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SUMMARY

It is widely known that for large samples maximum-likelihood based estimators are not
easy to implement for spatial models unless weights matrix satisfy certain basic conditions.
As an alternative recently in a series of paper Kelejian and Prucha (1999, 2004) proposed
a computationally feasible three step procedure for spatial models involving both lagged
dependent variable and spatially correlated disturbance term. The idea of this paper is to use
their set up for spatial simultaneous system, and construct a GMM type estimator based on
spatial first difference. The over-identification of the moment equation comes to the picture
by considering first two moments of a possibly heteroskedastic disturbance. Following
Chamberlains (1987) idea, a popular issue of optimum GMM based on conditional spatial
moment restrictions and asymptotic efficiency has been discussed.
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1 Introduction

Throughout the paper we are interested in spatial moment restrictions of the form

E(ψ(zn, θ0)) = 0, (1.1)

where {zn}’s are generated from a spatial simultaneous system and θ0 constitutes a unique solution
to equations E(ψ(zn, θ)) = 0. We keep the possibility of dim(ψ) ≥ dim(θ) and want to determine
the lower bound on asymptotic variance for a consistent estimator of θ0. In order to estimate the
model parameters, we utilize the generalized method of moments (GMM) methodology pioneered
by Hansen et al. (1996).

GMM estimates the parameters by making the sample averages in moment conditions as close
to each other as possible and gives a statistical test of the hypothesis that the underlying popu-
lation means are in fact zero. The idea is to exploit the sample mean of (1.1) given by g(θ) =

1/T{
∑T
t=1 ψ(zt, θ)} where the parameter vector is θ in a sample of size T , and estimate θ by
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minimizing a quadratic form of the sample mean of moments argminθ{g(θ)′Wg(θ)} for some
arbitrary weight matrix W . In the process it provides a consistent, asymptotically normal, and
asymptotically efficient estimate of the parameter. ”Efficient” simply means that it has the smallest
variance-covariance matrix among all estimators that set different linear combinations of g(θ) to
zero or all choices of weighting matrix W .

In this paper, we are interested in a consistent spatial GMM estimator θ̂n in the context of spatial
simultaneous system. We want to know if it is possible to determine bn → ∞ such that bn(θ̂n −
θ) → N, where N is a non-degenerate distribution. There are two reasons why we are interested
in the moment conditions based on cross-sectional dependence. First, it helps us to illustrate the
importance of one of the popular econometric debate about choosing correct orthogonality condition
for making GMM based inference. Second, even when we find a set of orthogonality condition based
on economic theory, we need a guarantee that it will produce most efficient estimate. In the spatial
econometrics literature both of them are still partially unanswered.

2 Where the paper is nested in the current literature
It is widely known that in any regression model the choice of moment depends on the incorporation
of information that comes through auxiliary distribution assumptions. In the cross-sectional data
analysis there is no exception. Till now we see four avenues on this topic. In one of the first ap-
proach, Kelejian and Prucha (1998, 1999) proposed generalized (GM) spatial 2SLS and 3SLS based
on exactly identified moments condition. In another approach, Conely (1999) showed consistency
and asymptotic normality of over-identified GMM estimators under a set of general strong mixing
conditions. There is a third approach by Lee (2001), which is very much similar to Kelejian and
Prucha except that Lee’s choice of moment condition is more general and includes the case of over
identification. Recently for a dynamic spatial Probit model, Pinske, Shen and Slade (2003) made
weaker than strong mixing conditions and proved the optimal asymptotic properties of one-step
GMM estimators.

In this paper we use Kelejian and Prucha set up for spatial simultaneous system and construct
a GMM type estimator based on spatial first difference. It is important to note that there is subtle
difference between our GMM approach and the existing GM method Kelejian and Prucha. In the GM
method the number of moment conditions is exactly equal to the number of parameters, therefore
the model is exactly identified. In our GMM approach however, the number of moment conditions
are greater than the number of parameters. Therefore, unlike the GM method, we entertain the
possibility of over-identified system.

Intuitively, if there are as many moments as parameters, we set each moment to zero; when there
are fewer parameters than moments, (1.1) captures the natural idea that we will set some moments,
or some linear combinations of moments, to zero in order to estimate the parameters. Our general
GMM procedure therefore allows us to pick arbitrary linear combinations of the moments to set to
zero in parameter estimation. Following Hansen et al. (1996), one can show that the expression for
asymptotic variance of a GMM estimator satisfying (1.1) becomes

(E [mθ])
−1
E [mm′] (E [m′θ])

−1
, (2.1)
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where mθ = (E[ ∂∂θψ(zn, θ0)])′A( ∂∂θψ(zn, θ0)), m = (E[ ∂∂θψ(zn, θ0)])′Aψ(zn, θ0) and A = a′a

is a positive definite matrix. Chamberlain (1987) argued that any distribution can be approximated
arbitrarily well by a multinomial distribution and expression (2.1) will be the same asymptotic vari-
ance that can be attained by a semi-parametric model. He derived the bound on asymptotic efficiency
using conditional moment restrictions E[ρ(y, x, θ0)|x] = 0, so we can construct a ψ function based
upon hj(x)ρ(y, x, θ0) where hj(x) = 1 if x = τj and 0 otherwise, and x can take finite sets of
values τ1, ..., τl. He showed that asymptotic variance bound of the estimator using optimal instru-
ments becomes Λ∗ =

(
E
[
D0(x)Σ−10 (x)D0(x)

])−1
, where D0(x) = E(∂ρ(y, x, θ0)/∂θ|x) and

Σ0(x) = E(ρ(y, x, θ0)ρ(y, x, θ0)′|x). Even though there exists an infinite number of conditional
moment restrictions, this is the best one can get for information matrix bound on the asymptotic
variance of a consistent estimator of θ0.

