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SUMMARY

The problem of estimation of the regression parameters in several simple regression models
with measurement errors is considered when it is suspected that the regression lines may
be parallel with some degree of uncertainty. In this regard we propose five estimators,
namely, (i) the unrestricted estimator, (ii) the restricted estimator, (iii) the preliminary test
estimator, (iv) the Stein-type estimator and (v) the positive-rule Stein-type estimator as
in Saleh (2006). Properties of these estimators are studied in an asymptotic set up and
the asymptotic distributional bias, MSE matrices, and risk under a quadratic loss function
are obtained based on a sequence of local alternatives and dominance properties of these
estimators are provided.

Keywords and phrases:local alternatives, measurement errors, Preliminary-test estimator,
Stein-type estimators

1 Introduction
For several simple linear models with measurement errors, estimation of parameters is considered
when it is suspected with some degree of uncertainty that the lines may be parallel. We consider p
independent bivariate samples {(xαj , Y 0

αj )|α = 1, . . . , p, j = 1, . . . , nα} such that Y 0
αj ∼ N (θα +

βαµxα , σee) for each pair (αj , j), where β = (β1, . . . , βp)
′ is the slope and θ = (θ1, . . . , θp) is the

intercept parameters. It is common to test the parallelism hypothesis H0 : β = β01p (where β0 is
an unknown scalar) against the alternative HA : at least one pair of the components of β differ. Our
problem is the estimation of the slope parameters when H0 is suspected to hold. Consider simple
linear models  Y 0

αj = θα + βαxαj + eαj j = 1, . . . , nα

X0
αj = xαj + uαj , α = 1, . . . , p

(1.1)
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where eαj ∼ N (0, σee) is the measurement error in the study variable and uαj is the measurement
error in the explanatory variable. Note that xαj is unobservable and X0

αj is the corresponding
observed value. Furthermore, we assume that

(xαj , eαj , uαj )
′ ∼ N3 {(µxα , 0, 0) : Diag(σxαxα , σee, σuαuα)} . (1.2)

Then, (Y 0
αj , X

0
αj )
′ follows a bivariate normal distribution, that is, Y 0

αj

X0
αj

 ∼ N2


 θα + βαµxα

µα

 : Σαα

 , (1.3)

where

Σαα =

 σY 0
αY

0
α

σX0
αY

0
α

σX0
αY

0
α

σX0
αX

0
α

 =

 β2
ασxαxα + σee βασxαxα

βασxαxα σxαxα + σuαuα

 . (1.4)

The conditional distribution of Yαj given Xαj is again normal with mean and variance

E(Y 0
αj |X

0
αj ) = να0

+ να1
Xαj ; σ(α)

zz = σee + β2
ασxαxα(1− κxαxα), (1.5)

where να0
= θα + βαµxα(1 − κxαxα), να1

= κxαxαβα and κxαxα = σxαxα(σxαxα + σuαuα)−1

(αth reliability ratio). Clearly, Ȳ 0
α

X̄0
α

 ∼ N2


 θα + βαµxα

µxα

 :
1

nα
Σαα


and

Sαα =

 SY 0
αY

0
α

SX0
αY

0
α

SX0
αY

0
α

SX0
αX

0
α

 ∼W2

(
Σαα, nα − 1

)
,

where Ȳ 0
α = (1/nα)

∑nα
j=1 Y

0
αj , X̄

0
α = (1/nα)

∑nα
j=1X

0
αj SX0

αX
0
α

=
∑nα
j=1(X0

αj−X̄
0
α)2, SY 0

αY
0
α

=∑nα
j=1(Y 0

αj − Ȳ
0
α )2 and SX0

αY
0
α

=
∑nα
j=1(X0

αj − X̄
0
α)(Y 0

αj − Ȳ
0
α ). Here W2(Σαα, nα − 1) stands

for the Wishart distribution which is independent of the distribution of (Ȳ 0
α , X̄

0
α)′. Thus we have

E(Sαα/(nα − 1)) = Σαα which means that the unbiased estimators of the element of Σαα are the
corresponding elements of Sαα/(nα − 1). Hence, E(SX0

αX
0
α
/(nα − 1)) = σX0

αX
0
α

.
We consider the problem of estimation of β = (β1, . . . , βp)

′ when it is suspected that the
lines may be parallel i.e. H0 : β = β01p, against Ha : β 6= β01p where β0 is a scalar and
1p = (1, . . . , 1)′− a p-tuple of 1’s (Kim and Saleh, 2003). Toward this goal, we propose several es-
timators of β namely, (i) the unrestricted estimators (UE), (ii) the preliminary test estimator (PTE),
(iii) the Stein-type estimator (SE) and (iv) the Positive-rule Stein-type estimator (PRSE), and study
their properties. These types of estimations have been studied by Saleh and Han (1990), Judge
and Bock (1978) among others for models without measurement errors. Preliminary test estimators
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were introduced by Bancroft (1944) and expanded by Saleh and Sen (1978) in a nonparametric set-
up. Stein (1956) and James and Stein (1961) introduced the Stein-type estimators and expanded by
Saleh and Sen (1978-1986) and Sen and Saleh (1987) in the nonparametric set-up. For the multiple
regression model with measurement errors see Fuller (1987) and Cheng and Van Ness (1999) for
details and Schneerweiss (1976) on consistency. Kim and Saleh (2003) introduced the preliminary
test estimation in a simple linear model with measurement errors and they expended the study in
the problem of simultaneous estimation of the regression parameters in a multiple regression model
(Kim and Saleh, 2005). Notice that there are 6 parameters of the linear models and there are many
different configurations that lead to the same distributions of the observation models and is not iden-
tifiable. Therefore, we need to impose conditions or the parameters to overcome the identifiability
problem and obtain consistent estimators. For this reason we consider the following conditions:
(i)µxα = (µx1

, . . . , µxp)′, (ii)σxαxα = σxx, (iii)σuαuα = σuu and (iv) the reliability ratio,
κxx known for all α = 1, . . . , p. We organize the paper as follows. In section 2, we provide the
proposed five estimators and motivate the estimators in various ways starting from the unrestricted
estimator. Section 3 contains the asymptotic distributional properties of the estimators. The asymp-
totic analysis of the estimators is carried under a sequence of local alternative against parallelism.
In section 4, we obtain the asymptotic distributional bias, quadratic bias, MSE-matrices and risk
(under a quadratic loss function) expressions. We provide the comparison of the estimators based
on the asymptotic distributional bias, MSE matrix as well as risk analysis. We conclude the paper in
section 5.

