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SUMMARY

The problem of estimation of the regression parameters in several simple regression models
with measurement errors is considered when it is suspected that the regression lines may
be parallel with some degree of uncertainty. In this regard we propose five estimators,
namely, (i) the unrestricted estimator, (ii) the restricted estimator, (iii) the preliminary test
estimator, (iv) the Stein-type estimator and (v) the positive-rule Stein-type estimator as
in Saleh (2006). Properties of these estimators are studied in an asymptotic set up and
the asymptotic distributional bias, MSE matrices, and risk under a quadratic loss function
are obtained based on a sequence of local alternatives and dominance properties of these
estimators are provided.

Keywords and phrases:local alternatives, measurement errors, Preliminary-test estimator,
Stein-type estimators

1 Introduction

For several simple linear models with measurement errors, estimation of parameters is considered
when it is suspected with some degree of uncertainty that the lines may be parallel. We consider p
independent bivariate samples { (., chj)|a =1,...,p,7 =1,...,n4} such that Y(Sj ~ N +
Batte, , Oce) for each pair (a;, j), where 3 = (51, .., 5p) is the slope and @ = (64, .. .,0),) is the
intercept parameters. It is common to test the parallelism hypothesis Hy : 8 = Bo1, (where 5, is
an unknown scalar) against the alternative H 4 : at least one pair of the components of 3 differ. Our
problem is the estimation of the slope parameters when Hj is suspected to hold. Consider simple
linear models

YO =0, 4 BaZa, +ea, j=1,...,004
@ T BaTa; oy 7 " (L.1)

0 _ _
Xaj—xaj—i—uaj, a=1,...,p
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156 Kim & Saleh

where e, ~ N(0, 0¢c) is the measurement error in the study variable and Ug; i8 the measurement
error in the explanatory variable. Note that z,, is unobservable and ng is the corresponding
observed value. Furthermore, we assume that

(%o €0, ta,)" ~ Ns{(Hao,0,0) : Diag(0r,a,: Ocer Cugu,)} - (1.2)

Then, (Yo?j , X 27, )’ follows a bivariate normal distribution, that is,

Y 0, +
oo~ No ot Battze | 5 L (1.3)
Xa, fha
where
2
Yoo = oYQy? IX4YQ — ﬂaawawa + Oce ﬂaaxaxa ] (1.4)
Ox9Y9  OX9XQ Balqa Ottra T Tugua

The conditional distribution of Y, ; given X, is again normal with mean and variance

E(Y(Sj |ng) = Vag Vo, Xa 022‘) = Oce + Br0uaza (1 = Koz, ), (1.5)

3
where Vo, = 0o + Batte, (1 — Kzpz,)s Vay = KapzoBo a0d Kgow, = Opow (Ownw, + OCupuy) L
(a'" reliability ratio). Clearly,

Y0 O + Botiz 1
_ao ~ Ny p Koo : nizaoz
Xa M *
and
Saa = SYO?Y(S SXS{Y{S ~ W2 (anuna - 1)7

Sxgve Sxgxg

where Y7 = (1/nq) 3772, Y3, XO = (1/na) 3272 X8, Sxoxg = 32721 (Xg, —X3)?, Syove =

S (V0 — VO)2 and Sxgyo = 307 (X0, — XO)(VD — V9. Here Wa(Siaas nia — 1) stands
for the Wishart distribution which is independent of the distribution of (Y,?, X2)’. Thus we have
E(Saa/(ne — 1)) = X, which means that the unbiased estimators of the element of X, are the
corresponding elements of S, /(na — 1). Hence, E(Sxox0/(na — 1)) = ox0x0.

We consider the problem of estimation of 3 = (f1,...,0,)" when it is suspected that the
lines may be parallel i.e. Hy : B = Bol,, against H, : B8 # Bol, where [y is a scalar and
1,=(1,...,1)— ap-tuple of 1’s (Kim and Saleh, 2003). Toward this goal, we propose several es-
timators of 3 namely, (i) the unrestricted estimators (UE), (ii) the preliminary test estimator (PTE),
(iii) the Stein-type estimator (SE) and (iv) the Positive-rule Stein-type estimator (PRSE), and study
their properties. These types of estimations have been studied by Saleh and Han (1990), Judge
and Bock (1978) among others for models without measurement errors. Preliminary test estimators
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were introduced by Bancroft (1944) and expanded by Saleh and Sen (1978) in a nonparametric set-
up. Stein (1956) and James and Stein (1961) introduced the Stein-type estimators and expanded by
Saleh and Sen (1978-1986) and Sen and Saleh (1987) in the nonparametric set-up. For the multiple
regression model with measurement errors see Fuller (1987) and Cheng and Van Ness (1999) for
details and Schneerweiss (1976) on consistency. Kim and Saleh (2003) introduced the preliminary
test estimation in a simple linear model with measurement errors and they expended the study in
the problem of simultaneous estimation of the regression parameters in a multiple regression model
(Kim and Saleh, 2005). Notice that there are 6 parameters of the linear models and there are many
different configurations that lead to the same distributions of the observation models and is not iden-
tifiable. Therefore, we need to impose conditions or the parameters to overcome the identifiability
problem and obtain consistent estimators. For this reason we consider the following conditions:
(@) by, = (Hays ooy ta,)s (1) Ovpzn = Ouas (0) Oupu, = Ouwu and (iv) the reliability ratio,
Kz known for all & = 1,...,p. We organize the paper as follows. In section 2, we provide the
proposed five estimators and motivate the estimators in various ways starting from the unrestricted
estimator. Section 3 contains the asymptotic distributional properties of the estimators. The asymp-
totic analysis of the estimators is carried under a sequence of local alternative against parallelism.
In section 4, we obtain the asymptotic distributional bias, quadratic bias, MSE-matrices and risk
(under a quadratic loss function) expressions. We provide the comparison of the estimators based
on the asymptotic distributional bias, MSE matrix as well as risk analysis. We conclude the paper in
section 5.

