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SUMMARY

Present article discusses the problem of simultaneous prediction of astlaverage val-
ues of study variable in an ultrastructural measurement error moaehe $rior infor-

mation is also available on regression coefficients of the model in termsaot énear

restrictions. Some predictors are obtained and their properties areadaljhe effect of
departure from normality of the distributions of measurement erroisasstudied.
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1 Introduction

In regression analysis, we usually predict either the datalae of study variable or the average
value of study variable. It depends on the situation what w&etwo predict - the actual value or the
average value. In some situations, we may like to predicbtith simultaneously. For example, a
long term investor may like to predict the average price o&dipular stock in a long run, while a
short term investor may like to predict the actual price &f $hock, say, next year. Shalabh (1995)
proposed a target function for the simultaneous prediaifactual and average values of the study
variable. We use this target function for simultaneous igtimh of actual and average value of study
variable in our model.

We consider a multiple linear regression model where tharmates are observed with mea-
surement errors. Presence of measurement errors in thevatises is very common and obvious.
However, most of the times this fact is ignored and the siedisresults which are obtained for
no measurement error situations are used. This leads to woomg conclusions and may affect
the proceeds of analysts badly. The model, we consider bagalled as ultrastructural measure-
ment error model and is a generalized measurement errorlrficdeoroposed by Dolby (1976).
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In measurement error models, some additional informasarduired for consistent estimation of
parameters. Cheng and Van Ness (1999) and Fuller (1987idera\detailed discussion on these ad-
ditional information about unknown parameters. In the en¢article, we use the common variance
of measurement errors for consistent estimation.

Sometimes, we are provided with some prior information oknamn regression coefficients.
This prior information may be coming from some similar asédyconducted in past or from the
experience of the analyst. We consider here that this pnformation is available in the form of
exact linear restrictions on regression coefficients. Hl&® common to assume normality of the
random terms in the model. The observed data may or may netmawnal distribution. When
the observations are not normally distributed, the comghssmay be incorrect. We do not assume
any specific form of the distributions of the random termshi@ mmodel. We only assume the finite
existence of first four moments. Under this setup, ShalalaingGnd Misra (2007, 2009) provides
the consistent of regression coefficients. In the presdictegrwe take the topic farther and obtain
the predictors to predict the actual and average valuesidy stariable simultaneously. The effect of
departure from the normal distribution on the efficiencyganties of obtained predictors is studied.
We obtain one unrestricted predictor and two restrictedlipters and compare their efficiencies
through simulation. Asymptotic mean squared errors of tlep@sed predictors are obtained and
analyzed. A Monte-Carlo simulation experiment is conddtestudy the sample properties of the
estimators and the effect of departure from normality of iieasurement errors on them is also
studied.

In Section 2 of this paper, we present the ultrastructuraedsneement error model and the re-
quired assumptions along with the target functions andlinestrictions on regression coefficients.
In Section 3, we obtain the predictors of target function thieir asymptotic properties are discussed
in Section 4. Results of simulation study are presented ai&e5 followed by some concluding
remarks in Section 6.

2 Modd and Target Function

We consider that the study variabjeand the covariate§, &, . . . , §, have the following relation-
ship:
y=&101+ &P +"‘+£pﬂp+5a

wherefi, B, . . ., Bp, are regression coefficients. For a sample of sizee write

y=EB+e, (2.1)
wherey is then x 1 vector ofn observations on study variabjeand= = (¢;;) is then x p matrix
of n observations on true covariatgs &, . .., &, and3 is p x 1 vector of regression coefficients,
€ = (e1,€2,...,€,)" is the vector of equation error. Due to the presence of measemt errors, we

can not observe. Instead, we obsery& as

X = E+A, 2.2)
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wherey is an x 1 vector of observed values on true study variaBlés an x p matrix of observed
covariates, and\ = (4;;) is an x p matrix of measurement errors. We further consider that
&ij = Mij +¢ij (1 =1,2,...,n,5 =1,2,...,p.), wherey,; are unknown parameters whefg
are independent and identically distributed (i.i.d.) @mdvariables with mean zero. Thus, we can
express,

E=M+ 9, (2.3)

whereM = (u;;) and® = (¢;;) aren x p matrices. Equations (2.1)-(2.3) specify a multivariate ul
trastructural model, Shalabh, Garg and Misra (2007, 200g. ultrastructural model is a synthesis
of functional and structural forms of measurement error @hod/hen all the row vectors aff are
identical, then this implies that rows &f are i.i.d. random vectors and we get the specification of
structural form of measurement error model. Wideis identically equal to a null matrix implying
that the matrixX is fixed but is measured with error, then we obtain the spetifio of functional
form of measurement error model. When bdthand ® are identically equal to a null matrix, we
get the specification of classical regression model witlaoytmeasurement error.