2 Estimation and Test in Parallelism Model
Consider the model (1.1) and the assumptions that (i) µx = (µx1

, . . . , µxp)′, (ii) σxαxα = σxx, (iii)
σuαuα = σuu for all α = 1, . . . , p and (iv) καα known. Then we notice that Y

0

α

X
0

α

 ∼ N2


 θα + βαµxα

µxα

 :
1

nα
Σαα

 (2.1)

and

Sαα =

 SY 0
αY

0
α

SX0
αY

0
α

SX0
αY

0
α

SX0
αX

0
α

 ∼W2

(
Σαα, nα − 1

)
, (2.2)

where

Σαα =

 β2
ασxx + σee βασxx

βασxx σxx + σuu

 . (2.3)

This allows us to estimate σX0X0 = σxx + σuu by pooling the SX0
αX

0
α

’s, i.e. by S0
X0X0 =∑p

α=1 SX0
αX

0
α

since

E
(S0

X0X0

n− p

)
= σX0X0 . (2.4)
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Clearly, S0
X0X0/σX0X0 follows the central chi-square distribution with n − p degree of freedom

(d.f.). We obtain the unrestricted estimator of θ and β via the conditional model i.e.
(
Y 0
αj |X

0
αj

)
given by

Y 0
αj = να0 + να1X

0
αj + Zαj ; α = 1, . . . , p, (2.5)

where Zαj ∼ N (0, σ
(α)
zz ) where σ(α)

zz = σee + βασxx(1 − κxx). This model is exactly similar to
the standard model except that (i) να0

is a translation of θα, (ii) να1
is a scaled version of βα and

(iii) σ(α)
zz is the inflated version of σee. The estimator of να0

and να1
conditionally on (Xα,Sαα)

are given by

ν̃α0
= Y α −Xαν̃α1

; ν̃α1
=
SX0

αY
0
α

SX0
αX

0
α

. (2.6)

Clearly,  (ν̃α0
− να0

)

(ν̃α1
− να1

)

 ∼ N2

 0

0

 : Σ(α)

 , (2.7)

where

Σ(α) = σ(α)
zz

 1
nα

+
X

02
α

SX0
αX

0
α

− X
0
α

SX0
αX

0
α

− X
0
α

SX0
αX

0
α

1
SX0

αX
0
α

 . (2.8)

Defining θ̃α = Y
0

α −X
0

αβ̃α and β̃α = κ−1
xx ν̃α1

, we obtain (θ̃α − θα)

(β̃α − βα)

 ∼ N2

 −(1− κxx)(X
0

α − µxα)βα

0

 : Σ(α)
κxx

 ,

where

Σ(α)
κxx = σ(α)

zz

 1
nα

+
X

02
α

κ2
xxSX0

αX
0
α

− X
0
α

κ2
xxSX0

αX
0
α

− X
0
α

κ2
xxSX0

αX
0
α

1
κ2
xxSX0

αX
0
α

 .

Further,the unrestricted estimators of θ and β are given by the LSE/MLE as follows:

θ̃n = (θ̃1, . . . , θ̃p)
′ = Y −TXβ̃n

β̃n = (β̃1, . . . , β̃p)
′ = κ−1

xxS−1
X0X0SX0Y 0 ,

where Y = (Y
0

1, . . . , Y
0

p)
′; TX = Diag(X

0

1, . . . , X
0

p); SX0X0 = Diag(SX0
1X

0
1
, . . . , SX0

pX
0
p
); SX0Y 0 =

(SX0
1Y

0
1
, . . . , SX0

pY
0
p

)′. Finally, the unbiased estimator of σ(α)
zz is given by

s(α)
zz = (nα − 2)−1

∣∣∣∣∣∣Y0
α − ν̃α0

− ν̃α1
X0
α

∣∣∣∣∣∣2. (2.9)
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The conditional distribution of
{

(θ̃n − θ)′, (β̃n − β)′
}′

is given by

 θ̃n − θ
β̃n − β

 ∼ N2p


 −(1− κxx)(TX −Tµ)β01p

0

 ; D

 , (2.10)

where

TX = Diag(X
0

1, . . . , X
0

p),D =

 D11 −D12

−D21 D22

 ,

D11 = Diag
{(

1
n1

+
X

02
1

κ2
xxSX0

1X
0
1

)
σ

(1)
zz , . . . ,

(
1
np

+
X

02
p

κ2
xxSX0

pX
0
p

)
σ

(p)
zz

}
D22 = Diag

{
σ(1)
zz

κ2
xxSX0

1X
0
1

, . . . ,
σ(p)
zz

κ2
xxSX0

pX
0
p

}
, D12 = D′21 = Diag

{
X

0
1σ

(1)
zz

κ2
xxSX0

1X
0
1

, . . . ,
X

0
pσ

(p)
zz

κ2
xxSX0

pX
0
p

}
.

In case, the slopes are equal i.e. β = β01p we estimate the common conditional variance σ(0)
zz =

σee + β2
0σxx(1− κxx) by s(0)

zz defined by

s(0)
zz = (n− 2p)−1

p∑
α=1

(nα − 2)s(α)
zz , (2.11)

where s(α)
zz is given at (2.9). We define

An =
1p1

′
pSX0X0

1′pSX0X01p
and Hn = Ip −An.

Then we have the restricted estimators (RE) of θ and β as given by (a) and (b) respectively.

(a) θ̂n = θ̃n + TXHnβ̃n and (b) β̂n = Anβ̃n.

It is easy to obtain the following Theorem.

Theorem 1. Under H0 : β = β01p and assumed conditions, θ̂n − θ
β̂n − β

 ∼ N2p


 −(1− κxx)(TX −Tµ)β01p

0

 ;σ(0)
zz

 D∗11 D∗12

D∗21 D∗22

 ,

where

D∗11 = N−1 +
TX1p1

′
pTX

κ2
xx(1′pSX0X01p)

; D∗12 = D∗
′

21 = −
TX1p1

′
p

κ2
xx(1′pSX0X01p)

; D∗22 =
1

κ2
xx1

′S−1
X0X01
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Test of Parallelism

For the distribution of
{

(θ̃n − θ)′, (β̃n − β)
}′

under H0, we replace σ(α)
zz by σ(0)

zz in (2.10) for
all α = 1, . . . , p. Now consider the test of the null hypothesis H0 : β = β01p. The conditional
likelihood ratio test is given by

Ln =
κ2
xxβ̃

′
nH′nSX0X0Hnβ̃n

(p− 1)s
(0)
zz

.