2 [Estimation and Test in Parallelism Model

Consider the model (1.1) and the assumptions that (i) p, = (tias - - -, fa,)'s (i) Ozpzy = Oues (iid)
Ougu, = Ouy forallo =1, ..., pand (iv) Koo known. Then we notice that
Y. 0 + 1
o~ N o Pallea ) 2w, @1
Xa /I’Ia Mo
and
Saa = SY‘SY(Q SX?XY(Q ~ W2 (anu Na — 1)7 (22)
Sxgve  Sxgxo
where
2
Eaa — ﬂaomm + 0—68 BQO—(E{L’ . (2.3)
BaCuz Ozz + Ouu
This allows us to estimate oxoxo = 0y, + Oy, by pooling the SXSXS ’s, i.e. by S%OXO =
P Sxoxo since
SE(OXU
E(i) P (2.4)
n—p
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Clearly, Sg(o o/ xoxo follows the central chi-square distribution with n — p degree of freedom
(d.f.). We obtain the unrestricted estimator of 8 and (3 via the conditional model i.e. (Yo?j | X gj)
given by

YO = Vag + Ve, X0, + Zay; a=1,...,p, (2.5)
where Z,, ~ N (0, ag‘j)) where 0,(;;) = Oece + Pa0zz(1 — Kyz). This model is exactly similar to
the standard model except that (i) v,, is a translation of 6, (ii) v, is a scaled version of 3, and
(iii) JZZ is the inflated version of o... The estimator of v,, and v,, conditionally on (X o Saa)
are given by

. S
Doy = Vo — Xabay; o, = onode (2.6)
Sxgxg
Clearly,
Woo =vao) L pp ([ O ) @] @7
(17041 — Vay ) 0
where
L X02 B Ya
5@ =gl | ™ : SR 2.8)
 Sxgxg Sx9x9
Defining 0, = Y, — X, B and o = k' a,, we obtain
~ <°
(oa - 90( ~ NQ Hmz a - ,um,‘,)ﬁa . E(Oc) ,
(ﬁa - 6 ’
where
1 Y02 YO
(@) _ g [ 7o T rhSxoxg AlSxgxg
Kex zz Y?X 1
”azcxsxgxg ”imsxgxg
Further,the unrestricted estimators of 8 and 3 are given by the LSE/MLE as follows:
én == (él,...,ép)/ == ?_TXBH
Bn = (Bla'“agp)l = _1S;(OXOSX0Y07
where Y = (7(1), e ,?IOJ)’; Tx = Diag(ya), . ,Yg); Sxoxo = Diag(Sxoxo,...,Sx9x0); Sxoyo =
(S X0Y0s -3 S ngpo)’ . Finally, the unbiased estimator of ol is given by
s = (0 = 2) 7| Y8 =y — 70, X 29)
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!/
The conditional distribution of {(Gn -0),(8, —8) } is given by

/Bn —/6 0

where

Ty = Diag(X},..., X,),D = D =Diz )}

—D21 Do
. 02 <02
Dy = Dlag{ (n% + dﬁ)aﬁ?, ce (ni + 2710)0)21;)}
T 1X1 P [0}

K2.S0
222 X9 X0

. (1) (p) . YO (1) YOU(:,,)
Dy, = Diags — (;“ yee sy o , Dy = D), = Diagq — Sk P A i T
Ria X?X? szsxgxg K‘zmSX?X? Hmzsxgxg

. . .. . 0
In case, the slopes are equal i.e. 3 = o1, we estimate the common conditional variance ng) =

Oce T+ ﬂ%om(l — Kgz) by sff? defined by

P
s =(n—2p)7" Y (na —2)s'?, @.11)

a=1

where 5.2 is given at (2.9). We define

1,1'S
_ IpTpPXOXO and H, =T, — A,,.