In this paper we are addressing the same question but in a spatial setting. What we are trying to
find is a finite set of optimal orthogonality condition for first order spatial simultaneous equations
model to obtain the asymptotic Cramér-Rao information bound (inverse information matrix) for
unknown parameter θ. They are optimal because the asymptotic variance of consistent estimator of
θ can not be reduced adding extra ψ’s. In other words, no efficiency gain is possible by exploiting
same model information because we will attain semi-parametric efficiency bound in the sense of
Chamberlain (1987).

We will also extend Chamberlain’s (1987) argument one step further and show that in spatial
setting this set of moment condition, indeed, satisfy the recently popular information theoretic ap-
proaches, namely Empirical Likelihood (EL) and Kullback-Leibler Information Criterion (KLIC)
based estimation. For EL and KLIC will follow the discussion of Qin and Lawless (1993) and Im-
bens, Spady and Johnson (1998) to show their implementability for spatial models. Overall in our
presentation we concentrate more on the distributional property of spatial simultaneous system’s
GMM estimator. Even though consistency is a desirable property, it is not useful in itself. Espe-
cially, being asymptotic in nature, for any finite sample size it is not applicable. This motivates us
to concentrate on the distribution of θ̂n. From the perspective of spatial econometric inference this
is much stronger and useful than mere consistency of θ̂n.

In the next section we first describe our specification of the model and proper choice of spatial
weights matrix. Then we briefly outline the basic steps of Kelejian-Prucha GM estimators. In section
4, we investigate the asymptotic properties of over-identified spatial simultaneous system based on
first difference. This is followed by a implementation of optimum GMM based on conditional
moments. The technical details and proof of theoretical results are given in appendix.

3 Specification of Model

We start with a simultaneous system of equation which has both spatially lagged dependent variable
as well as error term. This model has been discussed by Kelejian and Prucha (2004) in their GM
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approach, so we borrow heavily their notation. The basic model is

Yn = YnB +XnC + Y nΛ + Un

Un = UnR+ En, (3.1)

where Yn = (y1,n, ..., ym,n), Xn = (x1,n, ..., xk,n),Un = (u1,n, ..., um,n), yj,n = Wnyj,n, j =

1, ...,m, Y n = (y1,n, ..., ym,n), Un = (u1,n, ..., um,n), uj,n = Wnuj,n, En = (ε1,n, ..., εm,n),

R = diagmj=1(ρj). Note that, yj,n, uj,n and εj,n are all n × 1 vectors in the jth equation, xl,n is
n × 1 vector on lth exogenous variable and the ith element of yj,n is yij,n =

∑r=1
n wir,nyrj,n.

From this given set up we derive the next set of equation

yn = B∗nyn + C∗nxn + un

un = R∗nun + εn, (3.2)

where yn = vec(Yn), xn = vec(Xn), un = vec(Un), εn = vec(En), B∗n = [(B′⊗In)+(Λ⊗Wn)],

C∗n = (C ′ ⊗ In), R∗n = (R⊗Wn) = diagnj=1(ρjWj).

Finally, for j = 1, . . . ,m, we can express the entire system by the following common form

yj,n = zj,nδj + uj,n

uj,n = ρjWnuj,n + εj,n, (3.3)

where zj,n = (Yj,n, Xj,n, Y j,n), δj = (β′j , γ
′
j , λ
′
j)
′. Here ρj captures the extent of spatial error

dependence that exists in the model. Following the common wisdom of the literature, we can term
ρj as the spatial lag parameter. Since Imn − R∗n = diagmj=1(In − ρjWn), equation (4) implies the
following

yn = (Imn −B∗n)−1[C∗nxn + un]

un = (Imn −R∗n)−1εn. (3.4)

Based on the above set up we define simultaneous structure accordingly.

Definition 3.1. The reduced form of the spatial simultaneous system (3.1) is given by (3.4).
Denote Ξn be the vector space over which Wn is defined and make the following assumptions.

A1: The diagonal elements of the spatial weights matrix Wn = (wij,n) ∈ Ξn are zero and off-
diagonal elements are bounded uniformly in absolute value.

A2: The matrices (Imn −B∗n) and (In − ρjWn) are non-singular with |ρj | < 1, j = 1, . . . ,m.

A3: The row and column sums of the matrices B̃ = (Imn − B∗n)−1 and W̃ = (In − ρjWn), j =

1, . . . ,m are bounded in absolute value, i.e.,
∑n
i=1 b̃ij ≤ Kb,

∑n
j=1 b̃ij ≤ Kb,

∑n
i=1 w̃ij ≤

Kw and
∑n
j=1 w̃ij ≤ Kw, n ≥ 1, kb, kw <∞,∀i = 1, . . . , n, j = 1, . . . ,m.