Under H0, Ln follows the central F -distribution with (p− 1, n− 2p) d.f.
To see this, consider the orthogonal matrix Γ = (Γ1,Γ2), where Γ1 is a p × (p − 1) matrix

and Γ2 is a p− vector such that Γ′2Γ1 = 0 and Γ1Γ
′
1 + Γ2Γ

′
2 = Ip so that Γ1Γ

′
1 = Ip − Γ2Γ

′
2.

Further let us choose Γ2 =
S

1/2

X0X01p√
1′pSX0X01p

, then Γ1Γ
′
1 = Ip −

S
1/2

X0X01p1
′
pS

1/2

X0X0

1′pSX0X01p
, which implies that

Hn = S
−1/2
X0X0Γ1Γ

′
1S

1/2
X0X0 . Now define the random variable

Z =
κxx√
σ

(∗)
zz

Γ′1S
1/2
X0X0 β̃n ∼ N

 κxx√
σ

(∗)
zz

Γ′1S
1/2
X0X0β, Ip−1

 ,

where σ(∗)
zz = 1

p

∑p
α=1 σ

(α)
zz . Then under a fixed κxx, ||Z||2 follows the noncentral chi-square

distribution with p − 1 d.f. with noncentrality parameter 1
2∆2, with ∆2 =

κ2
xxβ

′
H′nSX0X0Hnβ
σ
(∗)
zz

.

Therefore, under H0 : β = β01p, Ln follows the central F -distribution with (p − 1, n − 2p) d.f.
since s(0)

zz ∼ σ(∗)
zz χ2

n−2p = σ
(0)
zz χ2

n−2p.

Estimators of Slopes

We may now define a class of estimators, β∗n of the form

β∗n = Anβ̃n + (Ip −An)β̃ng(Ln),

where An is an idempotent matrix of rank 1 and g(Ln) is a non-decreasing function of the test-
statistic Ln for testing the H0 : β = β01p against the HA;β 6= β01p. Accordingly, we have the
preliminary test estimators of β are as follows:

β̂
PT

n = β̃n −Hnβ̃nI(Ln < Ln,α), (a)

where Ln,α is the α significance level of the distribution of Ln. To overcome the dependence of the
estimators of PTE on∞, we define the Stein-type estimator:

β̂
S

n = β̃n − cHnβ̃nL−1
n , (b)

where c = (p− 3)m/((p− 1)(m+ 2)). Notice that we have replaced I(Ln < Ln,α) by cL−1
n in

(a) to obtain ( b) and impose the condition that p ≥ 4. The estimator β̂
S

n may go past the values
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β̂n. Thus we consider the convex combinations of β̂n and β̂
S

n via preliminary test procedure with
critical value c. And we obtain the positive-rule Stein-type estimators of β respectively as

β̂
S+

n = β̂nI(Ln < c) + β̂
S

nI(Ln > c) = β̂n + (1− cL−1
n )I(Ln > c)Hnβ̃n. (c)

3 Asymptotic Properties of Estimators under Local Alternatives
In order to study the properties of the five estimators, we need the distribution of the statistic, Ln
under the alternative HA : β 6= β01p. Now, under any alternative, the exact distribution of Ln
depends on the exact distribution of (n − 2p)s

2(0)
zz which is a weighted sum of central chi-square

variables with (nα − 2) d.f. for given α (= 1, . . . , p), i.e. (n − 2p)s
2(0)
zz

D
=
∑p
α=1 σ

2(α)
zz χ2

nα−2 by
(2.11). Even in the conditional situation, the expressions for bias, MSE-matrices and risks are not
available due to the lack of the distribution of Ln. Therefore, we take recourse to the asymptotic
methods. Let n = n1 + · · ·+ np and limn→∞

nα
n = λα(0 < λα < 1) so that

∑p
α=1 λα = 1. Thus,

we easily find the distribution by moment method following Fuller (1978) that as n→∞

√
n

 θ̃n − θ
β̃n − β

 ∼ N2p


 0

0

 :

 Γ11 Γ12

Γ21 Γ22

 ,

with

Γ11 = Diag
{
λ−1

1

(
σv1v1 +

µ2
x1
σ

(1)
zz

κ2
xxσX0X0

)
, . . . , λ−1

p

(
σvpvp +

µ2
xpσ

(p)
zz

κ2
xxσX0X0

)}
Γ22 = Diag

{
λ−1

1

σ
(1)
zz

κ2
xxσX0X0

, . . . , λ−1
p

σ
(p)
zz

κ2
xxσX0X0

}
Γ12 = Γ′21 = −Diag

{
λ−1

1

µ2
x1
σ

(1)
zz

κ2
xxσX0X0

, . . . , λ−1
p

µ2
xpσ

(p)
zz

κ2
xxσX0X0

}
,

where σvαvα = σee + β2
ασuu, α = 1, . . . , p.

Further, we consider a class
{
K(n)

}
of Pitman local alternatives K(n) : β(n) = β01p + n−

1
2 δ,

where δ is a fixed finite vector. Note that when δ = 0 we deal with the null hypothesis H0. Then
we obtain the following theorem.

Theorem 2. Under
{
K(n)

}
and the assumed conditions, as n→∞,

(a)
√
n

 θ̃n − θ
β̃n − β

 ∼ N2p


 0

0

 ;

 Γ∗11 Γ∗12

Γ∗21 Γ∗22


with

Γ∗11 = σ(0)
vv Λ−1

0 +σ(0)
zz

T2
µΛ−1

0

κ2
xxσX0X0

; Γ∗12 = Γ∗21 = −σ(0)
zz

TµΛ−1
0

κ2
xxσX0X0

; Γ∗22 = σ(0)
zz

Λ−1
0

κ2
xxσX0X0

;
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(b)
√
n

 θ̂n − θ
β̃n − β

 ∼ N2p


 TµJδ

δ

 ;

 Γ
′

11 Γ
′

12

Γ
′

21 Γ∗22


with

Γ
′

11 = σ(0)
vv Λ−1

0 +σ(0)
zz

Tµ1p1
′
pTµ

κ2
xxσX0X0

; Γ
′

12 = Γ
′

21 = −σ(0)
zz

Tµ1p1
′
p

κ2
xxσX0X0

; Γ∗22 = σ(0)
zz

Λ−1
0

κ2
xxσX0X0

.