€, (1 = 1,2,...,n) are assumed to be i.i.d. random variables with méand variance
o2. Similarly, 6;;, (i = 1,2,...,n;j = 1,2,...,p) are assumed to be i.i.d. random variables
with mean0, varianceo?, third momentﬂmaé and fourth momentyzs + 3)oj. Also, ¢;j, (i =
1,2,...,n;7 = 1,2,...,p) are assumed to be i.i.d. random variables with meamrianceog,
third momenwwog and fourth momentryz, + 3)0’3;. Here,y; and~; represent the coefficients
of skewness and kurtosis, respectively. We also assume;tfdat and¢;; are independent of each
other for alli and;j andnth row of matrix M converges t@,.

Suppose that we wish to predict the value of study varigpfer observed values on covariates
given byx,. Clearly,zq is ap x 1 vector of observed values with measurement erfgror true
covariates given by, i.e.,xog = & + d9. Elements oy have the same properties as possessed
by the elements ofA. Also, &, = po + ¢o, Wherep is unknown constant vector and elements
of ¢y have the same properties as possessed by the elemants/dé¢ have the relationship, =
x84 (e0 — Oﬁ) Heree, is the equation error distributed with me@rand variancer?. For
some estimat@ of unknown, the prediction of actual valug, is given by, = woﬁ In some
situations, we like to predict the average valueygfn place of actual value. The average value of
Yo is given byE (yo|xo) = E(x(8 + (€0 — 6,8)|z0) = x(,3. Clearly, the average valué(yo|zo)
is also estimated by} 3.

For the situations when it is required to predict both theialctalue and average value of un-
knownyy for givenxg, we define the target function:

T =T(yo) = Myo + (1 — A) E(yo|zo), (2.4)

where0 < X\ < 1 is a real number specifying the weight assigned to the ptiediof actual and
average values Qfo For details, see Shalabh (1995) and Toutenburg and Sh¢labi). Clearly,
for some estimat@ of unknowng3, the estimate of’(yo) is given byl = :cO,B

Further, we consider that some prior information about wmkmregression coefficients, 5z, . . . , B,
is provided in terms of exact linear restrictions. This infiation is represented as

r = Rp, (2.5)
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wherer is aJ x 1 known vector and? is aJ x p known full row rank matrix.
We aim to obtain predictor of target function under the exmaar restrictions. In the next
section we see the inadequacy of the available predictarpravide the more suitable predictors.

3 Prediction

The ordinary least squares estimator (OLSBj 3 and the restricted least squares estimator (RLSE)
br of B under restrictions (2.5) in a classical regression modilaut measurement errors are given
by
b= (X'X)"'X"y (3.2)
and
br=b—{I, — fr(X'X)}(b— B) (3.2)

respectively, where the functiofy : RP*P — RP*? is defined as
frU)=1,-U'R'(RUT'R')"'R, U e RPXP, (3.3)

It can be proved that plirh = 8 and plimbgr # 3 as well. For proof, see Shalabh, Garg and Misra

(2007, 2009). Thusnl;)otfz andbp argﬁocoonsistent foB8 under the model (2.1)—(2.3). The OL$E
does not satisfy the restrictions (2.5), i.8h # r while RLSEbp, satisfies the given restrictions,
i.e., Rbr = r. Therefore the predictots)b as well asc(br are not suitable to predi@(yo).

It is well known that measurement error models are unidebidiand some additional informa-
tion about unknown parameters is required for consistaithason of regression coefficients. See
Cheng and Van-Ness (1999) and Fuller (1987) for details ek assume that common variance
o2 of measurement errors; is known. UsingsZ, Shalabh, Garg and Misra (2007) obtained some
consistent estimators @ under the exact linear restrictions given by (2.5). In thespnt article,
we use these estimators to obtain the predictors of targetitn7'(y,).