A4: (a)εn = (Σ′∗ ⊗ In)νn, where Σ′∗ is nonsingular m×m matrix. (b) {νij,n : i = 1, . . . , n, j =

1, . . . ,m} are iid(0, 1) and E|νij,n|2+s ≤ Kν < ∞,∀s > 0. (c) Σ = Σ′∗Σ∗ and diag of Σ

are bounded by some constant.
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A5: The predetermined variables are nonstochastic (exogenous) and for a positive constant Kx,

|xij,n| < Kx,∀i, j.

Assumption 1 and 2 are standard in terms of spatial weights specification. Similar assumption
has been made by Kelejian and Prucha (1999, 2004). In assumption 4, we expressed the error term as
generated by some iid random variables which assumes certain basic properties. The second part of
A4 are usual sufficient conditions restricting the tails of the error distribution. Later we will modify
our set up by assuming a general form conditional error specification. Assumption 3 maintains some
restriction on spatial interaction regardless of the sample size. This types of restriction dated back to
Anselin and Kelejian (1997) and can be put forward by other type of mathematical arguments like
mixing conditions (see, e.g., Anselin,1988, Ch.5 and Conely, 1999). The implication of A5 is that
both λmax(X ′nXn) and λmin(X ′nXn) goes to ∞ in an order not faster than the sample size n. In
fact the growth rate can be very slow.

We formalize the set up of Kelejian and Prucha (2004) in terms of the following result.

Proposition 3.2: Under assumptions A1-A4, we have the following distribution for un and yn:

un ∼ N(0,Ωu,n)

yn ∼ N(µy,Ωy,n), (3.5)

where Ωu,n = (Imn − R∗n)−1(Σ ⊗ In)(Imn − R∗
′

n )−1, µy = (Imn − B∗n)−1C∗nxn and Ωy,n =

(Imn −B∗n)−1Ωu,n(Imn −B∗
′

n )−1.

3.1 The Choice of Spatial Weights

The crucial point that distinguishes spatial models from time series counterpart is it’s dependence
structure. Unlike time domain, here the conditional and simultaneously specified models are not the
same. So the equivalence of joint-probability and conditional-probability definitions does not hold
in general. In practice, for Gaussian data, since the conditionally specified model has a particular
simple joint distribution, it turns out to be more natural to consider. Another point of departure is
the likelihood function for the joint normal density of the error term. Under spatial framework the
likelihood function has an additional Jacobian of the transformation, which implies that OLS will
no longer be equal to MLE.

Typically the spatially weights matrixWn = (wij,n) are a set of non-negative weights represent-
ing the ”degree of possible interaction” between location j and location i. By convention we always
set the diagonal term of the weights matrix as zero and each row sum to one. In the literature there
is a debate why spatial weights are symmetric. Usually for any first order spatial model we assume
that (1/ωmin) < ρ < (1/ωmax), where ω’s are characteristics roots of Wn. Kelejian and Robinson
(1995) noted that so long as the matrix (I − ρWn) is non-singular any first order spatial model is
defined and so the restriction may become not necessary.

Anselin and Bera (1998) pointed out that even though we assume Wn symmetric, row standard-
ization makes it asymmetric; so the equality of determinant and product of eigenvalues relation may
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no longer hold and even being asymmetric makes eigenvalues complex. However, row standardiza-
tion1 constructed from symmetric contiguity matrix makes all eigenvalues real. The point is that we
can show largest eigenvalues are one but for lowest eigenvalue the absolute value can be greater or
less than one. So unlike time series, parameter space will be asymmetric around zero. One inter-
esting implication is that for a model like (3.3) if we take conditional model, then the orthogonality
condition between the error terms and

∑
j 6=i wij,nyj,n may not satisfy, so the OLS estimators will

be inconsistent.
In an interesting paper, Lee (2002) proposed a consistent OLS estimator by considering special

form of weights matrices; however we will not consider that approach. For the required uncorrelat-
edness what we need is to impose certain restrictions on the information set, which again unlike time
dependent model is not one-sided. Another important features of spatial weights is that we should
not restrict {wij,n} to look for interaction between two geographically connected cross-sectional
units. In other words the choice of spatial weights should not be exogenous to the model, it should
follow certain underlying factors ”which will depend upon the study in hand” (Cliff and Ord, 1973,
p.12).

4 Kelejian-Prucha GM

By considering the simultaneous system (3.2) Kelejian and Prucha (2004) considered the issue of
estimation based on limited and full information instrumental variables. The method is very similar
to classical two and three stage least squares and computationally tractable. Based on Kelejian and
Prucha (1999), the idea is to pick three moment condition to estimate spatial dependence parameter
ρ. For spatially autoregressive error term of equations (3.3) these moment equations based on three
moments corresponds to

ψ(uj,n, θ) =
(
u′j,nuj,n − nσ2, u′j,nuj,n − σ2Tr(WnWn), u′j,nuj,n

)′
, (4.1)

where uj,n = Wnuj,n. In there set up the number of moment condition becomes equal to the number
of parameter to be estimated, so the question of optimal weights matrix does not arise. In summary,
Kelejian-Prucha (2004) GM for spatial simultaneous system involve three easy steps:

• Estimate first part of (3.4) using 2SLS/IV with instruments Q where choice of instruments are
linear columns of Xn and W s

nXn for s ≥ 1.