(c) Ln =
κ2
xx

˜β
′

nH
′
nSX0X0Hn

˜βn
(p−1)s

(0)
zz

has asymptotically a noncentral chi-squared distribution with

(p− 1) d.f. and non-centrality parameter 1
2∆2 with ∆2 =

κ2
xxσX0X0

σ
(0)
zz

(
δ′J′Λ0Jδ

)
,

where
σ

(0)
vv = σee + β2

0σuu, σ(0)
zz = σee + β2

0σxx(1− κxx)

Tµ = Diag(µx1 , . . . , µxp) = limn→∞TX

Λ0 = Diag(λ1, . . . , λp); limn→∞Hn = J and J = Ip − 1p1
′
pΛ0.

Proof. For (c)

Ln =
κ2
xxβ̃

′
nH′nSX0X0Hnβ̃n

(p− 1)s
(0)
zz

=
κ2
xxσX0X0

(p− 1)σ
(0)
zz

(
nβ̃
′
nJ′Λ0Jβ̃n

)
+ op(1).

Thus, Ln follows closely the noncentral chi-square distribution with p − 1 d.f. as n → ∞ using
Sluskey’s theorem since σ(α)

zz → σ
(0)
zz ,Hn → J, 1

nS
0
X0
αX

0
α
→ σX0X0 and 1

nSX0
αX

0
α
→ λασX0X0 in

probability as n→∞.

Now we consider the asymptotic distributional bias (ADB), quadratic bias (ADQB), MSE ma-
trices (ADMSE) and the quadratic risks (ADQR) of the five estimators. Thus under

{
K(n)

}
and the

regularity conditions of section 1 we may obtain the various related expressions.

4 Asymptotic Distributional Bias (ADB), Quadratic Bias (ADQB),
Mean-square Error Matrix (ADMSE) and Quadratic Risk (ADQR)

In this section, we consider the bias, quadratic bias, mean-square error matrix and quadratic risks of
the four estimators defined in section 3. Thus, we may write the bias-vector for the estimator β∗n as

b∗ = lim
n→∞

√
nE
(
β∗n − β(n)

)
= − lim

n→∞

√
nE
(
β̃ng(Ln)

)
= −δE

(
g(χ2

p+1(42))
)

(4.1)

by Appendix B of Judge and Bock (1978) and Saleh (2002) where χ2
ν(42) stands for the non-central

chi-square variable with ν d.f. and non-centrality parameter 1
24

2. To evaluate the properties of the
bias we consider the quadratic bias (QB) defined by

B = b∗′Γ∗22
−1

b∗ = 42
{
E
(
g(χ2

p+1(42))
)}2

. (4.2)
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Thus, QB of b∗ may be studied as a function of 42, the non-centrality parameter of the chi-square
distribution. To obtain the mean-square-error (MSE) matrix of the estimator β∗n we have to evaluate

M∗ = lim
n→∞

nE
(

(β∗n − β(n))(β
∗
n − β(n))

′
)

= lim
n→∞

nE
(
An(β̃n − β(n))(β̃n − β(n))

′A′n

)
+ lim

n→∞
nE
(
Hnβ̃nβ̃

′
nH′ng

2(Ln)
)
− lim
n→∞

nE
(
Hnβ̃ng(Ln)β′H′n

)
− lim

n→∞
nE
(
Hnββ̃

′
nH′ng(Ln)

)
+ lim
n→∞

n
(
Hnββ

′H′n

)
. (4.3)

Now, using Appendix B of Judge and Bock(1978) and Chapter 2 of Saleh (2002), we get

lim
n→∞

nE
(
Hnβ̃ng(Ln)

)
= JδE

(
g(χ2

p+1(42))
)

and

lim
n→∞

nE
(
Hnβ̃nβ̃

′
nH′ng

2(Ln)
)

= JΓ∗22J
′E
(
g2(χ2

p+1(42))
)

+ Jδδ′J′E
(
g2(χ2

p+3(42))
)
.

(4.4)

Similarly,

lim
n→∞

nE
(
Hnβ̃nβ̃

′
nH′ng(Ln)

)
= JΓ∗22J

′E
(
g(χ2

p+1(42))
)

+ Jδδ′J′E
(
g(χ2

p+3(42))
)
. (4.5)

Finally, we substitute the expressions in (4.4) and (4.5) to (4.3) to get

M∗ =
σ

(0)
zz

κ2
xxσX0X0

1p1
′
p + JΓ∗22J

′E
(
g2(χ2

p+1(42))
)

+ Jδδ′J′
{

1−
[
2E
(
g(χ2

p+1(42))
)

− E
(
g2(χ2

p+3(42))
)]}

. (4.6)

The quadratic risk under the loss function

L
(
β∗n,β

)
= n

(
β∗n − β(n)

)′
Q
(
β∗n − β(n)

)
(4.7)

with the positive semi-definite matrix Q is given by

R∗ =
σ

(0)
zz

κ2
xxσX0X0

tr(1p1
′
pQ) + tr(JΓ∗22J

′Q)E
[
g2(χ2

p+1(42))
]

+ tr(Jδδ′J′Q)
[
1−

{
2E
[
g(χ2

p+1(42))
]
− E

[
g2(χ2

p+3(42))
]}]

. (4.8)

From the expressions (4.1), (4.2) , (4.6) and (4.8) we obtain the corresponding bias, quadratic
bias, MSE-matrix and the quadratic risks of the unrestricted, the preliminary-test, Stein-type and the
positive-rule Stein type’s estimators as follows.

ADB and ADQB Expressions and Comparisons

We may obtain the asymptotic distributional bias,

ζ1(β̃n) = 0, ζ2(β̂n) = −Jδ,

ζ3(β̂
PT

n ) = −JδHp+1

(
χ2
p−1(α) : ∆2

)
, ζ4(β̂

S

n) = −(p− 3)JδE
[
χ−2
p+1(∆2)

]
ζ5(β̂

S+

n ) = −Jδ
{
Hp+1(p− 3; ∆2) + (p− 3)E

[
χ−2
p+1(∆2)I

(
χ2
p+1(∆2) > p− 3

)]}



164 Kim & Saleh

and the quadratic bias expressions as follows.

B1(β̃n) = 0, B2(β̂n) =
κ2
xxσX0X0

σ
(0)
zz

(
δ′J′Λ0Jδ

)
= ∆2

B3(β̂
PT

n ) = ∆2
{
Hp+1

(
χ2
p−1(α) : ∆2

)}2

, B4(β̃
S

n) = (p− 3)2∆2
{
E
[
χ−2
p+1(∆2)

]}2

B5(β̂
S+

n ) = ∆2
{
Hp+1(p− 3; ∆2) + (p− 3)E

[
χ−2
p+1(∆2)I

(
χ2
p+1(∆2) > p− 3

)]}2

.