A consistent estimator g8 in the model (2.1) - (2.3) for knowa? is given by

b\ = (I, — no25~ 1) 'b; (3.4)

see Shalabh (2003). Although, the estimaﬂﬁ? is consistent for estimating, it does not satisfy
the given linear restrictions (2.5). Estimate of targetction usingbgl) is

Ty = z)bl". (3.5)

We wish to study the effect of linear restrictions on the preeds. Therefore, we wish to compare
the restricted predictor with unrestricted predictorsagted later in this section.

In order to obtain an estimator @ that is consistent as well as satisfies the given linearicest
tions (2.5), inconsistent estimatbiin by is replaced by the consistent estimalbé]r). This yields
the following estimator

by = b + ST R(RST'R) " (r — Rb{V); (3.6)
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see Shalabh, Garg and Misra (2007, 2009). Since this estingmtonsistent for estimating
and also satisfies the restrictions (2.5), it is suitablepfedicting the target functio®(y,). Such
predictor of target function is

Ty = )b (3.7)

Another restricted consistent estimatorbbbtained by Shalbh, Garg and Misra (2007, 2009) is
b = {I,—no}fa(S)S~} 'bx. (3.8)

This estimator is obtained by adjusting the inconsistendys. We obtain another predictor of the
target function using”, which is

Ty = )b (3.9)

Thus, we have three predictdfs, 75 andT} of the target function (2.4). In the next section, we
analyze the efficiencies of these predictors.

4 Asymptotic Propertiesof Predictors

Following leamma is helpful in studying the asymptotic eéficies of the predictors,, 7> and 7.

Lemmad4.l. Forl = 1,2, 3, the asymptotic distributions Qj’ﬁ(bf;l) — B) are p-variate normal with
mean vecto and covariance matriced;Q2A4;" where
Ay = (0,0, —0j1 )71
AszR(O'ua'u)(Uu o3ly) !
Az = fr(o,0, W ‘761 )(0'/,0' Ip) , 4.1)
Q= (02 +3(8'8)% + 388" +ms05{f (o€, BB)
+ (f(oue,, B0 ) )} + Y2505 f (1, BB,

ep isap x 1 vector ofl’s and fz(-) is defined in (3.3).

Proof See Shalabh, Garg and Misra (2007). O
Following theorem gives the asymptotic mean squared eofdtse predictordy, 75 and75.

Theorem 1. Conditional asymptotic mean squared errorsipfl = 1,2, 3) for knowna are

lim MSE(Tj|zo) = \? (o2 + 028'8) . (4.2)

n—oo

Proof  We have from (2.4),

T = Xyo+ (1-Nz,08
= MzoB+ (0 — 6p0)) + (1 = N3
= zoB+ (e — 6,0)
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Fori =1,2,3, we write
Ti—T = @by —B)+A(eo — 8)8)
So,
(T =T = [&h(bf) = B)* + X* (o — 8B)°
= @b — BB — B)mo+ A2 (co — 548)°
= tracda) (b5’ — B)(b5) — B)'o] + X (€0 — 8,8)”
= tracd(zozy) (b’ — B) (b’ — B)'] + A2 (e0 — 8,8)°

Taking conditional expectation for knovasy,, we have

E[(Ty —T)*wo] = tracdB{(moz)(by’ — B)(by" — B |wo}] + A? (o2 + 033'B)
tracé(moz) E{(b§) — B)(b]) — B)'}] + A? (02 + 038'8)
= tracd(moz)) E{n (b ~ B — B} + N (o + 3A'5),

forl = 1,2, 3. Conditional asymptotic mean squared errorg'qfl, andT for knownz, are given
by

lim MSE(Tijzo) = lim E[(T; - T)*|a]
1
= nl;n;o trace{ﬁ(acoac{))E{n(b((;l) - ,3)(17((;[) - B)HN+ X (02 +038'8) .