• Use the residual from first step and estimate ρ’s and using (4.1) by minθ ψ(uj,n, θ)
′ψ(uj,n, θ)

• Obtain 2SLS estimates of δ’s by Cochran-Orcutt type transformation

1Note that it may be the case
n∑

j=1
wij,n 6=

n∑
i=1

wij,n but
n∑

j=1
w∗ij,n =

n∑
i=1

w∗ij,n, where w∗ij,n = wij,n/
∑
j 6=i

wij,n.



Moment Restrictions for Optimum GMM Estimators . . . 7

5 Spatial First Difference GMM

Ideally alternative specification of variance-covariance matrix associated with error vector should
become the source of information. In our approach we utilize that by using first two moments based
on the first difference of model (3.3). For regular panel data this approach has been analyzed by
Holtz-Eakin, Newey and Rosen (1988), Arellano and Bond (1991) who applied this with respect to
time variable. The way we select our moment conditions resembles that of Azomahou and Kuhry
(2001) but our approach is more general. The idea is not new and the applicability of analogous
method for a broad class of model has been introduced by McCurdy (1982), Chamberlain (1987),
Newey (1993) and Newey and McFadden (1994) to name a few. Also similar procedure using
instrumental variable procedure discussed by Amemiya and MaCurdy (1986) for an error component
model. Even though the procedure varies, basically the sources of endogeneity and disturbance
covariance properties provides the basis for asymptotically efficient estimators. We start by applying
a Cochran-Orcutt type transformation to equation (3) and that yields the following

yj,n = F (yj,n, xj,n, γ0) + εj,n, (5.1)

where F (yj,n, xj,n, γ0) = ρjWnYj,n + (zj,n − ρjWnZj,n)δ, xj,n = (Wnyj,n, Zj,n,WnZj,n) and
γ = (δ′, ρ)′.

Now set zn = (yj,n, xj,n) and suppose that

E(εj,n|xj,n) = 0 and E(εj,nε
′
j,n|xj,n) = Ω∗ε,n(xj,n, γ, ξ) = Ω∗ε,n,

i.e., the conditional covariance matrix has a known parametric form and it depends both on model
parameter γ as well some unknown parameter ξ. We will discuss later the importance of this being
homoskedastic, but for the time being assume that this known form is heteroskedastic. Note that,
as a result of our assumption 4, the errors are assumed to be zero mean and finite unconditional
variance Σ. Now to make error moments finite up to fourth order we make the following assumption

A6: There exists two finite matrix ∆3 and ∆4, such that E[εj,n(ε′j,n ⊗ ε′j,n)]B′1 = ∆3, and
B1E(εj,nε

′
j,n ⊗ εj,nε′j,n)B′1 = ∆4, where B1 is a selection matrix that eliminates from ∆3

and ∆4 some of the repeated cross-moments.

Such assumption has been made by Arellano (1989) in calculating efficient GLS estimator for re-
stricting error covariance matrix. In our context, later we will see that a similar general form of third
and fourth order moments will play an important role in the asymptotic variance calculation.

By denoting θ = (γ′, ξ′)′ and α = (α′1, α
′
2)′, the first two moment restrictions can be expressed

as

ψ(zj,n, θ0) =

 yj,n − F (yj,n, xj,n, γ0)

vech[(yj,n − F (yj,n, xj,n, γ0))(yj,n − F (yj,n, xj,n, γ0))′ − Ω∗ε,n

 (5.2)
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Let there exists a random weights matrix An = a′nan, where the sequence an has a full row
rank that converges almost surely to a constant a and with H as q× s instruments matrix, ψ as s× 1

vector, we consider
ϕ(zj,n, θ) = H(xj,n)⊗ ψ(zj,n, θ) (5.3)

as a candidate that can be useful as population moment condition for a unique parameter θ0. For the
choice of instruments we make the following assumption.

A7: Consider the class of spatial instruments H(xj,n) such that

(a) E[H(xj,n)
∂ψ(zj,n,θ)

∂θ ] ≤ ∆1 <∞
(b) E[‖H(xj,n)‖2‖ψ(zj,n, θ)‖2] ≤ ∆2 <∞

The implication is that we are restricting our attention only to set of linear functions H(xj,n). If we
follow Kelejian and Prucha (1998, 2004) tradition and choose a H(xj,n) as a subset of the of the
linear independent columns of (Xn,WnXn, . . . ,W

s
nXn), 1 ≤ s ≤ 2, the above restriction seems

innocuous. Also due to assumptions 3 and 5, the elements of H(xj,n) are bounded in absolute
value. Since our interest is with moment conditions (5.2) we claim their orthogonality condition in
the following definition.

Definition 5.1. The model (3.4) is said to be correctly specified if there exists a unique solution
θ0 ∈ Θ ⊂ Rp such that E [ϕ(zj,n, θ0)] = 0.

The characterization of ϕ(zj,n, θ0) will be useful for finding asymptotic efficiency of our spatial
simultaneous systems GMM estimator. Although different weighting scheme may produce a differ-
ent consistent estimator, we will choose weights to achieve lower bound on asymptotic efficiency
within a broad class of consistent estimators. Also instead of (5.3) we will use E[ϕ(zj,n, θ0)] =

E[H(xj,n)ψ(zj,n, θ0)] = 0 to classify sample moment condition. In addition we can think the in-
strumental variable function to depend on some nuisance parameters2, soϕ(zj,n, γ) = H(γ)ψ(zj,n, θ)

where γ ∈ Γ ⊂ RH and may include θ as well as xj,n.