" 1;SX0X01P

Then we have the restricted estimators (RE) of 8 and 3 as given by (a) and (b) respectively.
(a) 6, =6, + TxH,B, and (b) B, = A,.B,.
It is easy to obtain the following Theorem.

Theorem 1. Under Hy : B = Bol, and assumed conditions,

0, -0 -~ sz —(1— wa)(Tf - Tu)ﬁolp ;0.(0) Dj, Di, 7
B, —B 0 D3, D3,
where
* - Tilpll Ti * *! Tilpll * 1
Dj, = N '4 2 —F i Dip =Dy = ——5—7 1 D= o1
li"u(]_pSXoXolp) Iiww(lpsxoxolp) k2,1 SXUXO]'
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Test of Parallelism

~ ~ /
For the distribution of {(On - 6,8, — ﬁ)} under Hy, we replace a§;‘> by 0—2? in (2.10) for
all @ = 1,...,p. Now consider the test of the null hypothesis Hy : 3 = $p1,. The conditional
likelihood ratio test is given by

ﬁin;H;lSXﬂonan
(p—1)st

L, =

Under Hy, £,, follows the central F'-distribution with (p — 1,n — 2p) d.f.
To see this, consider the orthogonal matrix I' = (T';,T'y), where I'; is a p x (p — 1) matrix
and I'5 is a p— vector such that 1'"21"1 = 0 and I‘ll"'1 + 1"21"/2 = I, so that 1"11"’1 =1, - 1"21"’2.
Sl/2 1, Sl/2 1, 1/81/2
Further let us choose I'y = %, then T, T =1, — W, which implies that

H, = S;)/)?OIH 1"’1 S;/DQ vo- Now define the random variable

Rex ~ Rax
2= Sl 0B, ~ N T} SyoxoB: Lot | |

where o)) = %Zg . o'%). Then under a fixed kg, ||Z|? follows the noncentral chi-square

niz,@,H; Sxoonnﬂ
o) :

distribution with p — 1 d.f. with noncentrality parameter A%, with A? =

Therefore, under Hy : 8 = Bo1,, Ly, follows the central F-distribution with (p — 1,7 — 2p) d.f.

: (0) () 2 0), 2
since sz’ ~ 022 X,_2p = 022 Xn—2p-

Estimators of Slopes
We may now define a class of estimators, 3, of the form
/B;kz = Aan + (Ip - An)Bn9(£71)»

where A, is an idempotent matrix of rank 1 and g(£,,) is a non-decreasing function of the test-
statistic £,, for testing the Hy : 8 = Bo1, against the H4;3 # Bo1,. Accordingly, we have the
preliminary test estimators of 3 are as follows:

BLT =B, —H,B,1(Ln < L), (@)

where L, ,, is the « significance level of the distribution of £,,. To overcome the dependence of the
estimators of PTE on oo, we define the Stein-type estimator:

Bi = Ién, - CHanﬁgl, (b)

where ¢ = (p — 3)m/((p — 1)(m + 2)). Notice that we have replaced I(L,, < L, ) by c£; ! in

S
(a) to obtain ( b) and impose the condition that p > 4. The estimator 3, may go past the values



Several simple linear models with measurement errors . . . 161

P . L B 25 . - .
B3,,- Thus we consider the convex combinations of 3,, and 3,, via preliminary test procedure with
critical value c. And we obtain the positive-rule Stein-type estimators of 3 respectively as

By = BoI(Ln <)+ BLI(Ln > ) =By + (1= cLVI(L, > O)HLB,. ©

3 Asymptotic Properties of Estimators under Local Alternatives

In order to study the properties of the five estimators, we need the distribution of the statistic, £,
under the alternative H4 : 8 # [So1,. Now, under any alternative, the exact distribution of L,

depends on the exact distribution of (n — 2p)s§go) which is a weighted sum of central chi-square

variables with (n, — 2) d.f. for given a (= 1,...,p), i.e. (n — 2p)s> O 2 o aii‘)‘)Xia_g by
(2.11). Even in the conditional situation, the expressions for bias, MSE-matrices and risks are not
available due to the lack of the distribution of £,,. Therefore, we take recourse to the asymptotic
methods. Let n = ny + -+ - +n, and lim,, o0 2= = Ao (0 < Ay < 1) sothat -7 | A, = 1. Thus,
we easily find the distribution by moment method following Fuller (1978) that as n — oo

6,0 0 r, T
\/’ITL ~n NNQp . 11 12 ,
B,— B 0 Ty T
with
2 (1) 2 _(p)
. _ Ky Ozz 1 Ky Ozz
Ty, =D {)\1( , 7))\ ( 7)}
11 1agy Ay | Ovyoy + K’%mO-XOXO N K%mUXOXO
(1) (p)
P e VI
R%,0X0X0 R320 X0X0
p2 otV 2 ot
F12:I"21:_Diag{)\;1#,..., ;12777}
720 X0X0 lisz'XOXU
where 0, p. = Oce + B20uu, @ =1,...,p.