From Lemma (4.1), it is clear théin,, E{n(bgl) - B)(bg” - B)} = A0A/ forl =1,2,3.
Thus for knownz, we get
lim MSE(Ti|zo) = M\ (o2 +033'8),

n—o0
fori =1,2,3. |

Thus, the asymptotic mean squared errors (MSE) of all thregigtorsT’;, 75 and7’; for given
x are the same. However, it could be noted that the MSE is affidny the constamt. Recall that
0 < X < 1is areal number specifying the weight assigned to the ptiediof actual and average
values ofy,. Clearly, for\ = 0, this MSE is zero. When = 0, predicting target function is same
as predicting average value of study variable. Also notettieaasymptotic MSE of these predictors
is not affected by the skewness and kurtosis of the distabuif measurement errors. Some more
insight of the behavior of MSE is studied through Monte-G@aimulation in the next section.

Also, we have not obtained asymptotic bias of these predict€heng and Kukush (2006)
proved that the first moment bf;l) does not exist. Because of the relationshipbﬁf andbg?’) on
bgl), it looks that the first moment of later estimators also doaxat. Therefore, we have doubt on
the existence of the first moment of out predictors. Simatasitudy conducted in the next section
confirms this doubt.
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5 Simulation Study

In order to study efficiencies of the predictd?ls T, andT}3, we conducted a Monte-Carlo simulation
study. We adopted various combinations of values,af?, ai, o2. In order to observe the effect of
departure from normality in terms of skewness and kurtegisadopted Normal distribution (having
zero skewness and zero kurtosis), Studentgstribution with degree of freedon® (having zero
skewness but non-zero kurtosis), and Gamma Distributiavifig both non-zero skewness and non-
zero kurtosis).

The random observations, ¢;;, andd;;, ¢ = 1,2,...,n,5 = 1,2,...,5, are generated and
transformed suitably to have zero mean and specified vasané new vector-valued observed
covariatexy and corresponding value of study varialylgis fixed in advance. For various values
of )\, the target functior¥” is calculated. The value of predictofs, T, and 7} are computed for
various combinations of parametric values.

We obtained absolute bias (AB)of the predictis 75 and 73 empirically based on00, 000
repetitions under aforesaid distributional assumptiard far various combinations of parametric
values. For an estimatdf of the regression coefficienf§ and for a fixed parametric value, the
absolute bias of" is defined as

AB(T) = \/(E(T - 1)) (BT -T)). (5.1)
We observe that these AB do not converge to anywhere and gue W nature. Cheng and Kukush
(2006) proved that the moments of the estimaﬁ&%? do not exist. Since the estimatdrg), and
b\ are related o', there is a doubt on the existence of moments.dfandb” . The simulation
findings support this doubt. Therefore, to study the smalida properties of these estimators we
consider the criteria of absolute median bias which is ddfase

AMdB(T) = \/(Mediar(T)—T)’(Mediar(T)—T). (5.2)

In order to study the efficiencies of the predictais 7> andT5, we obtain mean squared error
(MSE) empirically based oh00, 000 repetitions under aforesaid distributional assumptiortsfar
various combinations of parametric values. For an estinfétof the regression coefficients and
for a fixed parametric value, the MSE bfis defined as

MSE(T) = E(T-T)(T-T)). (5.3)

In order to save space, here we present only few importanbmés of simulation in Tables 1-
6. From out simulation study, we observe that absolute meblias of restricted predictors,
and7; are approximately the same. It is not clear, which predittdraving the least bias. For
sample size 50, all three absolute bias are approximatelysdéme. AMdB are minimum under
normal distribution and much larger in case of Gammaadistribution. The variance; affects
the AMdB in the positive direction in case of Gamma dndistributions and not in case of normal
distribution. The values of have significant effect on AMdB of these predictors.

We also observe that mean squared error (MSE) is the higbesinfestricted predictof?,
while it is approximately the same for restricted predistty and75. For sample size 50, all three
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MSE are approximately the same. The variang¢affects the MSE in the positive direction. The
values of MSE are minimum under normal distribution and miacger in case of Gamma and
distribution. The values ok have significant effect on MSE of these predictors. MSE agbdst
when\ = 1. From Theorem 1, it is clear that asymptotic MSE are zerolfdheee predictors when
A = 0. However, for sample size 20 and 50, simulation does notestgbat. It means that the
small sample behavior of these predictors are very diftatem that in large sample case and larger
sample is required for the convergence of MSE.