5.1 Asymptotic properties

By applying GMM we based the estimation on a linear combination of empirical counterpart of
moment condition using (5.2) and the random weights matrix a′nan, so one choose θ̂n to

argminθϕ(zj,n, θ)
′a′nanϕ(zj,n, θ)

and the minimizer of the quadratic form satisfies the first order condition[
∂ϕ(θ̂n)

∂θ′

]′
a′nanϕ(θ̂n) = 0, (5.4)

2In that case we need to assume that we have an estimator γ̂n such that
√
n(γ̂n− γ0) = Op(1), where γ0 could contain

θ0.
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where for simplicity of notation we used ϕj,n(θ̂n) = ϕ(zj,n, θ̂n) and ϕn(θ̂n) denotes the cor-

responding vector. Same is true for ϕn(θ0). Now we define Q1n = 1
n

∑
j

[
H(xj,n)∂ψ(θ)∂θ′

]
and

assume the following.

A8: The instruments has the following properties

(a) limn→∞

[
H(xj,n)E

{
∂ψ(θ)
∂θ′

}]
is a finite matrix with full column rank.

(b) Supθ‖Q1n(θ)− E(Q1n(θ))‖ →P 0.

The first part of the above assumption has some flavor of rank condition made by Amemiya (1985,
p.246) in the context of nonlinear 2SLS estimators consistency proof. Also Kelejian and Prucha
(1997) mentioned that failure of this may lead to a fundamental identification problem in the sense
that objective function becomes flat in the direction of spatial lag parameter ρ as n→∞. By taking
the usual mean value expansion of ϕn(θ̂n) around θ0 and multiplying through

√
n we have

√
nϕn(θ̂n) =

√
nϕn(θ0) +Q1n(θ̃n)

√
n(θ̂n − θ0), (5.5)

where θ̃ has elements between θ̂ and θ0. Note that based on above the GMM problem in the close
neighborhood of θ0 can be written as

‖ann1/2ϕn(θ̂n)‖2 = ‖ann1/2ϕn(θ̂n) +Q2n(θ0)n1/2(θn − θ0)‖2,

where Q2n(θ) = anQ1n. Combining (5.4) and (5.5) yields

√
n(θ̂n − θ0) = −

{[
1

n

∑
i

H(xj,n)
∂ψ(θ̂)

∂θ′

]′
a′nan

[
1

n

∑
i

H(xj,n)
∂ψ(θ̂)

∂θ′

]}−1

=

[
1

n

∑
i

H(xj,n)
∂ψ(θ̂)

∂θ′

]′
a′nann

−1/2ϕn(θ0)

= −Q3nn
−1/2ϕn(θ0) (5.6)

where Q3n = −[Q′1na
′
nanQ1n]′Q′1na

′
nan = −[Q′2nQ2n]′Q′2nan. Also note that

1

n

∑
i

[
H(xj,n)

∂ψ(θ̂)

∂θ′

]
→ E

[
H(xj,n)

∂ψ(θ)

∂θ′

]
i.e., Q1n(θ̂)→ Q1 in probability and{[

1

n

∑
i

H(xj,n)
∂ψ(θ̂)

∂θ′

]′
a′nan

[
1

n

∑
i

H(xj,n)
∂ψ(θ̂)

∂θ′

]}−1 [
1

n

∑
i

H(xj,n)
∂ψ(θ̂)

∂θ′

]′
a′nan

→

{
E

[
H(xj,n)

∂ψ(θ)

∂θ′

]′
a′aE

[
H(xj,n)

∂ψ(θ)

∂θ′

]}−1
E

[
H(xj,n)

∂ψ(θ)

∂θ′

]′
a′a

in probability. However, for the asymptotic distribution of n−1/2ϕn(θ0) we need to use the follow-
ing lemma.
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Lemma 5.1. Given assumptions A1-A5, we have

n−1/2anϕn(θ0)→D N(0, a′V a)

where V = E
[
H(xj,n) ∂

∂θ′ψ(zj,n, θ)
∂
∂θ′ψ(zj,n, θ)

′H(xj,n)′
]
.

By premultiplying (5.5) by an we have

an
√
nϕn(θ̂n) = an

√
nϕn(θ0) + anQ1n(θ̃n)

√
n(θ̂n − θ0) (5.7)

Note that

an
√
nϕn(θ̂n) = an

√
nϕn(θ0) + anQ1n(θ̃n)[−Q1n(θ̂n)′a′nanQ1n(θ̃n)]Q1n(θ̂n)a′nann

−1/2ϕn(θ0)

= [Imn − anQ1n(θ̃n)[Q1n(θ̂n)′anQ1n(θ̃n)]′Q1n(θ̂n)]ann
−1/2ϕn(θ0)

= [Imn − an[Q2n(θ̂n)′anQ1n(θ̃n)]′Q1n(θ̂n)]ann
−1/2ϕn(θ0) (5.8)

exploiting which we have

an
√
nϕn(θ̂n) = [Imn − an[Q2n(θ̂n)′anQ1n(θ̃n)]′Q1n(θ̂n)]ann

1/2ϕn(θ0) + op(1) (5.9)

Continuing from Lemma 4.2, take the usual mean value expansion of ϕ(zj,n, θ̂n) around θ0. Then
combining this with (5.4) produces the familiar expression for

√
n(θ̂n − θ0) given by (5.10), the

generic structure of which is similar to
√
nanϕn(θ̂).