Further, we consider a class {K (n)} of Pitman local alternatives K, : B,y = Bolp + n"3é,
where ¢ is a fixed finite vector. Note that when § = 0 we deal with the null hypothesis Hy. Then
we obtain the following theorem.

Theorem 2. Under {K (n)} and the assumed conditions, as n — oo,

0, —0 0 r: I
(@) v | ~ Ny 1
B,—B8 0 Iy Iy
with
T2 A—l T A—l A—l
IM{l = Uqg%)A(;lJFUgg)L% I‘TQ = F;1 = *Ugg)A5 ng = Ugg) . ;
K?mUXoXo H?;;EUXUXU /{gwaxuxo
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6,0 T, 36 r, r
(b) Vn| _ ~ Nz © : 11 iz
Bn—B 4 Ly Ty
with
/ Ty,1,1,T , / Tpl,1! At
- H-tp 125 Hrp *
ry, = o”l(}?))AO 1+Ugg)27p; Ly =Ty = ,ggg)ﬁp; [y = Ugg)%-
K320 X0Xx0 Rz20 X0X0 Rz20 X0X0

_ Ki;ﬂIB;H(nSXOXOH’ZIB
(c) Ln = (p—1)st?
2
(p — 1) d.f. and non-centrality parameter 3 A? with A? = Z27x2x0 (5'J’A0J5),

Oz

~ has asymptotically a noncentral chi-squared distribution with

where
01(1(1))) = Oee + Bgauu; Ugoz) = O¢e + ﬂgaxx(l - ﬁzz)
Ty = Diag(pig, ;- - -, pfhz,) = limy, 00 T

Ao = Diag(A1, ..., A\p);limy, oo Hy = J and J =1, — 1,17 Ay.
Proof. For (c)

2 3 3 2
K H'S H,3, Rz 3 %
Lo - mﬁn( S By = e (1B 8035, ) + 031,
p—1)Sz2 p—1)0z

Thus, £,, follows closely the noncentral chi-square distribution with p — 1 d.f. as n — oo using
Sluskey’s theorem since o o9 H, -7, L8%0 x0 = oxoxo and £ Sx0 xo — Ao x0x0 in
probability as n — oo. O

Now we consider the asymptotic distributional bias (ADB), quadratic bias (ADQB), MSE ma-
trices (ADMSE) and the quadratic risks (ADQR) of the five estimators. Thus under {K (n)} and the
regularity conditions of section 1 we may obtain the various related expressions.

4 Asymptotic Distributional Bias (ADB), Quadratic Bias (ADQB),
Mean-square Error Matrix (ADMSE) and Quadratic Risk (ADQR)

In this section, we consider the bias, quadratic bias, mean-square error matrix and quadratic risks of
the four estimators defined in section 3. Thus, we may write the bias-vector for the estimator 3;, as

b* = lim VaB(8) — B ) = — lim vaB(B,g(La)) = —0E (03 (A7) @D

n—oo

by Appendix B of Judge and Bock (1978) and Saleh (2002) where 2 (/\?) stands for the non-central
chi-square variable with v d.f. and non-centrality parameter %AQ. To evaluate the properties of the
bias we consider the quadratic bias (QB) defined by

BT = A B(ada(a%)) @2
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Thus, QB of b* may be studied as a function of /A2, the non-centrality parameter of the chi-square
distribution. To obtain the mean-square-error (MSE) matrix of the estimator 3], we have to evaluate

+ "IZHZ nE<HanB;H292(£n)) — lim np (Hnﬁng(ﬂn)ﬂ’HZ)
~ lim nB(H,B8,H,g(L,)) + lim n(H,B6H,). 43)

Now, using Appendix B of Judge and Bock(1978) and Chapter 2 of Saleh (2002), we get
lim nE(H,B,9(Ln)) = ISE(g(xp (A7) and
Tim nE(H,B,8,H,0%(L,)) = IT5,3'E(¢* (1 (87))) + J68'T E(5° 045(47)))-
4.4)
Similarly,
Tim nE(H,B,8,H,9(L,)) = IT5,3 E(9(x1 (A7) + 356 B(9(G45(4%)). 4.5)
Finally, we substitute the expressions in (4.4) and (4.5) to (4.3) to get
(0)

* Ozz * 20,2 2 2 2
M= T I3 E (620G (%)) + 3683 {1 = 289021 (4)))
— B(0245(0%) ]} (46)
The quadratic risk under the loss function
!

