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SUMMARY

Deciding on the number of latent factors or classes is a critical issue irtistdtanalyses
such as factor analysis and finite mixture analysis. No new progreskee@smade in
recent years with least-squares MDS analysis. In this paper, weggdploe use of parallel
analysis, in addition to the conventionally used stress value, for deterntimngumber
of dimensionalities or profiles to retain in MDS analysis. Using two actual dttase
demonstrated the approach. The results indicated that parallel anakysisd to be viable
in MDS model selection.
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1 Introduction

Model selection is an important first step in many statistirealyses. For example, in principal
component analysis (PCA) or factor analysis (FA), one agvageds to determine the number of
components or factors that underlie the data, a critic&l ths researcher encounters when using
these analytical techniques. What is typically believechat fan incorrect decision may lead to
the either under-extraction (i.e., loss of information)ower-extraction (i.e., inclusion of spurious
factors or components) of the data at hand. In the case ofextgaction, one tends to attach mean-
ing to noise in the data, resulting in the interpretationasfdom variation that affects subsequent
analyses. Another example is finite mixture modeling sucla@t class analysis, factor mixture
analysis, or growth mixture modeling. However, regardtgpss of analysis approaches used such
as confirmatory-oriented approach with structural equatimdeling or exploratory-oriented ap-
proach with multidimensional scaling analysis, a contiguissue is how to determine the numbers
of latent classes (i.e., unobserved subgroups) in the data katent classes are used for interpreting
results and making inferences. In general, issues formatarg the number of factors, components,
or classes are known as model selection (e.g.,Schwarz).1978

Many empirical studies have devoted much effort to find stiatl procedures that allow select-
ing the best model that represents the data. For statistiedyses employing maximum likelihood
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estimation, one of the most studied statistical procedused for model selection is information cri-
terion such as Akaike Information Criterion (AIC; Akaike924), Bayesian information Criterion
(BIC; Schwarz, 1978), or different variants of AIC or BIC atd statistics. Another technique for
model selection is likelihood ratio test such as Lo-MendRebin likelihood ratio test (Lo, Mendell,
and Rubin, 2001), or bootstrap likelihood ratio test metfiddLachlan and Peel, 2000). Although
there is no common consensus yet with respect to which irgdiireibest in determining the approx-
imating model given the data, much of the progress has bede mahe area of model selection.

In contrast, the development of model selection for sfatibttechniques that employ least
squares estimations has not shown any noticeable progradiularly for least-squares multidi-
mensional scaling analysis (MDS). One reason may be that MB&ls have not been widely used
in social science research in recent years, and the utfity@S analysis, although proven useful to
researchers in different fields of science, including etianahealth, marketing, psychology, and so-
ciology, is not well understood. However, MDS models hafedint applications, and it has been
used to study such things as the perceptional structureopi@ée.g., Goodrum, 2001; McWhirter,
Palombi, and Garbin, 2000), vocational interest of colegelents (Johnson, 1995), test content and
validity (Sireci and Geisinger, 1992), and cognitive origation of perceptions (Treat et al., 2002).
More recently, MDS analysis has been developed for latesftipranalysis (Davison, Gasser, and
Ding, 1996; Ding, 2006; Kim, Davison, and Frisby, 2007) angleratory growth mixture anal-
ysis (Ding, 2007a; Ding, 2007b). These developments, qdatily exploratory growth modeling,
have expanded our vision on how to explore growth heteratyemederlying the data structure and
provided complimentary analytical techniques to more cordtory-based modeling approaches.

Regardless of any specific applications or purposes of MD#ysis, however, the first step
in conducting MDS analyses is to determine the number of dgioms needed to characterize the
distance data. This is the issue of model selection, an iggiehas been studied in many other
statistical modeling procedures as discussed previouslyhe case of MDS analysis, there is a
set of alternative distance models, each with a differentler of dimensions, also called profiles,
as potential approximations to the distance data. From éhgppctive of finite mixture modeling,
different number of dimensions or profiles in MDS can be cd@sid to summarize characteristics
of subgroups in the data, with each subgroup showing a umicpfde as measured by a particular
set of variables. One generally does not know the proper puwftdimensions or profiledy, with
which to represent the distance data for all possible pditssiimuli or v variables to be scaled.
In other words, we seek a solution that parsimoniously apprates the distance data as closely as
possible, and at the same time the model will provide a goathsary of individual differences. In
least-squares MDS, the most common measure for modeliselésttress value (Kruskal, 1964a)
or a closely related measure called S-Stress value (Youdd.@wyckyi, 1988). No new progress
has been made in this regard.