Clearly, under H0, all estimators are unbiased. Also, as n → ∞, all estimators except β̃n has
unbounded bias. When ∆2 is moderate, the biases satisfy the relation

B1(β̃n) = 0 < B3(β̂
PT

n ) < B2(β̂n); B1(β̃n) = 0 < B5(β̂
S+

n ) < B4(β̂
S

n).

ADMSE and ADQR Expressions and Comparisons

We may obtain the asymptotic MSE and the weighted risk expressions as follows.

M1(β̃n) = limn→∞E
{
n(β̃n − β)(β̃n − β)′|K(n)

}
=

σ(0)
zz

κ2
xxσX0X0

Λ−1
0

M2(β̂n) = limn→∞E
{
n(β̂n − β)(β̂n − β)′|K(n)

}
=

σ(0)
zz

κ2
xxσX0X0

1p1
′
p + Jδδ′J′

R1(β̃n) =
σ(0)
zz

κ2
xxσX0X0

tr
{

QΛ−1
0

}
, R2(β̂n) =

σ(0)
zz

κ2
xxσX0X0

tr
{

Q1p1
′
p

}
+ δ′J′QJδ.

Risk Analysis

Now consider the risk analysis of the estimators. The risk-difference of the two estimators is given
by

R1(β̃n)−R2(β̂n) =
σ

(0)
zz

κ2
xxσX0X0

tr(QΛ−1
0 )− σ

(0)
zz

κ2
xxσX0X0

tr(Q1p1
′
p)− δ

′J′QJδ

=
σ

(0)
zz

κ2
xxσX0X0

{tr(Q[Λ−1
0 − 1p1

′
p])} − δ

′J′QJδ.

Hence, β̂n perform better than β̃n whenever ∆2 ≤ {tr{Q[Λ−1
0 − 1p1

′
p]}/Chmin(QΛ−1

0 )} by

Courant theorem in Appendix. If Q = {κ2
xxσX0X0/σ

(0)
zz }Λ0, then β̂n performs better than β̃n

whenever ∆2 < p − 1, otherwise β̃n performs better. The asymptotic risk difference (RRE) of β̂n
compared to β̃n is given by ARRE(β̂n : β̃n) = p/(1 + ∆2) which is a decreasing function of ∆2.
At ∆2 = 0, it attains its maximum efficiency p and drops down to zero as n → ∞. However, the
efficiency belongs to the interval (1, p) when 0 < ∆2 < p− 1 and outside this interval β̃n performs
better than β̂n.

MSE Analysis

In this case consider the matrix-difference

M1(β̃n)−M2(β̂n) =
σ

(0)
zz

κ2
xxσX0X0

[
Λ−1

0 − 1p1
′
p

]
− Jδδ′J′.
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This MSE-difference is positive definite whenever for a given non-zero vector ` = (`1, . . . , `p)
′ we

have

σ
(0)
zz

κ2
xxσX0X0

`′
[
Λ−1

0 − 1p1
′
p

]
`− `′Jδδ′J′` > 0.

That is,

`′
[
Λ−1

0 − 1p1
′
p

]
` ≥ κ2

xxσX0X0

σ
(0)
zz

`′Jδδ′J′`.

Since `′Λ−1
0 ` > 0, we consider

max
`

`′JΛ−1
0 `

`′Λ−1
0 `

≥ κ2
xxσX0X0

σ
(0)
zz

max
`

`′Jδδ′J′`

`′Λ−1
0 `

or Chmax[J] ≥ ∆2.

Hence, β̂n performs better than β̃n if 0 ≤ ∆2 ≤ 1, otherwise β̃n performs better than β̂n. Note
that the determinant of M2(β̂n) is zero so that it is meaningless to have AMRE’s of β̂n to other
estimators. For the Preliminary-Test estimator,

M3(β̂
PT

n ) = lim
n→∞

E
{
n(β̂

PT

n − β)(β̂
PT

n − β)′|K(n)

}
=

σ
(0)
zz Λ−1

0

κ2
xxσX0X0

− σ
(0)
zz JΛ−1

0 J′

κ2
xxσX0X0

Hp+1

(
χ2
p−1(α) : ∆2

)
+
(
Jδδ′J′

){
2Hp+1

(
χ2
p−1(α) : ∆2

)
−Hp+3

(
χ2
p−1(α) : ∆2

)}
R3(β̂

PT

n ) =
σ

(0)
zz

κ2
xxσX0X0

tr
{

QΛ−1
0

}
− σ

(0)
zz

κ2
xxσX0X0

tr
{

QJΛ−1
0 J′

}
Hp+1

(
χ2
p−1(α) : ∆2

)
+
(
δ′J′QJδ

){
2Hp+1

(
χ2
p−1(α) : ∆2

)
−Hp+3

(
χ2
p−1(α) : ∆2

)}
.

Risk Analysis

The risk -difference shows that β̂
PT

n performs better than β̃n whenever

∆2 ≤
tr{QJΛ−1

0 J′}Hp+1(χ2
p−1(α); ∆2)

C
hmax[QΛ−1

0 ]{2Hp+1(χ2
p−1(α); ∆2)−Hp+3(χ2

p−1(α); ∆2)}
(4.9)

while β̃n performs better than β̂
PT

n if

∆2 >
tr{QJΛ−1

0 J′}Hp+1(χ2
p−1(α); ∆2)

Chmin[QΛ−1
0 ]{2Hp+1(χ2

p−1(α); ∆2)−Hp+3(χ2
p−1(α); ∆2)}

.

If Q = {κ2
xxσX0X0/σ

(0)
zz }Λ0, then β̂

PT

n performs better than β̃n

∆2 ≤
(p− 1)Hp+1(χ2

p−1(α); ∆2)}
2Hp+1(χ2

p−1(α); ∆2)−Hp+3(χ2
p−1(α); ∆2)
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otherwise β̃n is better than β̂
PT

n .