L(8:.8) =n (8 - Bu) Q(8: ~ Bun ) @7

with the positive semi-definite matrix Q is given by

Ugg) / 1 2.2 2
R* = mtr(lppo) +tr(JT3,J'Q)F {9 (Xpt1(D ))}

+ w@8IQ[1 - {28]g00 (8] - Bl 0]} s

From the expressions (4.1), (4.2) , (4.6) and (4.8) we obtain the corresponding bias, quadratic
bias, MSE-matrix and the quadratic risks of the unrestricted, the preliminary-test, Stein-type and the
positive-rule Stein type’s estimators as follows.

ADB and ADQB Expressions and Comparisons

We may obtain the asymptotic distributional bias,

G(B,) =0, G(B,) =18,
By ) = =38y (o (0) : A7), GBL) = (0 = 3ISE [ 11 (4%)]
G(Ba") = ~38{Hyia(p = 38%) + (0 = 3)E [, 28D (x21(8%) > p - 3) |}
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and the quadratic bias expressions as follows.

Bi(B,) =0, Ba(B,) = =250 (813 A0J5) = A7
BB, ) = 82t (G a0 22) ) BB = (0 - 32028 [x,,H(A?)lf
By(B,) = A2{Hp+1(p —3;A%) + (p-3)E [x;fl(AQ)I(XZH(AQ) >p— 3)} } :

Clearly, under Hy, all estimators are unbiased. Also, as n — oo, all estimators except Bn has
unbounded bias. When A2 is moderate, the biases satisfy the relation

Bi(B,) =0 < Bs(Bh) < Ba(B,): Bi(B,)=0<Bs(B.") < Ba(B).

ADMSE and ADQR Expressions and Comparisons

We may obtain the asymptotic MSE and the weighted risk expressions as follows.

(0 1

M, B”) = limy, E{n(Bn - IB)(BTL - /6)/‘K(n)} = %AO
Bn) = hm”_>00 E{n(/én - B)(Bn - IB)I‘K(n)} = ml 1/ +J(56 J’
R1(Bn) = m"#tr{QAal}, Rz(ﬁn) = oo Uxo . tr{Ql } +6'J'QJ6.

Risk Analysis

Now consider the risk analysis of the estimators. The risk-difference of the two estimators is given
by
(0) (0)

~ A _ Oz —1y Ozz AN YA U

Ry (ﬁn) - R2(/6n) - H%xO—XOXO tr(QAO ) K%IJXOXO tr(lelp) 6'J QJ(S
_ o S {(QAy " — 1,1))} — 6'3'QIS
N H?::pUXOXO ' Prp ’

Hence, 3, perform better than 3, whenever A2 < {tr{Q[Aa1 — 1p1;)}}/C’hmm(QAal)} by

Courant theorem in Appendix. If Q = {K2, 0x0x0/ ol }AO, then 3,, performs better than B
whenever A% < p — 1, otherwise ﬁ performs better. The asymptotic risk difference (RRE) of ﬂ
compared to 3,, is given by ARRE(3,, : 3,)) = p/(1 + A2) which is a decreasing function of A2
At A2 = 0, it attains its maximum efficiency p and drops down to zero as n — oco. However, the
efficiency belongs to the interval (1,p) when 0 < A? < p— 1 and outside this interval Bn performs
better than ﬁn

MSE Analysis

In this case consider the matrix-difference
(0)

Mi(B,) ~ Ma(B,) = ———— |A7" — 1,1;| — 356",

2
R320 X0X0
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This MSE-difference is positive definite whenever for a given non-zero vector £ = (¢1,...,¢,)" we
have

)
g

__%= [A*l ~1 1’}5 _0'358'3'8> 0.

Klgﬁo'Xox(J 0 p=p = O

That is,
2
e B A R R LR

Ozz
Since £'A; £ > 0, we consider

CIAN'E K2, 0x0x0 0388'3'¢
max > ax

m
e LA T 5O ¢ LAS'e

or Chmax[J] > A2

Hence, ﬁn performs better than ,é'n if 0 < A? < 1, otherwise Bn performs better than Bn Note
that the determinant of M(/3,,) is zero so that it is meaningless to have AMRE’s of (3,, to other
estimators. For the Preliminary-Test estimator,

My(3, ) = lim E{n(B," ~B)(B, ~B)IKuw}
e ()
+(368'3) {2,101 (3E1(0) : A%) = Hyes (X3 1(0) - A7)}
Ry(B, ) = %"fimtr{m@l} - H%;fjixo tr{QIAG Y FHyp i1 (21 (0)  A2)
+ (6’J’QJ5) {2Hp+1 (Xg_l(a) : A2> ~Hy.s (Xg_l(a) : A2> }
Risk Analysis

~ PT ~
The risk -difference shows that 3,, performs better than 3,, whenever

A2 < tr{QIAG I} Hpy1 (X2, (0); A?)
= C

himaa [QA61] {2Hp+1 (XIQJ—I (@); AQ)_HP-&-S (Xf;—l (@); AQ)}
(4.9)
~ ~ PT
while 3,, performs better than 3,, if

{QIAG I} H 1 (x5 1 (0); A%)

A? > - )
Chumin|QAg {2Hp 11 (x5 1 (@); A%) — Hpi3(xo 1 (a); A2)}

~ PT -
If Q = {K2,0x0x0 /agg)}AO, then 3, performs better than 3,

A2 < (p— 1)Hp+1(X;2)—1(04)§ AZ)}
T 2Hpn(xpo1(a); A%) = Hyps(xp-q () A?)
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- . PT
otherwise 3,, is better than 3,, .