Specifically, Kruskal's Stress formula ong,{ can be expressed as

(1.1)

Where&j is disparities and;; is model estimated distance. In many MDS applications Stsdsoth
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the fit measure minimized by the estimation algorithm angtiveary index used in model selection
for models constructed in each of several spaces of varyingrsionalities. In least-squares MDS,
Stress value is a normalized sum of squared discrepandigsdrethe observed distance data points
0 and the model derived data pointsThe smaller the stress value, the better is the fit of the inode
to the data. Kruskal (1964b) suggests that a valu& ¢humber of dimensions) be chosen which
makes the stress value acceptably small. The benchmarksygested based on his experiences
with simulation data were: .20 = poor fit, .10 = fair, .05 = gpadR5 = excellent, 0 = perfect.
In MDS analysis, this rule of thumb has often been used farcsielg the number of dimensions.
Such criteria, however, may lead to misuse by suggestirtgothig dimension or profile solutions
with stress values less than .20 are acceptable (Borg areh@mnp2005) and may lead to arbitrary
decisions. For instance, it is difficult to decide whetherdirBensional model with a Stress value
of .025 is a better model than a 4-dimensional model with esStvalue of .02. In addition, Stress is
closely related to the proportion of error in the data, ansl ftossible that an MDS configuration is
highly reliable over replications of data but with a highest value (Borg and Groenen, 2005; Cox
and Cox, 1992).

Sometimes a scree plot of Stress or eigenvalues againstithken of dimensions is also used
for visual inspection of elbow in the plot (Davison, 1983m#ar to the use of scree plot in factor
analysis. In this method, however, there sometimes is rar clatoff point for elbow, leading to
solution ambiguity and interpretation difficulty. This ie¢dause that in real data that do not conform
exactly to the model or in which there is measurement or sag@rror, elbow may be hard to
discern. More importantly, a scree plot is simply a plot aeS$ values, which may not provide
more objective determination on the number of dimensioMD$ analysis.

So far, all the statistics used for model selection in lsastares MDS are based on a model-
data fit approach; in other words, we are trying to identify @adel with a statistic that shows the
best fit between the model and the data. In this paper, westisdua Monte Carlo method, called
Parallel Analysis, as a statistical approach for MDS matigh fit measure in deciding the best
approximating model for the data at hand. The idea was basd#ubb of parallel analysis in factor
analysis for determining number of factors to retain.

This paper was organized as follows. First, we introducedb#sic principles of parallel analysis
and its application in MDS analysis. Because parallel asislwas new in MDS, we discussed
it more in detail. Second, we presented two examples of rat@séts to illustrate the analytical
approach proposed here. We used two studies that had atthallyeknown dimensionality rather
than artificial data. As indicated by Cudeck and Henly (2008re were no true models to discover.
Instead, a model was to summarize and formalize the belzyiorcesses and to make predictions
even if the model was false. Any model selection procedurre to help researchers to make more
objective decisions as to the best approximating modeldoh & purpose rather than find the true
model. Thus, using real data rather than artificial data nrayige a more realistic view of how
parallel analysis could function in this regard. It shoutdroted that the main point of the paper
was to illustrate parallel analysis as a potential modelctin tool in MDS analysis. More in-depth
studies of parallel analysis in MDS model selection were glemand warranted separate studies.
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2 Basic Idea of Parallel Analysis in MDS

Originally parallel analysis was proposed to determineniin@ber of factors that underlay the data
in factor analysis (Horn, 1965) based on the generationmfilsition data. It has been suggested
that parallel analysis is a promising technique for modic®n in factor analysis (Humphreys
and llgen, 1969; Humphreys and Montanelli, 1975; Linn, 198&ng and Cheng, 2005) and is
considered a better model-selection method in comparisttnother methods such as eigenvalues-
greater-than-one, scree plot, or minimum average pagsl(Glorfeld, 1995; Zwick and Velicer,
1986). In factor analysis parallel analysis involves thedeng simulated variance-covariance ma-
trix or correlation matrix (including tetrachoric or polyaric correlation) identical with respect to
the number of variables and the number of cases as the driatea matrix. Perhaps it is called
parallel analysis for this reason. In a sense, parallelaisais a Monte Carlo simulation procedure
in which simulated eigenvalues are computed from normalogeamsamples that mirror the real data
at hand; in other words, parallel analysis not only modedssime number of cases and variables as
the original data, but also the same marginal distributadribe variables as well. In model building
both over- and under-estimation may be made when the dadésslmsed on a single sample of data
(Humphreys and Montanelli, 1975). Thus, a Monte Carlo mgihrovides a secondary useful crite-
rion since a large number of parallel data sets are usednamrie cases rather than generating data,
a permutation test approach is used in which individualakde values are mixed with one another
to create the synthetic data. A factor is retained when theesponding eigenvalue is greater than
the mean or median of those computed from the simulated Gédafeld (1995) has also suggested
to use the eigenvalue that corresponds to a particular piEesen other words, a factor is retained
when the associated eigenvalue is greater than, for irsstaéime 95th percentile of the distribution
of eigenvalues from simulated data. It seems that most eutimv only suggest using a particular
percentile for parallel analysis, rather than the mean aliame