In order to provide a straightaway idea of the propertieshifimed estimators, the AMdB of
the estimators are shown in Figures 1 — 6 and MSE of the estimate shown in Figures 7 — 12.

Table 1: Absolute Median bias (AMdB) df, [ = 1,2, 3, when(e, ¢, §) have normal distribution

03205,(1;:0‘5 O'(%:OE)
n = 20 n = 50
A s T T T T Ts
0.000 0.691 0.004 0.011 0.108 0.001  0.002
0.250 2219 2904 2914 2.851 2917 2910
0.500 4421 3.397 3.391 3,577 3.384 3.390
0.750 0.026 0.820 0.824 0.675 0.826  0.823
1.000 0.232 0.824 0.824 0.713 0.824  0.825

n = 20 n = 50
A T T T T Ty Ts
0.000 1.103 0.011  0.007 0.274 0.010  0.000
0.250 1583 0.423 0.421 0.218 0.420 0.421
0.500 4586 3.214 3.156 3479 3119 3.141
0.750 1.634 0.491  0.490 0.134 0.489  0.490

1.000 1525 0.348 0.329 0.556 0.321 0.328
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Table 2: Absolute Median bias (AMdB) df, [ = 1,2, 3, when(e, ¢, §) have Gamma distribution

02 =0.5,05 =0.5,02 =0.5

n = 20 n = 50
A T Ty Ts T Ty Ts
0.000 0.834 0.001 0.003 0.017 0.278 0.273
0.250 1.033 0.285 0.293 0.168  0.003  0.004
0.500 0.209 0.871 0.877 0.686 0.868 0.865
0.750 2395 1375 1.356 1492 1.347 1.354
1.000 4176 3.171  3.168 3.405 3.174 3.175

02 =05,05 =0.5,05 =1.25

€

n = 20 n = 50
A Ty Ty T3 T T Ts
0.000 2364 0.242 0.075 0.479  0.047  0.026
0.250 0.391 1.217 1.088 0.486 1.046 1.079
0.500 4430 0.778 0.782 1.892 0.783 0.782
0.750 6.268 7.965 7.981 7.487 7.985  7.980
1.000 8.435 9.204 9.317 9.198 9.333 9.310

6 Concluding Remarks

We defined a target function given fyin (2.4) for simultaneous prediction of actual and average
value of the study variable in an ultrastructural measurgreeror model. We also assumed that
some prior information on regression coefficients is atédldan terms of exact liner restrictions
given by (2.5). We obtained one unrestricted predictormyiwe7; and two restricted predictof&,
and7}; of the target functiorf”. Asymptotic mean squared errors of these predictors assrat in
Theorem 1 and are the same. However, the simulation studyestithey are not the same even for
a sample size of 50. The outcome of simulation study clearfgsst that restricted predictdfs
and7}; are far efficient than unrestricted predictr. The distributions of measurement errors also
play an important role in the efficiency of these predictdkihough, the effect of departure from
normality is not present in asymptotic mean square erroisri clearly be noticed in simulation
results. The variance of measurement eregysaffects the efficiencies of these predictors; larger
the variance, lesser the efficiency. The consfaatso affect the efficiency of the predictors. The
direction of the effect is not very clear for as large samjte &s 50. However, the change is in
positive direction asymptotically.

Thus, in the situations when some prior information abogtession coefficients is available
in terms of exact linear restrictions and we wish to predig actual value and average values
simultaneously, we recommend the usagd’obr 75. The efficiency properties of the restricted
estimatorsy or 73 are almost the same.
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Table 3: Absolute Median bias (AMdB) df, [ = 1,2, 3, when(e, ¢, §) have Student’s distribu-

tion with 12 d.f.

