error parameters. Under
such a circumstance, a viable strategy is to conduct sensitivity analyses to evaluate how sensitive the
estimates of the response parameters are affected by different degrees of measurement error. Typi-
cally, one may choose a set of given values of the parameters for the measurement error model, and
repeatedly conduct estimation on the response parameters to see what patterns may be unfolded.
This strategy can enhance our understanding of the measurement error effects on individual data
analysis.
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Table 1.1: Simulation Results on the Regression Coefficients Obtained from the Parametric Approach. The True Baseline Distribution
Follows A Log-logistic Distribution, and the Error-Prone Covariate has An Effect with 5, = —1.

Censoring Measurement Naive Method Regression Calibration Likelihood Method
Rate Error Parameter Bias® SEM SEE CR Bias SEM SEE CR Bias SEM SEE CR
02 =0 Bz =—=1 .0.012 0.134 0.133 0.952 -0.012 0.139 0.133 0.962 -0.012 0.134 0.133 0.952

B =05 0.016 0.262 0.259 0.950 0.016 0.270 0.259 0.956 0.016 0.262 0.259 0.950
Bz=—=1 0187 0.119 0.121 0.614 0.021 0.148 0.145 0.948 -0.017 0.160 0.161 0.954

20% 0?2 =0.25
B.=0.5 0.019 0.262 0.268 0.952 0.018 0.271 0.270 0.958 0.037 0.273 0.275 0.952
62 =06 Bz=—1 0363 0.104 0.105 0.086 0.051 0.161 0.157 0.946 -0.023 0.192 0.194 0.964
B.=0.5 0.004 0261 0.271 0.944 0.002 0.271 0.270 0.950 0.040 0.283 0.286 0.946
02— 0 Bz =—=1.0.020 0.147 0.146 0.948 -0.020 0.154 0.145 0.962 -0.020 0.147 0.146 0.948
B.=0.5 0.017 0.285 0.278 0.956 0.016 0.295 0.278 0.958 0.017 0.285 0.278 0.956
40% o2 — 025 Br=—10.187 0.130 0.132 0.668 0.021 0.162 0.157 0.950 -0.017 0.175 0.176 0.954
B.=0.5 0.009 0.284 0.284 0.958 0.005 0.295 0.286 0.962 0.026 0.296 0.295 0.956
2 =06 Br=-1 0362 0.114 0.115 0.130 0.050 0.175 0.170 0.940 -0.028 0.211 0.211 0.966

B.=0.5 -0.006 0.283 0.285 0.960 -0.008 0.294 0.286 0.962 0.032 0.307 0.305 0.964

“Bias: bias of the estimate; SEM: model-based standard error; SEE: empirical standard error; CR: 95% coverage rate. The SEM from regression calibration approach
is calculated by the bootstrap method with B = 1000. The likelihood method uses Monte Carlo integration algorithm with N = 5000.
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Table 1.3: Simulation Results on The Baseline Function Parameters Obtained from The Parametric Approach. The True Baseline
Distribution Follows A Log-logistic Distribution. The True Values are 3, = —1, 8, = 0.5, a; = 5 and ay = 2.

He, Xiong & Yi

Censoring Measurement Naive Method Regression Calibration Likelihood Method
Rate Error Parameter Bias® SEM SEE CR Bias SEM SEE CR Bias SEM SEE CR
o2 =0 log(a1)  .0.004 0.260 0.254 0.954 -0.004 0.266 0.254 0.952 -0.004 0.260 0.254 0.954
log(az)  0.010 0.065 0.062 0.972 0.010 0.066 0.062 0.964 0.010 0.065 0.062 0.972
20% o2 — 025 log(e1) 0362 0.246 0.254 0.666 -0.011 0.296 0.300 0.944 -0.012 0.291 0.298 0.940
log(ae)  -0.021 0.065 0.066 0.938 -0.021 0.065 0.066 0.932 0.017 0.069 0.071 0.938
62 =06 log(e1)  -0.695 0.232 0.238 0.144 -0.010 0.337 0.338 0.944 -0.011 0.330 0.339 0.946
log(ae)  -0.053 0.065 0.066 0.874 -0.052 0.064 0.066 0.870 0.019 0.076 0.077 0.942
02— 0 log(e1)  0.007 0.281 0.275 0.952 0.008 0.290 0.275 0.952 0.008 0.281 0.275 0.952
log(az)  0.012 0.074 0.074 0.952 0.012 0.075 0.074 0.952 0.011 0.074 0.074 0.952
40% o2 — 025 log(e1)  -0.361 0.266 0.273 0.706 -0.010 0.320 0.320 0.940 -0.013 0.314 0.319 0.936
log(ae)  -0.019 0.074 0.076 0.932 -0.019 0.074 0.076 0.938 0.019 0.079 0.081 0.940
2 =06 log(a1)  .0.689 0.249 0.256 0.204 -0.006 0.363 0.361 0.944 -0.005 0.356 0.361 0.940

)

-0.051 0.074 0.074 0.904 -0.050 0.074 0.075 0.908 0.022 0.085 0.087 0.946

“Bias: bias of the estimate; SEM: model-based standard error; SEE: empirical standard error; CR: 95% coverage rate. The SEM from regression calibration approach
is calculated by the bootstrap method with B = 1000. The likelihood method uses Monte Carlo integration algorithm with N = 5000.
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Table 2.1: Simulation Results on the Regression Coefficients Obtained from the Parametric Approach. The True Baseline Distribution
Follows A Weibull Distribution, and the Error-Prone Covariate has An Effect with 5, = —1.