Given the sound rational and proved usefulness of parailalyais in determining number of
factors in the data (Buja and Eyuboglu, 1992; Glorfeld, 1996mphreys and Montanelli, 1975;
Weng and cheng, 2005; Zwick and Velicer, 1986), it is feastbladapt parallel analysis in MDS
analysis for model selection, that is, number of dimensmmgrofiles to retain in MDS analysis.
Since the idea of parallel analysis in factor analysis isetlam the criterion of variance that can
be accounted for by a specific number of factors in observéal wlih that in simulated data, this
logic can also apply to MDS analysis, which has the same goekglaining maximum amount
of variance in the data by a specific number of dimensions @files. Thus, it seems reasonable
that the method of parallel analysis can be used in MDS aisalfthough the mathematics of the
method is not new, the approach is new for MDS analysis.

In factor analysis, eigenvalues are obtained from a cdioglanatrix, a covariance matrix, or a
cross-product matrix. In MDS analysis, however, a distanagrix is typically used as input data.
In order to obtain eigenvalues associated with each dirnensbserved distance matriX needs
to be converted into an equivalent cross-product matrixthad eigenvalue of each dimension can
be computed based on this transformed cross-product ngatsi, 2007}. Specifically, the cross-

1The proof is provided by Abdi (2007) on how distance matrix bartransformed into a cross-product matrix, which can
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product matrixS can be obtained from distance matfixas:

1
§=—3 eDel, (2.1)

wherec= | — 1m” andm is called by Abdi (2007) a mass vector (i.e., a vector of 1/nenof
variables) whose elements give the mass of theows of distance matrix]D, which is calculated
between data pointg; andy;, for v variables as:

2.2)

and this observed distanek; is assumed equal to distancgs in m Euclidean space with co-
ordinatez;;, andx;,, which represents the configuration of variables in the gdomspace, that
is:

dij = (2.3)

The elements of are all positive and their sum is equal to one; thatid,l = 1. The eigen-
decomposition of the cross-product matgigives:

S=UAUT, (2.4)

whereUUT = I and is diagonal matrix of eigenvalues. Thus, one can comgigenvalues of
dimensions for both observed data at hand and those fromagedudata. A dimension with cor-
responding eigenvalue that is greater than median or the@5tcentile of simulated eigenvalues
will be retained. The parallel plot (Ledesma and Valero-&d&007) can be used to graph the ob-
served eigenvalues from the actual data and the estimagsdfieam the simulation data. The point
at which the two lines of eigenvalues cross indicates thebmurof dimensions to retain in MDS
analysis. Thus parallel analysis provides a more objeatigthod to assess model-data fit in MDS.

In the following sections, we employed two actual studiedemonstrate how one could em-
ploy parallel analysis in determining the number of dimensior profiles to retain in MDS. The
first data was on student math achievement over a four-ygadpeand the second data was on
student reported vocational interest as assessed viagS8Grampbell Interest Inventory (Campbell
and Hansen, 1985). All the analyses were performed usingsef®are package.