02 =05,05 =05,0; =05
n =20 n = 50
A T Ty Ts T Ty Ts
0.000 0.792 0.005 0.001 0.123  0.003 0.001
0.250 0.524 1.205 1.213 1.092 1219 1.213
0.500 0.636  1.454  1.460 1.344 1458 1452
0.750 3.927 4709 4.713 4.633 4.734 4.725
1.000 2212 1490 1.489 1576 1481 1.486
02 =05,05 =050 =1.25
n = 20 n = 50
A T T, Ts Ty Ty T5
0.000 1598 0.029  0.002 0.523 0.012 0.003
0.250 3.748 2099  2.050 2517 2037 2051
0.500 1237 1271 1423 0.823 1495 1.441
0.750 7.677 5971  5.899 6.403 5.880 5.898
1.000 9.404 7.367 7.290 7.795 7.267 7.292

Table 4: Mean squared error (MSE)Bf [ =1,2,3, when(e, ¢, §) have normal distribution

n = 20 n = 50
A T T T T T, T
0.000 7.937 0489  0.468 1418 0174 0171
0.250 19.072  9.064  9.015 8.884 8514  8.469
0.500 21.058 11.562  11.508 12.797 11.454  11.494
0.750 14153 0755  0.744 2742  0.683  0.679
1.000 10.049  0.680  0.680 2155  0.679  0.680
02 =05,03 =0.5,07 =1.25
n = 20 n = 50
A Ty Ty Ty Ty Ty Ty
0.000 127514  0.780  0.462 12514 0174  0.158
0.250 81.947  0.183  0.177 7559  0.176  0.178
0.500 4586  3.214  3.156 13.921  9.744  9.868
0.750 117.297  0.242  0.240 11.650  0.239  0.240
1.000 56.050  0.691  0.432 6.167  0.203  0.189
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Table 5: Mean squared error (MSE)Bf [ = 1,2,3, when(e, ¢, §) have Gamma distribution

o‘f =0 5,0; = 0‘570'? =0.5
n = 20 n = 50
A T Ty Ts T Ty Ts
0.000 10.953  0.079  0.076 2078 0.285  0.282
0.250 11.319 0745  0.708 1.957  0.027  0.027
0.500 14.954  0.805  0.867 2.848  0.753  0.749
0.750 23824 3279  3.125 5526  1.985  1.994
1.000 23397 10.052 10.038 11.674 10.074  10.792
02 =05,05 =0.505 =1.25
n = 20 n = 50
A T Ty T T Ty Ts
0.000 100.626 28790  17.315 12.368  6.664 5975
0.250 112.347  7.343  4.458 11.227  2.064  1.956
0.500 169.533  0.608  0.611 18.057  0.612  0.611
0.750 148.767  63.494  63.706 57.191 63.752  63.683
1.000 122,693 87.073  86.887 84.718 87.109  86.677

Table 6: Mean squared error (MSE)Bf, | = 1,2, 3, when (e, ¢, §) have Student’s distribution

with 12 d.f.

n = 20 n = 50
A T, Ty Ty T Ty Ts
0.000 14.712 0.803 0.765 2.658 0.281 0.275
0.250 6.587 1.839 1.791 1.822 1.494 1.482
0.500 15.500 2.807 2.739 3.939 2.155 2.140
0.750 21.592 22.185 22.211 21.462 22.414 22.324
1.000 11.541 2.395 2.353 3.399 2.193 2.209
02 =05,03 =0.5,07 =1.25
n = 20 n = 50
A Ty T, Ts T T, Ts
0.000 78.427 0.948 0.595 6.613 0.224 0.204
0.250 111.859 5.510 4.424 12.249 4.161 4.210
0.500 82.781 20.503 12.840 8.525 5.670 5.175
0.750 93.317 36.913 34.872 41.047 34.582 34.792
1.000 192.283 56.791 53.266 61.289 52.816 53.166
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Figure 1: AMdB ofTy, 75, T in case of normal distribution with2 = 0.5, 02 =0.5,07 =0.5
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Figure 2: AMdB ofTy, 75, T5 in case of normal distribution with? = 0.5,02 = 0.5,0% = 1.25
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Figure 8: MSE off}, T3, T5 in case of normal distribution with? = 0.5, 02 = 0.5,0% = 1.25
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Figure 10: MSE off, T3, T3 in case of Gamma distribution withf = 0.5,02 = 0.5,0% = 1.25
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Figure 11: MSE off, T», T} in case oft(;) distribution witho? = 0.5,02 = 0.5,0% = 0.5
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