Now consider the risk-difference of β̂n and β̂
PT

n under H0,

R2(β̂n)−R3(β̂
PT

n ) =
σ

(0)
zz

κxxσX0X0

tr{(Q1p1
′
p)−QΛ−1

0 }

+
σ

(0)
zz

κxxσX0X0

tr(QJΛ−1
0 J′)Hp+1(χ2

p−1(α); 0)
>

<
0

accordingly as

Hp+1(χ2
p−1(α); 0)

>

<

tr[Q(Λ−1
0 − 1p1

′
p)]

tr[QJΛ−1
0 J′]

Thus β̂
PT

n performs better than β̂n when

Hp+1(χ2
p−1(α); 0) >

tr[Q(Λ−1
0 − 1p1

′
p)]

tr[QJΛ−1
0 J′]

If Q = {κ2
xxσX0X0/σ

(0)
zz }Λ0, then β̂

PT

n performs better than β̂n when

Hp+1(χ2
p−1(α); 0) > 1

otherwise β̂n performs better than β̂
PT

n . Notice that the asymptotic risk of β̂n is unbounded while

that of β̂
PT

n is bounded. In general, β̂
PT

n performs better than β̂n whenever

∆2 >
tr{Q[Λ−1

0 − 1p1
′
p − JΛ−1

0 J′Hp+1(χ2
p−1(α); ∆2)]}

Chmax[QΛ−1
0 ]{1− 2Hp+1(χ2

p−1(α); ∆2) +Hp+3(χ2
p−1(α); ∆2)}

and β̂n performs better than β̂
PT

n whenever

∆2 ≤
tr{Q[Λ−1

0 − 1p1
′
p − JΛ−1

0 J′Hp+1(χ2
p−1(α); ∆2)]}

Chmin[QΛ−1
0 ]{1− 2Hp+1(χ2

p−1(α); ∆2) +Hp+3(χ2
p−1(α); ∆2)}

If Q = {κ2
xxσX0X0/σ

(0)
zz }Λ0, then β̂

PT

n performs better than β̂n

∆2 >
(p− 1)[1−Hp+1(χ2

p−1(α); ∆2)]

1− 2Hp+1(χ2
p−1(α); ∆2) +Hp+3(χ2

p−1(α); ∆2)

otherwise β̂n performs better than β̂
PT

n for any fixed α.

Now consider the asymptotic risk efficiency of β̂
PT

n relative to β̃n when Q = {κ2
xxσX0X0/σ

(0)
zz }Λ0

ARRE(β̂
PT

n : β̃n) =
[
1−

(
1− 1

p

)
Hp+1(χ2

p−1(α); ∆2)

+
1

p
∆2
{

2Hp+1(χ2
p−1(α); ∆2)−Hp+3(χ2

p−1(α); ∆2)
}]−1

We note the following properties of ARRE(β̂
PT

n : β̃n).
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(i) ARRE(β̂
PT

n : β̃n)><1 according as

∆2<

>

(p− 1)Hp+1(χ2
p−1(α); ∆2)

{2Hp+1(χ2
p−1(α); ∆2)−Hp+3(χ2

p−1(α); ∆2)}
(≤ p− 1)

(ii) The maximum efficiency is attained at ∆2 = 0 with the value{
1−

(
1− 1

p

)
Hp+1(χ2

p−1(α); 0)

}−1

(iii) ARRE(β̂
PT

n ; β̃n) decreases as a function of ∆2 for fixed α ∈ (0, 1) crossing the 1-line to
a minimum, say, at ∆2 = ∆2

min, then monotonically increases towards unity as ∆2 → ∞.
Since PTE is not an estimator with uniform dominance over β̃n, one may obtain a PTE with
minimum guaranteed efficiency, say, E0 by solving the inequality

max
α∈A

min
∆2

ARRE(β̂
PT

n ; β̃n) ≥ E0.

(iv) As α→ 0, β̂
PT

n → βn while β̂
PT

n → β̃n as α→ 1.

Next, we consider the risk efficiency of β̂
PT

n relative to β̂n for Q = {κ2
xxσX0X0/σ

(0)
zz }Λ0 given by

ARRE(β̂
PT

n : β̂n)) = p−1(1 + ∆2)

[
1−

(
1− 1

p

)
Hp+1(χ2

p−1(α); ∆2)

+ ∆2p−1
{

2Hp+1(χ2
p−1(α); ∆2)−Hp+3(χ2

p−1(α); ∆2)
}]−1

.

We note the following properties of ARRE(β̂
PT

n ; β̂n)

(i) ARRE(β̂
PT

n ; β̂n)><1 according as

∆2 ≤
(p− 1){1−Hp+1(χ2

p−1(α); ∆2)}
{2Hp+1(χ2

p−1(α); ∆2)−Hp+3(χ2
p−1(α); ∆2)}

.

(ii) Under H0, the efficiency is given by

p−1
[
1−

(
1− 1

p

)
Hp+1(χ2

p−1(α); 0)
]−1

(≥ p−1)

while that of β̂
PT

n rel β̃n is given by[
1−

(
1− 1

p

)
Hp+1(χ2

p−1(α); 0)
]−1

(≥ 1)

Thus, under H0 p−1 ≤ ARRE(β̂
PT

n ; β̂n) ≤ ARRE(β̂
PT

n ; β̃n).

(iii) As ∆2 →∞, ARRE(β̂
PT

n ; β̂n)→∞.

(iv) As α→ 0, β̂
PT

n → β̂n and as α→ 1, β̂
PT

n → β̃n.
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MSE Analysis

The MSE matrix difference is given by

M1(β̃n)−M3(β̂
PT

n ) =
σ

(0)
zz

κ2
xxσX0X0

JΛ−1
0 J′Hp+1(χ2

p−1(α); ∆2)

− Jδδ′J′
{

2Hp+1(χ2
p−1(α); ∆2)−Hp+3(χ2

p−1(α); ∆2)
}
.

It may be shown by the method in section 5.8.1 that β̂
PT

n performs better than β̃n if

∆2 <
Hp+1(χ2

p−1(α); ∆2)

2Hp+1(χ2
p−1(α); ∆2)−Hp+3(χ2

p−1(α); ∆2)

otherwise, β̃n performs better than β̂
PT

n . Similarly, we can show that β̂n performs better than β̂
PT

n

if

∆2 <
{1−Hp+1(χ2

p−1(α); ∆2)}
{1− 2Hp+1(χ2

p−1(α); ∆2) +Hp+3(χ2
p−1(α); ∆2)}

.

Otherwise, β̂
PT

n performs better than β̂n. However, under H0, it is seen that β̂n performs better

than β̂
PT

n whenever χ2
p−1(α) satisfies the inequality Hp+1(χ2

p−1(α); 0) ≤ 1. Thus, none of the
estimators dominates the other.