3 Examples

3.1 Profiles of Strong-Campbell vocational interest

The data in this example were from the Minnesota Vocatiorsse&sment Clinic at the University
of Minnesota. The sample used here contained 328 partisipdth no missing values. The reason

also be transformed back to distance matrix.
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for using theStrong-Campbell Interest Inventory in this paper was that the instrument has a well-
known two-dimensional MDS structure (Hogan, 1983; Predi$@82). The variables were mea-
sures of the six General Occupational Themes ofthang-Campbell Interest Inventory (Campbell
and Hansen, 1985): Realistic (practical, hands-on, acti@mnted), Investigative (abstract, ana-
lytical, and theory-oriented), Artistic (imaginative apdeferences for literary, musical, or artistic
activities), Social (preferences for helping, teachingating, counseling, or serving others through
personal interaction), Enterprising (preferences fospading manipulating, or directing others),
and Conventional (preferences for establishing or maimgiorderly routines, applications of stan-
dards). According to Holland (1973), these six measures fotwo-dimensional hexagonal model.
While Holland did not name the two dimensions, others did, tedtheoretical patterns of these
interests are: (1) highest scores on the Realistic and tige¢ise scales and lowest scores on the
Enterprising and Social scales and (2) highest scores oArtistic scale and lowest scores on the
Conventional scale (e.g., Hogan, 1983).

The parallel analysis was performed using the actual saemulel,000 random samples drawn
from N (0, %) that mirrored the actual sample with respect to sample sidettee number of vari-
ables. In the analysis, eigenvalues were computed usirgg-gmduct matrix converted from dis-
tance matrix based on Equation (2.1). The eigenvaluesegrtiatn thed5t" percentile from 1,000
random samples were obtained and used as a comparisomba3déie parallel plot of the 95th per-
centile simulated eigenvalues along with the observedeajaes from the actual data was used in
model selection. Figure 1 shows the parallel plot. In the, pk& dimension with eigenvalue greater
than the point at which the two lines crossed each other waseal. As can be seen in Figure 1,
two dimensions had eigenvalue that was greater than thep@stentile of simulated eigenvalues,
suggesting a two-dimensional model fit the data. In contthststress value was .013, .009, .005,
and .001 for a one-, two-, three- and four-dimensional smiytrespectively. Based on the cutoff
point suggested by Kruskal (1964b), the stress value bdd@w indicates an excellent fit of the
model. Accordingly, all three models could provide an eberlfit for the current data, leading to
an ambiguity with respect to the appropriate number of dsim@rs to retain. Similarly, the Bayesian
dimension selection criterion, MDSIC, from Bayesian MD&lgsis (Oh and Raftery, 2001; Okada
and Shigemasu, 2009) of one to four dimensions was 144.38213128.81, and 121.53, respec-
tively. This set of MDSIC values suggested a four-dimensidtDS model since it had the smallest
value.

Based on these findings, the result from parallel analysis emnsistent with the theoreti-
cal expectation of two-dimensional MDS structure. Dimenalities more than two led to non-
interpretable dimensions, which were illustrated in Fgg@r Figure 2 shows a configuration of
four-dimensionality vocational interests. The intemggtpart of Figure 2 was that dimensions 1 and
2 represented the vocational interest suggested by Ho@&3)lwith Dimension 1 being highest
scores on the Realistic and Investigative scales and loseeses on the Enterprising and Social
scales and Dimension 2 being highest scores on the Artistie sind lowest scores on the Conven-
tional scale. It seemed that MDS parallel analysis ideitiffeese two nontrivial dimensionalities
underlying the data structure. On the other hand, Dimeasittegs of 3 and 4 did not suggest any in-
terpretable vocational interest patterns, reflecting geshtandom noise in the data. Thus, we would
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Figure 1: Parallel plot for vocational interest data. Thstfiwo profiles have eigenvalues greater
than the 95th percentile of the simulated eigenvalues.

retain these two dimensions for interpretation and for egbent analyses such as examining how
these two profiles were associated with some personalitgihias.
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Figure 2: Four profiles of vocational interests.

3.2 Profiles of student math achievement patterns

In this second example, we presented a dataset that coshgtuent math achievement over a four-
year period. The data in this example were individual testescfrom the SAT 9 mathematics test
administered between 1997 and 2000 to a cohort of 337 grauel8rgs in a school district from a
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southwestern state in the U.S. These students in grade Bteobi@ tested at 3rd, 4th, 5th, and 6th
grade. Specifically from 1997 to 2000, students in the sample annually tested in mathematics
using the standardized, nationally norm-referenced Stdrichievement Test, 9th edition (SAT-9
Math) as part of a larger effort to monitor the progress ofredetary school students toward mas-
tering mathematics knowledge from one year to the next. ieSis a widely used achievement
test published by Harcourt Brace Educational Measurenrettié U.S. It was designed to mea-
sure achievement in the curriculum content commonly tairgbtades 1 through 9 throughout the
United States. The test results of SAT-9 Math were also usedh éndicator that students were mak-
ing Annual Yearly Progress, AYP. For the purpose of comppaiistudent’s progress from one year
to the next, the test scores were vertically scaled acrosspheumeasurements so that the scores
were comparable over time.