. . PT
Now consider the risk-difference of 3,, and 3,, under Hy,

(0)

~ ~ PT g —
Ro(B,) = Rs(B, ) = ————tr{(QL,1}) — QA '}
itr(QJA—lJ’)H (x3_1( )~0)30
Rgx0x0Xx0 0 P+l Xpil ) <

accordingly as

Ztr[Q(Aal — 1p1;)]
< tr[QIAGT

Hpi1(xp-1(c); 0)

~PT N
Thus 3,, performs better than 3,, when

r[Q(AG " — 1,1})]
tr[QIAL 1T

Hp+1(X12)—1(04)5 0) >

~ PT o
If Q = {Kk2,0x0x0/ agg)}Ao, then 3,, performs better than 3, when
Hp-i-l(X;Q)—l(a); 0)>1
o ~ PT o
otherwise 3,, performs better than 3,, . Notice that the asymptotic risk of 3,, is unbounded while
. PT ~PT .
that of 3,, is bounded. In general, 3,, performs better than 3,, whenever
r{Q[AG" — 1,1}, — JAG I Hyi1 (x5 (a); A%)]}
Chinas[QAG {1 = 2Hp 41 (x5 _1(); A?) + Hyy3(xp -1 (); A?)}

A% >

and Bn performs better than BfT whenever

2{Q[Ay " — 1,1} — JAG I Hppy (x4 (); A)]}
= Chmin [QA(?l]{l - 2Hp+1(X;2)71(a); A?) + Hp+3(X;2;71(a); A%)}
If Q = {K2,0x0x0/0' P} Ag, then B:T performs better than 3,

(p— DL = Hp1(xj_1(); A%)]
1= 2H, 11 (x5-1(0); A2) + Hpr3(x;-1 (); A?)

2

A% >

N ~ PT
otherwise (3,, performs better than 3,, for any fixed .
~ PT -
Now consider the asymptotic risk efficiency of 3,,  relative to 3,, when Q = {x2 0 xox0/ o Ao

ARREB." :B,) = [1 - (1 - %)Hp+1(x;27—1<a);A2)

4 82 0 (@82 — Hya(é ()i 07))]

We note the following properties of ARRE (B: T B,.).
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(0 ARRE(B:T : B,J%l according as
< (P — D Hpi1(xp-1(); A?)
> {2H,11 (x5 1(); A%) — Hpy3(xp 1 (@); A?)}

(ii) The maximum efficiency is attained at A2 = 0 with the value

fi-(1-3) HpH(le(a);o)}_l

(iii) ARRE(ﬁf T; B,,) decreases as a function of A for fixed o € (0,1) crossing the 1-line to

a minimum, say, at A? = A2  then monotonically increases towards unity as A? — oco.
Since PTE is not an estimator with uniform dominance over 3,,, one may obtain a PTE with
minimum guaranteed efficiency, say, Fy by solving the inequality

(<p-1)

~ PT ~
max min ARRE(B,, ;3,,) > Eo.

acA A2

) . PT . APT -~
(iv) Asaa— 0,8, — B,while3, — 8,asa—1.

~ PT o
Next, we consider the risk efficiency of 3, relative to 3,, for Q = {x2, 0 x0x0/ ol }Ay given by

ARRE(B," : B,)) =p ' (1+47) [1 o () LSO
+ AZp‘1{2Hp+1(X§_1(a); A?) = Hpys(xh_ 1 (a); AQ)H _1-

~PT -
We note the following properties of ARRE(BnT; 8,)
@) ARRE(ﬁ:T; B,) =1 according as

A2 < (p—1D{1 - HP+1(X12)71(04); AQ)}
= {2Hp11(xp-1(a); A2) — Hyi3(xp -1 (a); A2)}

(i) Under Hy, the efficiency is given by

- (1 ) b @0 e

while that of ﬁ: ’ rel Bn is given by
1 9 -1
J— PR . >
1= (1= ) Hpa(Ga@:0)] (2 1)

PT » ~ PT
n n

Thus, under Hy, p~' < ARRE(B,, ;8,) < ARRE(B, ;83,).

(iii) As A? = 0o, ARRE(B,, 18, — .