Now, the MSE based efficiency of β̂
PT

n relative to β̃n and βn are given respectively by

AMRE(β̂
PT

n ; β̃n) =
|M1(β̃n)|1/p

|M3(β̂
PT

n )|1/p

=
∣∣Ip − JΛ−1

0 J′Λ0Hp+1(χ2
p−1(α); ∆2)

+
κ2
xxσX0X0

σ
(0)
zz

(Jδδ′JΛ0){2Hp+1(χ2
p−1(α); ∆2)−Hp+3(χ2

p−1(α); ∆2)}
∣∣∣∣−1/p

=
{

1−Hp+1(χ2
p−1(α); ∆2)

}−(p−1)/p

×
∣∣∣1 + ∆2

{
2Hp+1,m(χ2

p−1(α); ∆2)−Hp+3(χ2
p−1(α); ∆2)

}∣∣∣−1/p

.

Note that

(i) Under H0,

AMRE
(
β̂
PT

n ; β̃n

)
=
{

1−Hp+1(χ2
p−1(α); 0)

}−1

.

(ii) Under the alternatives, that is, ∆2 > 0, AMRE(β̂
PT

n ; β̃n) is decreasing function of ∆2 for
fixed α until ∆2 = ∆2

min, then it increases towards 1 as ∆2 → ∞. We cannot say the same

thing for MRE(β̂
PT

n ; β̂n).
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To determine optimum level of significance α to obtain a minimum guaranteed efficiency E0 we
solve the inequality

max
α

min
∆2

AMRE
(
β̂
PT

n ; β̃n
)
≥ E0.

Some tabular values are given in Table 5.6.1 for various p and n values. For the Stein-type estimator,

M4(β̂
S

n) = lim
n→∞

E
{
n(β̂

S

n − β)(β̂
S

n − β)′|K(n)

}
=

σ
(0)
zz Λ−1

0

κ2
xxσX0X0

− (p− 3)σ
(0)
zz

κ2
xxσX0X0

(
JΛ−1

0 J′
)

×
{

2E
[
χ−2
p+1(∆2)

]
− (p− 3)E

[
χ−4
p+1(∆2)

]}
+ (p− 3)(p− 1)

(
Jδδ′J′

)
E
[
χ−4
p+3(∆2)

]
R4(β̂

S

n) =
σ

(0)
zz

κ2
xxσX0X0

tr
{

QΛ−1
0

}
− (p− 3)σ

(0)
zz

κ2
xxσX0X0

tr
[
Q
(
JΛ−1

0 J′
)]{

2E
[
χ−2
p+1(∆2)

]
− (p− 3)E

[
χ−4
p+1(∆2)

]}
+ (p− 3)(p− 1)

(
δ′J′QJδ

)
E
[
χ−4
p+3(∆2)

]
.

Risk Analysis

First note that the asymptotic risk difference

R1(β̃n)−R4(β̂
S

n) =
(p− 3)σ

(0)
zz

κxxσX0X0

{
tr[QJΛ−1

0 J′]
(

2E[χ−2
p+1(∆2)]

− (p− 3)E[χ−4
p+1(∆2)]

)
+ (p+ 1)∆2E[χ−4

p+3(∆2)]
}

=
(p− 3)σ

(0)
zz

κxxσX0X0

tr[QJΛ−1
0 J′]

{
(p− 3)E[χ−2

p+1(∆2)]

+ 2∆2E[χ−4
p+3(∆2)]

(
1− (p+ 1)δ′J′QJδ

2δ′J′Λ0Jδ
tr[QJΛ−1

0 J′]
)}
≥ 0

for all ∆2 and Q matrices which belong to the set

Q =
{

Q :
tr(QJΛ0J

′)

Chmax(QΛ−1
0 )
≥ p+ 1

2

}
.

Hence β̂
S

n asymptotically dominates β̃n uniformly for all Q ∈ Q.

MSE Analysis

First consider the comparison of β̃n and β̂
S

n . In this case, the MSE matrix-difference is given by

M1(β̃n)−M4(β̂
S

n) =
(p− 1)σ

(0)
zz

κ2
xxσX0X0

JΛ−1
0 J′

{
2E[χ−2

p+1(∆2)]− (p− 3)E[χ−4
p+1(∆2)]

}
− (p− 3)(p− 1)(Jδδ′J′)E[χ−4

p+3(∆2)]. (4.10)
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In order that β̂
S

n dominates β̃n based on MSE matrices, we must show (4.10) is non-negative
definite. Thus, consider the quadratic form

(p− 1)σ
(0)
zz

κ2
xxσX0X0

`′JΛ−1
0 J′`

{
2E[χ−2

p+1(∆2)]− (p− 3)E[χ−4
p+1(∆2)]

}
≥ (p− 3)(p− 1)`′(Jδδ′J′)`E[χ−4

p+3(∆2)]

for a given non-zero vector ` = (`1, . . . , `p)
′. Thus, dividing by `′Λ−1

0 `(> 0), and maximizing
over all `, we have

max
`

{
σ

(0)
zz

κ2
xxσX0X0

`′JΛ−1
0 J′`

`′Λ−1
0 `

(
2E[χ−2

p+1(∆2)]− (p− 3)E[χ−4
p+1(∆2)]

)}

≥ (p− 1) max
`

`′Jδδ′J′`

`′Λ−1
0 `

E[χ−4
p+3(∆2)]

⇔
{

2E[χ−2
p+1(∆2)]− (p− 3)E[χ−4

p+1(∆2)]
}

≥ (p− 1)∆2E[χ−4
p+3(∆2)]

⇔ E[χ−2
p+1(∆2)] ≥ (p− 2)∆2E[χ−4

p+3(∆2)],

which is contradiction. β̂
S

n doesn’t dominate uniformly with respect to the MSE criterion.

The MSE-efficiency of β̂
S

n compared to β̃n is given by

AMRE
(
β̂
S

n ; β̃n

)
=
|M1(β̃n)|1/p

|M4(β̂
S

n)|1/p

=
∣∣∣Ip − (p− 3)JΛ−1

0 J′Λ0

{
2E[χ−2

p+1(∆2)]− (p− 3)E[χ−4
p+1(∆2)]

}
+ (p− 1)(p− 3)

κ2
xxσX0X0

σ0
zz

(Jδδ′JΛ0)E[χ−4
p+3(∆2)]

∣∣∣−1/p

=
[
1− (p− 1)(p− 3)

{
2E[χ−2

p+1(∆2)]− (p− 3)E[χ−4
p+1(∆2)]

}
∆2
]−1/p

×
[
1− (p− 3)

{
2E[χ−2

p+1(∆2)]− (p− 3)E[χ−4
p+1(∆2)]

}]−(p−1)/p

.

