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ABSTRACT
A general procedure when one is looking for a limiting distribution of Xn =
max(X1, . . . , Xn) is to first center Xn by subtracting cn and then scale by dn (Mood et al.,
1974). This article is focused on finding the norming constants cn and dn for the maxima of
the folded normal random variable Xn, where X = |Z|, Z ∼ N(0, 1). We also show that
after appropriate normalisation, Xn has a limiting distribution H(x) = exp(− exp(x)),
which is the Gumbel distribution.
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1 Introduction
The classical theory of extreme values of probability theory deals with the asymptotic distribution
theory of the maxima and minima of independent and identically distributed random variables. Sup-
pose Hn and Ln are distribution functions of the maxima and minima respectively, then

Ln(x) = P (Wn ≤ x) = 1− [1− F (x)]n

Hn(x) = P (Zn ≤ x) = Fn(x), (1.1)

where Wn = min(X1, . . . , Xn) and Zn = max(X1, . . . , Xn) (Mood et al., 1974), then the values
ofHn(x) and Ln(x) cannot be computed from 1.1 and (1.1) due to the sensitivity of un to u for large
n. This is true if distribution function F (x) is approximated (Leadbetter et al., 1983), where F (x)

is varying, linearly normalised extremes (Zn − an)/bn or (Wn − cn)/dn have the same limiting
distribution functions H(x) and L(x), respectively.

In this article, let X = |Z| where Z ∼ N(0, 1), then X is distributed as a folded normal and
is always positive. The maximum Xn = max(X1, . . . , Xn) can be normalised using constants cn
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and dn (Embrechts et al., 1997; Leadbetter et al., 1983; Ahsanullah and Kirmani, 2006). This article
attempts to provide a methodology for finding these constants and also show that the limiting distri-
bution of the linearly normalised extreme from the folded normal is actually the Gumbel distribution
∧(x) = exp(exp(x)).

A probability distribution with distribution function F (x) is said to have an extreme value distri-
bution if for each positive integer n, F (x) satisfies the max-stable condition Fn(x) = F (dn + cnx)

for some constants {dn} and {cn} (Leadbetter and Rootzen, 1988). This means that if we can
find cn and dn for Xn = max(X1, . . . , Xn) as defined above, we can also find the extreme value
distribution ofX . We however need the following definition in order to find the limiting distribution.

Definition 1.1. The maximum of a sequence X1, . . . , Xn of independent and identically distributed
random variables is said to have a limiting distribution if there are constants {dn} and {cn} such
that

lim
n→∞

Fn(dn + cnx) = H(x) or equivalently lim
n→∞

n[1− F (dn + cnx)] = − ln[H(x)],

where H(x) is the limiting distribution.

It is this definition which will help us to find the limiting distribution of the normalised maxima
once the norming constants have been found.

2 Methodology
We begin by introducing the extreme value theorem and some extreme value concepts which are
necessary in this article.

2.1 Some important extreme value concepts

Theorem 1 (Extreme Value theorem). Let F (x) be a distribution function. If there are numbers
dn and cn > 0 such that Fn(dn + cnx) → G(x) as n → ∞, where G(x) is a non-degenerate
distribution, then there is a re-scaled version H(x = G(a + bx) of G(x) such that H(x) is one
of the three standard extreme value distributions, namely the Gumbel, Fretchet and the Weibull
distributions (Leadbetter et al., 1983; Ahsanullah and Nevzorov, 2001).

The extreme value theorem implies that each probability distribution may be associated with one
of the three standard extreme value distributions. This leads to the following definition.

Definition 2.1 (Domain of attraction). Let H(x) be a non-degenerate probability distribution func-
tion. Then the domain of attraction of H(x) is the set of all probability distribution functions F (x)

such that if X1, . . . , Xn are independent and identically distributed (iid) random variables each with
probability function F (x) then there exists normalising constants dn and cn > 0 such that

lim
n→∞

Fn(dn + cnx) = H(x)

for all x at which H(x) is continuous (Ahsanullah and Kirmani, 2006).
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The following theorem is crucial in finding norming constants for all distributions which con-
verge to the three standard extremal types.

Theorem 2. Let {Xn} be an iid sequence. Let 0 ≤ τ ≤ ∞ and suppose that {un} is a sequence of
real continuous numbers such that

n(1− F (un))→ τ as n→∞ (2.1)

then
P{Mn ≤ un} → e−τ as n→∞ (2.2)

conversely if (2.1) holds for some τ, 0 ≤ τ ≤ ∞, then so does (2.2) (Ahsanullah and Kirmani,
2006).

Proof. The proof of the above theorem can be found in Leadbetter et al. (1983, page 13) and is thus
omitted.