~ PT ~ ~ PT ~
(iv) Asa—0, 8, — B,andasa— 1, B, — 3,.
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MSE Analysis
The MSE matrix difference is given by

0
~ PT agz)

Ml(lén) - M3(ﬁn ) = JAalJal+1(X12)—1(a)§ A2)

2
R320 X0X0

- Jaa’J'{2Hp+1(X§_1(a); A2) — H, 5031 (); A?)}.
It may be shown by the method in section 5.8.1 that B: g performs better than Bn if

Hp (X3 (); A?)

Az < 2 2 2 2
2Hp11(xp-1(a); A%) — Hpi3(x5 g (a); A?)

~ AP . . P
otherwise, 3,, performs better than 3,, T. Similarly, we can show that 3,, performs better than 3,, g
if
{1 - Hpi1 (-1 (); A%)}
{1=2H, 1101 (); A%) + Hp 1500 -1 (); A%)}

A? <

Otherwise, BST performs better than ﬁn However, under Hy, it is seen that [3” performs better
than Bf T whenever X;_1 () satisfies the inequality  Hp11(x2_;();0) < 1. Thus, none of the
estimators dominates the other. pr )

Now, the MSE based efficiency of 3,, relative to 3,, and 3,, are given respectively by

“PT - M Nn 1/p
AMREB,":3,) = By T
M3 (8, )[/»
= |Ip — JAalJ/AOHp+1(X12,71(O‘)§ AQ)
K20 X0 X0 / 2 2 2 2 o
S (368 T A0 2Hy 11 (x5—1(0); A2) = Hyya(x) -y (a); A7)}
Tz2
—(p=1)/p
= {1 (2 (e) %)}
2 2 2 2 21|77
X ‘1 + A {2Hp+1,m(Xp71(a)§A ) - HP+3(Xp71(a);A )}‘ '
Note that

(i) Under Hy, .
AMRE(B,"3B,) = {1 = By 01 (2):0))

~PT ~
(i) Under the alternatives, that is, A > 0, AMRE(S3,,” ;(3,,) is decreasing function of A? for
fixed o until A% = A?

min?

thing for MRE(BfT; B,).

then it increases towards 1 as A%2 — co. We cannot say the same
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To determine optimum level of significance o to obtain a minimum guaranteed efficiency Ey we
solve the inequality

~PT -~
i : > .
max IrA112n AMRE(ﬂn ,ﬂn) > FEy

Some tabular values are given in Table 5.6.1 for various p and n values. For the Stein-type estimator,

MUED) = i B{E] BB - B} = T I ()
< {2E[GA0Y)] - 0 -3)B[ L (AY)]} + (- 3k - 1) (3087 ) B[ 15(A2)]
R = 5T —efaat) - GV (a5 op o0)
— (p=IEPGLA)]}+ (- 3)p - D(87QI8) B[ (AY)].
Risk Analysis

First note that the asymptotic risk difference

P _ (p — 3)0’22)

Ri(B,) ~ Ra(B) = 7 L alQIAG ) (280G 2 (A%)]

= (= 3)EDGH(AY)]) + 0+ DAENGE(AY)]}

(p— 3)023)
RgzOX0X0

+ 2A2E[X;;+3(A2)](

t[QIAG I (0 - 3)Elx, 2, (A7)

(p+1)8'3'QJIé

—1 4/ >
25 A g0 MQTA JD} 20

for all A2 and Q matrices which belong to the set

tr(QJIA(J’) Pt 1}

SRR

~ S -
Hence 3,, asymptotically dominates 3,, uniformly for all Q € Q.

MSE Analysis

~ .S
First consider the comparison of 3,, and 3,,. In this case, the MSE matrix-difference is given by

~ > - ng
Mi(B,) - Mu(By) = LU A c lomng2 (a%) - (0 - ) 4 (87)])

K/?vxo'ono
— (p=3)(p — D)(JIS8'T) Elx;, [5(A%)]. (4.10)
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~S -
In order that 3,, dominates 3, based on MSE matrices, we must show (4.10) is non-negative
definite. Thus, consider the quadratic form

1o ©
b= D0 g ate{ 2Bl 2, (8]~ (0~ 9Bl (4%))
R3z0 X0X0

> (p=3)(p — DO I8 I )EEx; 5(A%)]

for a given non-zero vector £ = ({y,...,£,) . Thus, dividing by £ A;"£(> 0), and maximizing
over all /, we have

max

o PIAS'Te
K20 x0x0 g’Agle

(2G5 (A%)] - (- 3)E [po(A?)])}
0356'3'¢ )
Pt P ()

& {2B0GEAY] - (0 - 3)EDG (A7)}
> (p- DAZEDG (4]

& El,t1(AY] > (p— 2)A%Elx, (A7),

> (p— l)mgx

S
which is contradiction. 3,, doesn’t dominate uniformly with respect to the MSE criterion.
~ S -
The MSE-efficiency of 3,, compared to 3,, is given by

AMRE (3,3 8,) M, (B2
|M4(ﬂn)\1/”
~ (p = 3IAT T A {2EDGE (A%)] - (0 - 3)ED 11 (A%)]}

—1/p

(= 1) - 3) 0N (355 Bl (A2
zz 1/p
= [1-0-00-3){2E0GH @] - 0 - 3EN L (AM]}AY]

[1 —(p- 3){2 [Xp+1(A2)] -(p-3)E [Xp+1(A2)}H 7(1)71)/]).