√
n(θ̂n − θ0) = −[Q2n(θ̂n)′Q2n(θ̃n)]−1Q2n(θ̂n)ann

1/2ϕn(θ0) + op(1) (5.10)

Now we are in a position to state the following result by utilizing the above structure.

Proposition 5.3: Suppose that assumption A1-A5 holds, θ0 ∈ interior of Θ, ϕ(zj,n, θ) is continu-
ously differentiable in a neighborhood of θ0 w.p 1, anE(ϕn(θn)) = 0 has unique root at θ0 in Θ

and Q1 is nonsingular, we have
√
n(θ̂n − θ0)→D N [0, Cov(θ̂Hn )],

where
Cov(θ̂Hn ) = (Q′1a

′aQ1)−1Q′1a
′V aQ1(Q′1a

′aQ1)−1

By exploiting some intermediate lemmas and a set of conditions analogous to Newey (1993)
we have the above result on asymptotic normality. Not to our surprise this is the same type of
bound on asymptotic variance derived by Conely (1999, p.8) for a set of general over-identified
moment condition; however, that set up was based on random field structure and asymptotic result
was derived by applying a central limit theorem due to Bolthausen (1982) for stationary, mixing
random fields on regular lattices. In our case we utilize the triangular structure of the model which
has the spirit of Kelejian and Prucha (1999). In some sense this avoids making some hard to check
first moment continuity condition required for uniform convergence of the objective function.
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5.2 Optimum GMM

In search for optimum GMM we basically seek to exploit the conditional moment restrictions of the
form E[ψ(zj,n, θ0)|xj,n] = 0 to derive an unconditional moment restriction that

E[H(xj,n)ψ(zj,n, θ0)] = 0

for some suitable q × s matrix of functions H(xj,n). Some additional conditions will be helpful.

A9: E[H(xj,n)D(xj,n)] and E[H(xj,n)H(xj,n)′] are non-singular matrix and

E [H(xj,n)Ω(xj,n)H(xj,n)′]

is finite.

Now we can define a GMM estimator θ̂n based on any moment functions of the form ϕ(zj,n, θ) =

H(xj,n)ψ(zj,n, θ) and show that the asymptotic variance of θ̂n will be{
E

[
H(xj,n)

∂ψ(zj,n, θ0)

∂θ

]}−1
E [H(xj,n)ψ(zj,n, θ0)ψ(zj,n, θ0)′H(xj,n)′]{

E

[
H(xj,n)

∂ψ(zj,n, θ0)

∂θ

]}−1′
Note that, in this asymptotic variance expression no weighting scheme is needed because inϕ(zj,n, θ)

the number of components is same as θ. For example, based on conditional moment restrictions us-
ing (5.2) the variance will be

Cov(θ̂) = [H(xj,n)D(zj,n)]
−1
E [H(xj,n)Ω(xj,n)H(xj,n)′] [D(zj,n)′H(xj,n)′]

−1

where
Ω(xj,n, θ0) = E[ψ(zj,n, θ0)ψ(zj,n, θ0)′|xj,n]

and D(zj,n, θ0) = E
[
∂
∂θψ(zj,n, θ0)|xj,n

]
. By the same argument of Chamberlain (1987) and

Newey (1993) we observe that an efficient choice of instruments exists which suggests the following
choice for optimal IV:

H∗(xj,n) = D(xj,n)′Ω(xj,n)−1

and this function minimizes the asymptotic variance. Note here we are using xj,n in the arguments
of D to reflect the conditionality. So for spatial simultaneous system (3.4) the bound on asymptotic
variance becomes

Cov(θ̂H
∗

n ) = E
[
D(xj,n)′Ω(xj,n)−1D(xj,n)

]−1
(5.11)

Interestingly, this asymptotic variance is invariant to non-singular linear transformation, so that for
any non-singular constant matrix Υ, H∗∗(xj,n) = ΥH∗(xj,n) will also minimize the asymptotic
variance. Note that, in our spatial simultaneous system we can express each components separately
as

∂

∂θ
ϕ(zj,n, θ0) =

 A11 A12

A21 A22

 ,
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where A11 = (∂/∂α′1)
(
yj,n − F (yj,n, xj,n, γ0)

)
, A12 = (∂/∂α′1)vechΩ∗ε,n, A21 = B1B2[εj,n ⊗

A11] andA22 = (∂/∂α′2), vechΩ∗ε,n.Also,B1 andB2 are matrices of constants such that vech(εj,nε
′
j,n) =

B1vech(εnε
′
n) and (εj,n ⊗A11) + (A11 ⊗ εn) = B2(εn ⊗A11) respectively. So

D(zj,n, θ0) =

 E(A11|xj,n) A12

B1B2E[(εj,n ⊗A11)|xj,n] A22


In general E[(εj,n ⊗ A11)|xj,n] 6= 0, since A11 depends on yj,n unlike single equation case.