The norming constants will be found using the above theorems and the relationship which exist
between the folded normal and the standard normal distribution. The following theorem gives the
norming constants for the maxima of the standard normal and the asymptotic distribution of Mn =

max(Z1, . . . , Zn) where Z ∼ N(0, 1). We will then use the relationship between the standard
normal and the folded normal to find the norming constants for max(X1, . . . , Xn).

Theorem 3. If {Zn} is an iid standard normal sequence of random variables, then the asymptotic
distribution of Mn = max(Z1, . . . , Zn) is of type 1 (Gumbel). Specifically

P{c−1n (Mn − dn) ≤ x} → exp(− exp(x)), (2.3)

where cn = (2 lnn)−
1
2 and dn = (2 lnn)

1
2 − 1

2 (2 lnn)−
1
2 [ln(lnn) + ln 4π + O((lnn)−

1
2 )] (see

Leadbetter et al., 1983 and Ahsanullah and Kirmani, 2006)

Proof. The proof of this theorem is straight forward and is thus omitted.

2.2 Norming constants of the maxima of the folded normal random variable

We begin by finding the cumulative distribution ofX = |Z|, F (x). Note that fX(x) = 2fZ(x), X >

0 then it is trivial to show that F (x) = 2Φ(x)−1, where Φ(x) is the cumulative distribution function
of the standard normal distribution. Thus 1− F (x) = 2(1− Φ(x)) and it follows that

−2 lnH(x) = lim
n→∞

[2n(1− Φ(cnx+ dn))]

= lim
n→∞

[n(1− F (cnx+ dn))]

but,

2 lnH(x) = −2e−x, (since H(x) = e−e
−x

)

= −e−(x−ln 2) = lnH(cx+ d),

where c = 1 and d = − ln 2. We can now apply the Fisher Tippet theorem (limit laws of maxima)
(see Embrechts et al. (1997), page 121).
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Theorem 4 (Fisher Tippet). Let {Xn} be a sequence of iid random variables. If there exist norming
constants cn > 0, dn ∈ R and some non-degenerate distribution function H(x) such that

c−1n (Mn − dn)→ H(x) as n→∞ (2.4)

then H(x) belongs to one of the three extremal types.

If the limit law in (2.4) appear as H(cx+ d), that is

lim
n→∞

P [c−1n (Mn − dn) ≤ x] = H(cx+ d)

then H(x) is also a limit under a simple change of norming constants:

lim
n→∞

P [a−1n (Mn − bn) ≤ x] = H(x), where an =
cn
c

and bn = dn −
dcn
c
,

in this case
an =

cn
1

= cn = (2 lnn)−
1
2 (2.5)

and

bn = dn + cn ln 2 = (ln 2)(2 lnn)−
1
2 + (2 lnn)

1
2 − ln(lnn) + ln 4π

2(2 lnn)
1
2

(2.6)

The norming constants for the folded normal are given in equations (2.5) and (2.6) above.

Lemma 2.1. Let Z ∼ N(0, 1) and letX = |Z|. Let F (x) = P (X ≤ x) be the distribution function
of X , then the asymptotic distribution of Mn = max(X1, . . . , Xn) is of type 1. Specifically

lim
n→∞

P [a−1n (Mn − bn)] = exp[− exp(x)],

where an = (2 lnn)−
1
2 and bn = (ln 2)(2 lnn)−

1
2 + (2 lnn)

1
2 − ln(lnn) + ln 4π

2(2 lnn)
1
2

.

Proof. The proof follows from the main result and is thus omitted.

The norming constants can also be given implicitly by

an = f−1(1− 1/n), bn = a(an), where a(x) =

∫ ∞
x

F (t)

F (x)
dt

(see Embrechts et al. (1997) and Lemma 1.1.6 in Ahsanullah and Kirmani (2006) for the detail).
The norming constants given above are not unique and according to Lemma 1.1.7 (Ahsanullah
and Kirmani, 2006), any other sequences a∗n and b∗n satisfying limn→∞(an − a∗n)/bn = 0 and
limn→∞ b∗n/bn = 0 mean that (max(X1, . . . , Xn)− a∗n)/b∗n will converge to the Gumbel distribu-
tion in this case.
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3 Conclusion
In this article, we have presented a procedure for finding the norming constants for the maxima
of a folded normal variable. Use has been made of the relationship between the normal and the
folded normal and the asymptotic theory of extremes. This result is very important in modeling
extremal events especially in time series where it is necessary to detect outliers. Chang and Tiao
(1983) developed a statistic for detecting the presence of outliers, but the statistic had no limiting
distribution and critical values had to be calculated using simulation algorithms for every sample
size. One can use the norming constants above and develop a statistic that can detect outliers but
whose limiting distribution is the Gumbel distribution.
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