X

A8 ~
Under Hy, the AMRE(S,,; 3,,) becomes

AMRE ($,:8,) = {1- 1?;3}*(17*1)/17

b =),

and as A% — oo, AMRE(&:;BTL) —1
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For the Positive-Rule Stein-type estimator,

Ms(B, ) = lm E{n(B, - B)(B, —B)Kuw}=Mi(6,) - ”9{ (3a517)

T—00 ngcxoxo
< B(1- -8 (a%) T(3n (8% > p - 3)]
+ F”i;’o‘)X (J&&'J')E[Q —(p— 3)X;f3(A2))2 X 1(X§+3(A2) >p— 3)} }
- 2(.155&1’) x E[(1 —(p— 3)X;f3(A2))I<X§+3(A2) >p— 3)]

0
~ S+ ~S ng)

Rs(B, ) = R4(B,)— {tr(QJAalJ’)

< E[(1- -3 A0%) (33 (8% > p - 3)]
+ % (6’J’QJ6>EK1 (- 3)X;+23(A2))2 x 1(X§+S(A2) >p— 3)}}
- 2(5'J’QJ5) x E[(l —(p— 3)X;_E3(A2))I<Xf,+3(A2) >p— 3)}

Risk Analysis

.S - S+
Next we compare 3,, and 3,, .

0
.S n o

RiBD - BB, = T alQia WIE[(1- (- 30 A(A) 103 (A7) > p - 3)]

RggzO X0X0

b T (513Qas) B[ (1 - (- 3 3(49) T0E (40 > p-3)] )

ol

+ 20TQISE|(1- (=30 2a(A)) I 5(A%) > p=3)] 20

~ S+ . . A5
for all 6 and Q. Hence 3,, asymptotically dominates 3,, uniformly. Thus we may order the
estimators accordingly to the asymptotic risk as

Rs(B27) < Ru(B) < Ru(B,)
~ S

A5 ~ ~S
forall (A?, Q) and Q satisfying (4.10). It may be verified that ARRE(f3,,; 3,,) and ARRE(57,+; B,)
are decreasing functions of A? bounded below by the 1-line.

~S -
The risk-efficiency of 3,, compared to 3,, for Q = {x2_ 0 x0x0/ o }A is given by

ARRE(B,:8,) = (1—@_3),@{2’5[%&@2)}

~o-9[h@n] -] })
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~S ~ S
Similarly, the risk-efficiency of 5n+ compared to 3,, may be written as

- U<o>
ARREB,:B)) = [1—{1%3 P——— {<p—1>

729 X0X0
< B[(1- - 3)X£+21(A2))21(X§+1(A2) > p-3)
2 0xO0
+ %(5/:[/1&0@]5)[?{(1 — (p _ 3)Xp+3(A2)>
< 1(x25(A%) > p—3) —2{Ry(B,)} (53 A0I5)

% B[ (1= (0= 3589 1(x314(8%) > p - 3).

MSE Analysis

~S ~ S
The MSE-efficiency of 5n+ compared to 3,, may be written as

AMRE (3,38, = 7|M4( Bl
o [M(3, )17
_ 0
=1, - (M4(Bf)) l{lﬁzﬁimJAglJ’E[(l—(p—3)Xp+1(A2))2

x 1(X§+1(A2) >p— 3)} - Jéd’J’{EKl —(p— 3)X;+23(A2))2

-1/p

< (324522 > p—3)| + 22 (1 - 0~ 305 2(87) 1(xG1a(8%) > p-3)] }}

A5+ S ~S+ S
It may be shown that under Hy, the AMRE(ﬁ,ﬁ; B,) > 1and as A? — oo, AMRE(BHJF; B,)
tends to 1 from above.

5 Conclusion

It is shown that the positive-rule Stein estimator dominates the usual Stein-type estimator which in
turn dominate the unrestricted estimator uniformly for the number of lines more than three. Neither
the restricted estimator nor the preliminary-test estimator dominate each other uniformly. Similarly,
neither the preliminary-test estimator nor Stein-type estimator (the positive-rule Stein-type estima-
tor) dominate each other uniformly. However, when p > 3, the positive-rule Stein-type estimator is
the preferred choice for application otherwise the unrestricted estimator preferable when p < 2.
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