Censoring Measurement Naive Method Regression Calibration Likelihood Method
Rate Error Parameter Bias® SEM SEE CR Bias SEM SEE CR Bias SEM SEE CR
02 =0 Bz =—=1.0.004 0.136 0.136 0.944 -0.004 0.142 0.136 0.946 -0.004 0.136 0.136 0.944

B =0.5 -0.014 0.269 0.259 0.952 -0.014 0.277 0.259 0.958 -0.015 0.269 0.259 0.952
Bz=-=1 0179 0.121 0.127 0.660 0.028 0.150 0.148 0.942 -0.018 0.162 0.165 0.950

20% 0?2 =0.25
B.=0.5 -0.037 0.268 0.273 0.938 -0.018 0.278 0.275 0.944 -0.006 0.280 0.285 0.936
62 =06 Bx=—1 0350 0.106 0.111 0.130 0.066 0.161 0.158 0.930 -0.021 0.193 0.198 0.948
B.=0.5 -0.060 0.267 0.268 0.942 -0.029 0.279 0.275 0.948 -0.002 0.291 0.290 0.948
02— 0 Bz=—=1 0001 0.152 0.147 0.956 0.001 0.161 0.147 0.962 0.000 0.152 0.147 0.956
B =0.5 -0.019 0.299 0.282 0.972 -0.019 0.311 0.282 0.974 -0.019 0.299 0.282 0.972
40% o2 — 025 Bz=—10.173 0.135 0.143 0.710 0.024 0.170 0.165 0.952 -0.024 0.180 0.188 0.934
B =0.5 -0.035 0.298 0.302 0.940 -0.016 0.313 0.304 0.950 -0.008 0.311 0.313 0.946
2 =06 Br=—1 0345 0.117 0.126 0.190 0.058 0.182 0.179 0.930 -0.027 0.215 0.230 0.934
B.=0.5 -0.066 0.296 0.300 0.938 -0.031 0.313 0.304 0.956 0.003 0.323 0.330 0.946

“Bias: bias of the estimate; SEM: model-based standard error; SEE: empirical standard error; CR: 95% coverage rate. The SEM from regression calibration approach
is calculated by the bootstrap method with B = 1000. The likelihood method uses Monte Carlo integration algorithm with N = 5000.
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Table 2.3: Simulation Results on The Baseline Function Parameters Obtained from The Parametric Approach. The True Baseline
Distribution Follows A Weibull Distribution. The True Values are 3, = —1, 3, = 0.5, ¢y = 1 and ap = 1.5.

He, Xiong & Yi

Censoring Measurement Naive Method Regression Calibration Likelihood Method
Rate Error Parameter Bias® SEM SEE CR Bias SEM SEE CR Bias SEM SEE CR
log(e1)  0.004 0.195 0.193 0.940 0.004 0.201 0.193 0.942 0.005 0.195 0.193 0.940
(ag)  0.009 0.114 0.113 0.938 0.009 0.118 0.113 0.948 0.009 0.114 0.114 0.938
(a1)  -0.233 0.164 0.170 0.630 -0.015 0.218 0.218 0.944 0.016 0.223 0.227 0.942
(a2) 0.146 0.114 0.116 0.760 0.009 0.129 0.127 0.942 0.007 0.125 0.126 0.940
(1) 0434 0.133 0.143 0.164 -0.039 0.241 0.241 0.930 0.019 0.257 0.264 0.942
(a2)  0.280 0.109 0.116 0.286 0.012 0.144 0.142 0.944 0.010 0.140 0.143 0.940
9 log(e1)  0.000 0.218 0.213 0.946 0.000 0.227 0.213 0.950 0.001 0.218 0.213 0.946
(a2)
(1)
(a2)
(1)
(a2)

20% 02 =025

0.014 0.129 0.126 0.956 0.014 0.134 0.126 0.958 0.013 0.129 0.126 0.956
-0.228 0.181 0.195 0.686 -0.008 0.247 0.245 0.934 0.024 0.248 0.261 0.942
0.147 0.126 0.133 0.780 0.008 0.146 0.142 0.946 0.007 0.140 0.144 0.940
-0.431 0.146 0.160 0.222 -0.025 0.273 0.276 0.926 0.023 0.286 0.304 0.922
0.282 0.120 0.129 0.362 0.007 0.162 0.161 0.942 0.013 0.156 0.161 0.936

40% o? =0.25

“Bias: bias of the estimate; SEM: model-based standard error; SEE: empirical standard error; CR: 95% coverage rate. The SEM from regression calibration approach
is calculated by the bootstrap method with B = 1000. The likelihood method uses Monte Carlo integration algorithm with N = 5000.
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130 He, Xiong & Yi

A Appendix

To establish the asymptotic distribution, we need the following conditions, including regularity con-
ditions in Lehmann (1993):

e The measurement errors are independent and identically distributed.
e Given covariates, the survival process is independent of censoring process.

e Let Q be the parameter space for parameter 7. The true parameter value 1° belongs to a
compact set within 2.

e There exists an open subset w of parameter space () that contains the true parameter value
1 such that almost all observations with log likelihood ¢*(n) have all third derivatives for
1 € w. There exist a function M which may depend on 1° such that

63
a—ngé*(n)‘ <M forall new
and Eqpo [M] < 0.
e The log likelihood ¢*(n) can be differentiated twice under the integral sign.

e The covariance matrix I(n) is positive definite for all n € w.

* * 2p*
1o = (2510 (Y] [ O]

Following the arguments in Lehman (1983, p.409), it can be shown that the maximum likelihood
estimator 7) exists and is unique with probability 1. In addition, \/n(7) — n°) has an asymptotic
normal distribution with mean 0 and covariance matrix [I(n°)] .