Also, using assumption 6, and triangular structure of error covariance matrix we can derive

Ω(xj,n, θ0) =

 C11 C12

C21 C22


where C11 = Ω∗ε,n, C12 = E(εj,nε

′
j,n ⊗ ε′j,n|xj,n)B1, C21 = B1E(εj,nε

′
j,n ⊗ εj,n|xj,n) and C22 =

B1E(εj,nε
′
j,n ⊗ εj,nε′j,n|xj,n)B1.

Note that, this is block diagonal even whenE(εj,nε
′
j,n⊗εj,n|xj,n) = 0. But Cov(θ̂) is not block

diagonal even if C12 or C21 = 0, since D(zj,n, θ0) is not block diagonal. Now we are in a position
to state the main result of this section.

Proposition 5.4: For a conditional moment using (5.2)the optimal instrument is H∗(xj,n) =

D(xj,n)′Ω(xj,n)−1 and so Cov(θ̂Hn )− Cov(θ̂H
∗

n ) is negative semi definite.
So we observe that even in our more general case the optimal GMM estimators attains the effi-

ciency bound. For the components of the efficient variance bound we can utilize the expression

D(xj,n)′Ω(xj,n)−1D(xj,n) =

 Ω11 Ω12

Ω21 Ω22

 (5.12)

the components of which depends on the conditional variance matrix of the error term. However, the
existence of unknown heteroskedasticity or nuisance parameter or both, will complicate the form of
the covariance matrix form.

For example, when Ω∗ε,n = Ω∗ε,n(xj,n, γ, ξ),

Ω11 = E(A11|xj,n)′C11E(A11|xj,n) +B′1B
′
2E[(εj,n ⊗A11)|xj,n]′C22A12,

Ω12 = E(A11|xj,n)′C11B1B2E[(εj,n ⊗A11)|xj,n] +B′1B
′
2E[(εj,n ⊗A11)|xj,n]′C22A22,

Ω21 = A′12C11E(A11|xj,n) +A22C22A12, and

Ω22 = A′12C11B1B2E[(εj,n ⊗A11)|xj,n] +A′22C22A22.

Similarly, when Ω∗ε,n = Ω∗ε,n(xj,n, ξ),

Ω11 = E(A11|xj,n)′C11E(A11|xj,n),

Ω12 = E(A11|xj,n)′C11B1B2E[(εj,n ⊗A11)|xj,n] +B′1B
′
2E[(εj,n ⊗A11)|xj,n]′C22A22,

Ω21 = 0, and Ω22 = A′22C22A22.
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Also if Ω∗ε,n = Ω∗ε,n(ξ), i.e., we assume homoskedasticity, the Ω12 term of the covariance matrix
will be zero only when there is no endogenous variable on the right hand side of (5.1). Otherwise
there is no gain in efficiency by including non heteroskedasticity assumption in the model even
when E(εj,nε

′
j,n ⊗ εj,n|xj,n) = 0. This illustration of potential efficiency comparison through non-

zero third moment information has been discussed by MaCurdy (2001) in the context of simple
heteskedasticity corrected least squares estimator.

6 Conclusion

This paper proposes an instrumental variable procedures for use with spatial simultaneous system
that produces asymptotically efficient estimators for both spatial autoregressive parameters as well
as other regression parameters. Since the underlying model is more general one can always con-
struct different subcases (e.g., a general taxonomy is given in Table 5.1 of Rey and Boarnet, 2004)
and investigate estimators optimal properties. We strongly believe that a general framework to ex-
ploit over-identifying information contained in the higher order moments of the error term for multi
equation spatial system will give researchers more freedom asymptotically. However, as reported in
Blundell and Bond (1998) for simple panel data, GMM in the equation in first differences of Arel-
lano and Bond (1993) type sometimes provides very small and imprecise estimates. Also it may
suffer weak instrument problem where regressors in first differences are weakly autocorrelated. In
spatial domain it would be interesting to explore such possibilities, specially whether over-identified
restrictions are typically rejected too often using moment test statistic based on our set up.
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A Appendix

In this section we provide the technical details of our presentation and proof of theoretical results.

A.1 Matrix notations

Let m and n be two fixed positive integers. We denote a matrix of dimension m×n with entries aij
as Am,n = (aij) (for m = n by An etc.) and collection of such matrices as Mm,n. So Mm,n will
be a vector space with the usual operations of addition and scalar multiplication of matrices over the
field R of real numbers. For any Am,n ∈ Mm,n, we denote ‖.‖A as a matrix norm on the vector
space Mm,n. We use the convention that a matrix An = (aij) of order n×n is diagonally dominant
if |aii| >

∑n
j 6=i |aij |, i = 1, . . . , n, and the following easily verified fact: if A is a matrix and a is a

vector, then ‖Aa‖ ≤ ‖A‖‖a‖.
For am×nmatrixAm,n by vecAwe mean am×1 vector whose j-th column is ai. For any two

column vector a and b, the notation that we use to connect vec operator and the Kronecker product
is vec(ab′) = b ⊗ a. If A and B are both upper (lower) triangular matrix, then A ⊗ B is a upper
(lower) triangular matrix.