Under H0, the AMRE(β̂
S

n ; β̃n) becomes

AMRE
(
β̂
S

n ; β̃n

)
=
{

1− p− 3

p− 1

}−(p−1)/p

(≥ 1),

and as ∆2 →∞, AMRE(β̂
S

n ; β̃n)→ 1.
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For the Positive-Rule Stein-type estimator,

M5(β̂
S+

n ) = lim
n→∞

E
{
n(β̂

S+

n − β)(β̂
S+

n − β)′|K(n)

}
= M4(θ̂

S

n)− σ
(0)
zz

κ2
xxσX0X0

{(
JΛ−1

0 J′
)

× E
[(

1− (p− 3)χ−2
p+1(∆2)

)2

I
(
χ2
p+1(∆2) > p− 3

)]
+

κ2
xxσX0X0

σ
(0)
zz

(
Jδδ′J′

)
E
[(

1− (p− 3)χ−2
p+3(∆2)

)2

× I
(
χ2
p+3(∆2) > p− 3

)]}
− 2

(
Jδδ′J′

)
× E

[(
1− (p− 3)χ−2

p+3(∆2)
)
I
(
χ2
p+3(∆2) > p− 3

)]
.

R5(β̂
S+

n ) = R4(β̂
S

n)− σ
(0)
zz

κ2
xxσX0X0

{
tr
(
QJΛ−1

0 J′
)

× E
[(

1− (p− 3)χ−2
p+1(∆2)

)2

I
(
χ2
p+1(∆2) > p− 3

)]
+

κ2
xxσX0X0

σ
(0)
zz

(
δ′J′QJδ

)
E
[(

1− (p− 3)χ−2
p+3(∆2)

)2

× I
(
χ2
p+3(∆2) > p− 3

)]}
− 2

(
δ′J′QJδ

)
× E

[(
1− (p− 3)χ−2

p+3(∆2)
)
I
(
χ2
p+3(∆2) > p− 3

)]
.

Risk Analysis

Next we compare β̂
S

n and β̂
S+

n .

R4(β̂
S

n)−R5(β̂
S+

n ) =
σ

(0)
zz

κxxσX0X0

{
tr[QJΛ−1

0 J′]E
[(

1− (p− 3)χ−2
p+1(∆2)

)2

I(χ2
p+1(∆2) > p− 3)

]
+

κxxσX0X0

σ
(0)
zz

(δ′JQJδ)E
[(

1− (p− 3)χ−2
p+3(∆2)

)2

I(χ2
p+3(∆2) > p− 3)

]}
+ 2(δ′J′QJδ)E

[(
1− (p− 3)χ−2

p+3(∆2)
)
I(χ2

p+3(∆2) > p− 3)
]
≥ 0

for all δ and Q. Hence β̂
S+

n asymptotically dominates β̂
S

n uniformly. Thus we may order the
estimators accordingly to the asymptotic risk as

R5(β̂
S+

n ) < R4(β̂
S

n) < R1(β̃n)

for all (∆2,Q) and Q satisfying (4.10). It may be verified thatARRE(β̂
S

n ; β̃n) andARRE(β̂
S+

n ; β̂
S

n)

are decreasing functions of ∆2 bounded below by the 1–line.
The risk-efficiency of β̂

S

n compared to β̃n for Q = {κ2
xxσX0X0/σ

(0)
zz }Λ0 is given by

ARRE(β̂
S

n ; β̃n) =

(
1− (p− 3)(p− 1)

p

{
2E
[
χ−2
p+1(∆2)

]
− (p− 3)E

[
χ−4
p+1(∆2)

]
−∆2E

[
χ−4
p+3(∆2)

]})−1

.
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Similarly, the risk-efficiency of β̂
S+

n compared to β̂
S

n may be written as

ARRE(β̂
S+

n ; β̂
S

n) =

[
1−

{
R3(β̂

S

n)
}−1 σ

(0)
zz

κ2
xxσX0X0

{
(p− 1)

× E
[(

1− (p− 3)χ−2
p+1(∆2)

)2

I
(
χ2
p+1(∆2) > p− 3

)
+
κ2
xxσX0X0

σ
(0)
zz

(δ′J′Λ0Jδ)E
[(

1− (p− 3)χ−2
p+3(∆2)

)2

× I
(
χ2
p+3(∆2) > p− 3

)
− 2
{
R3(β̂

S

n)
}−1

(δ′J′Λ0Jδ)

× E
[(

1− (p− 3)χ−2
p+3(∆2)

)
I
(
χ2
p+3(∆2) > p− 3

)
.

MSE Analysis

The MSE-efficiency of β̂
S+

n compared to β̂
S

n may be written as

AMRE
(
β̂
S+

n ; β̂
S

n

)
=
|M4(β̂

S

n)|1/p

|M5(β̂
S+

n )|1/p

=

∣∣∣∣∣Ip − (M4(β̂
S

n)
)−1{ σ

(0)
zz

κ2
xxσX0X0

JΛ−1
0 J′E

[(
1− (p− 3)χ−2

p+1(∆2)
)2

× I
(
χ2
p+1(∆2) > p− 3

)]
− Jδδ′J′

{
E
[(

1− (p− 3)χ−2
p+3(∆2)

)2

× I
(
χ2
p+3(∆2) > p− 3

)]
+ 2E

[(
1− (p− 3)χ−2

p+3(∆2)
)
I
(
χ2
p+3(∆2) > p− 3

)]}}∣∣∣∣∣
−1/p

.

It may be shown that under H0, the AMRE(β̂
S+

n ; β̂
S

n) ≥ 1 and as ∆2 → ∞, AMRE(β̂
S+

n ; β̂
S

n)

tends to 1 from above.

5 Conclusion

It is shown that the positive-rule Stein estimator dominates the usual Stein-type estimator which in
turn dominate the unrestricted estimator uniformly for the number of lines more than three. Neither
the restricted estimator nor the preliminary-test estimator dominate each other uniformly. Similarly,
neither the preliminary-test estimator nor Stein-type estimator (the positive-rule Stein-type estima-
tor) dominate each other uniformly. However, when p ≥ 3, the positive-rule Stein-type estimator is
the preferred choice for application otherwise the unrestricted estimator preferable when p ≤ 2.
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