The research question was: how did student math achieverhange over these four years?
Did all of them have increased math achievement, how muchthe@icrease? Were there any
improvements needed to be made? These questions had @iremplications for the school district
in terms of its school improvement plan and teaching anchlegrinterventions. To address these
issues related to growth, we conducted MDS profile growthyarsato explore the growth profiles
underlying the data. Using MDS for growth modeling were stigated by Ding and his associates
(Ding, Davison, and Petersen, 2005) and it was shown to baldevalternative for studying change
and growth. As in Example 1, the first task was to determinentiraber of growth profiles that
might best approximate the data. The result from parallelyais with 1,000 simulated samples in-
dicated that model with one growth profile fit the data underitiguiry. Figure 3 shows the parallel
plot of the analysis, and one profile clearly had an eigemvgteater than the 95th percentile of sim-
ulated eigenvalues. In contrast, the Stress value from Mi2$/ais of one- to three-dimensions was
.011, .007, and .003, respectively, providing no cleardation of appropriate number of dimensions
based on the cutoff point of .025 as suggested by Kruska@perhe Bayesian dimension selec-
tion criterion, MDSIC, was 132.21, 115.68, and 109.52 foe-oto three-dimension, respectively,
indicating a three-dimensional MDS structure, which wasirsistent with what we expected.

Table 1 shows the scale values of math achievement overgéaumperiod. This profile showed
that the students in the grade 3 cohort had a linear increasath achievement from 1997 to 2000,
with percentage of increase being 40% in the 1998, 31% in,1@29929% in 2000, respectively.

Table 1: Scale Values of Math Achievement of Students in al&BCohort

Time Scale Vales

1997 -1.42
1998 -0.35
1999 0.49

2000 1.28
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Figure 3: Parallel plot for math achievement data. The firsfile has eigenvalue greater than the
95" percentile of the simulated eigenvalues.

4 Conclusion

In the paper, we suggested using parallel analysis as a M@elndata fit criterion for determining
the number of dimensions or profiles that underlie the datsiDs analysis. Our results based
on two real datasets revealed that parallel analysis se¢émptbvide a more objective method
than stress value in this regard. In both examples, resudta parallel analysis provided clear
evidence on number of dimensions or profiles to retain in MBS reas Stress value did not provide
such a clear indication of appropriate number of dimensfionrstain. In general, the advantage of
parallel analysis is that it should provide more objectivigedon for model selection than stress
value and other available methods to determine approp&8 solutions. In view of that, this
paper describes a new approach that may serves as a catalytitrfulating further investigations.

In the current study, parallel analysis for MDS was perfatrasing a SAS macro. SAS is a
commonly used statistical analysis package and the macidfs parallel analysis was easy to
use. The programming of such a macro is not extensive, and ®AS is not available, the macro
can also be programmed into R statistical language, whifrieésstatistical software.

The implication of the current study for practice is thahaligh parallel analysis is one of the
recommended criteria for determining the appropriate remobfactors in factor analysis, it has not
been utilized and fully investigated in MDS analysis. Gitka limited choice of model selection
criteria in MDS analysis, the results of the study providgipminary evidence of parallel analysis as
a potential method for model selection, adding one moreftyaleciding on the number of dimen-
sions. Research should employ this criterion, along witesStvalue and other available methods
to determine appropriate MDS solutions. In view of thats thaper describes a new approach that
may serves as a catalyst for stimulating further investigat

However, model selection is complex, involving issues ofdeigparsimony, interpretability,
practicality, as well as philosophical perspective on thie of model. There are several points
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that are worth noting. First, Abidi’'s method for convertidigtance matrix to cross-product matrix
is proposed for metric data. The key difference betweenimatrd nonmetric MDS is how the
observed distance is assumed to be related to the modeedatistance. But the basic logic with
respect to variance explained by the dimensionality is &mesfor both models. Thus, the parallel
analysis may also be applicable to nonmetric MDS. Secontherturrent study we used the 95th
percentile when comparing the eigenvalues of the obsemasb-@roduct matrix with that of the
simulated ones. However, there is a need to examine thetemmalin which the 95th percentile
may be preferred over median when comparing the eigenvafiiks observed cross-product matrix
with that of the simulated ones. Third, given the complexitynodel selection, the suitability of
employing parallel analysis in MDS needs to be further exaaliusing more sophisticate methods
such as simulation studies.
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