For any two matrix Am,n and Bp,q, we use the result vec(A⊗B) = (In ⊗Kq,m ⊗ Ip)(vecA⊗
vecB) where Kq,m is the commutation matrix. Also for vec derivative we use the following: for a
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vector of c = (c1, . . . , cs) of s variables, (∂vec(aa′)/∂c′) = ((∂a/∂c′)⊗ a) + (a⊗ (∂a/∂c′)) and
(∂vec(A⊗B)/∂c′) = (In ⊗Kq,m ⊗ Ip)((vecA)⊗ (∂vecB/∂c′) + (∂vecA/∂c′)⊗ (vecB)).

For more see Magnus and Neudecker (1999,p.30,47,184), Rao and Rao (1998,p.368).

A.2 Proofs

Proposition 3.2: This result follows directly from Kelejian and Prucha (2004). Limiting distribution
of εn is equivalent to the limiting distribution of yn and un. The exact functional form determines
the corresponding mean and variance.

Lemma 5.2: Let mj,n = anϕj,n, where again for simplicity denote ϕj,n = ϕ(zj,n, θ). We observe
{mj,n : 1 ≤ j ≤ n, n ≥ 1} is a triangular array of independent random variables. Note that
Emj,n = 0 and

E(mj,n)2 = E(anϕj,n)2

≤ E(‖an‖2‖ϕj,n‖2)

= ‖an‖2E‖ϕj,n‖2 <∞, n ≥ 1

The proof of the result lies in the fact that by Cramér-Wold device we can show that an
∑
j ϕj,n

converge in distribution to MnN(0, I) where Mn = ‖an‖∇ and ∇ =
∑
j(Eϕj,nϕ

′
j,n). Note also

that

M2
n =

n∑
j=1

E(mj,n)2

=
∑
j

a′nEϕj,nϕ
′
j,nan

= a′n(
∑
j

Eϕj,nϕ
′
j,n)an

= ‖an‖2∇, n ≥ 1

Next we verify that the triangular array {mj,n : 1 ≤ j ≤ n, n ≥ 1} satisfy the Lindberg condition.
Fix % > 0,

M−2n

n∑
j=1

E(m2
j,n)I(|mj,n| > %Mn) = ‖an‖2∇

∑
j

E(anϕj,n)I(|anϕj,n| > %‖an‖∇)

≤ ‖an‖2∇
∑
j

E(‖an‖2‖ϕj,n‖2)I(‖an‖‖ϕj,n‖ > %‖an‖∇)

=
∑
j

E(‖ϕj,n‖2)I(‖ϕj,n‖ > %)→ 0

as n→∞ by the multivariate version of Lindberg condition and so the limit condition of the trian-
gular array central limit theorem holds. So we can apply CLT for triangular arrays to demonstrate
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that M−1n
∑
jmj,n → N(0, I), from which the result follows.

Proposition 5.3: Proof of this kind of results are widely known, here we provide a brief outline.
The first order conditions for minimization problem are (5.4). By applying the usual mean value
expansion of (5.4) and using the fact that there exists a positive definite matrix a such that an → a,

use a pointwise law of large numbers so that ∂ϕ(θ)∂θ →
p E[H(xj,n) ∂∂θψ(zj,n, θ0)] for any θ →p θ0.

Note that under the maintained assumption the elements of Q2 are bounded in absolute value, so
a multivariate version of the Lindberg condition can be easily verified. Now by replacing estimated
averages by their probability limits and applying the Slutzky theorem on (5.10) yields the asymptotic
distribution of right hand side. Then by Cramér-Wold device and another application of Stutzky’s
theorem results in the statement of the proposition. In plain words, we analyze the limiting behavior
of a random matrix and a random vector separately and at the end combine them to derive our GMM
estimators asymptotic distribution.

Proposition 5.4: A general form of the result is given in theorem 7.2.1 of Hall (2003), we basically
extend that in our spatial set up. Let us denote θ̂(H) and θ̂(H∗) to be the estimates using any H and
optimal H∗ and N(θH) be the first quantity on the right hand side of (5.10). Then we can write

ϕ(θ) = ϕ(zj,n, θ) =
1

n

∑
i

H(xj,n)ψ(zj,n, θ)

Let

ϕHn = ϕHn (θ) =
1

n

∑
i

H(xj,n)ψ(zj,n, θ)

ϕH
∗

n = ϕH
∗

n (θ) =
1

n

∑
i

H∗(xj,n)ψ(zj,n, θ)

θ̂(H) = θ̂(H∗) + [θ̂(H)− θ̂(H∗)]

or, √
n[θ̂(H)− θ0] =

√
n[θ̂(H∗)− θ0] +

√
n[θ̂(H)− θ̂(H∗)]

where each term follows (5.10). So in terms of asymptotic variance this can be written as

Asy.V arθ̂(H) = Asy.V arθ̂(H∗) +Asy.V ar[θ̂(H)− θ̂(H∗)]

or,
Cov(θ̂(H)) = Cov(θ̂(H∗)) + Φ + Φ′

Now Φ = 0 if Asy.V ar[θ̂(H), θ̂(H∗)] = Asy.V ar(θ̂(H∗)), which we is not true since under our
maintained assumptions E[N(θH)N(θH

∗
)] is positive semi definite. Hence the result follows.


