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SUMMARY

In this approach, we construct the necessary and sufficient corglitionder a James-Stein
type estimator outperforms the minimax estimator of the mean. Particularbonsder
a class of scale mixture of multivariate normal distributions and derivedtimeinating
conditions under the quartic loss function. Some leading examples arexdlinted for
checking the efficiency of the proposed model and specifying theatetienputations.
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1 Introduction

Let X = (Xy,...,X,) be arandom vector iR? distributed as a variance mixture of multivariate
normal distributions with un-known mean vecte= (64, . .., 6,). Thus we assume that the density
function of X is of the form

1) = [ Gy e (= 5 e - 0l) dco) @y

whereG is the distribution of a known non-negative random varidblén other words, we consider
the conditional structure in whicK |V =t ~ N,(0,t791,), ¢ > 0 andV ~ G(.). See Gupta and
Varga (1993, Theorem 2.7 3, pp. 78-79) for more details.

It is well-known, thatX is an inadmissible estimator & under quadratic loss function for
p > 3; we refer to the couple of works due to Strawderman (1974)jg&e(1975), Brandwein
(1978) and Bock (1985). They considerably proposed imgt@simatorsy = (41, ..., d,) under
guadratic loss. However, Berger (1978) considered losstifums L. which are polynomials in the
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coordinates o8 — 6. He gave a developed example whei®, §) = ||6 —6[|* = (30_, (6, — 0;)?)?
(that is the square of the usual quadratic loss).

Let X = (X;,...,X,) distributed according to the model (1.1). In this paperdwolhg Four-
drinier et al. (2008) we basically engage with the problerasiimatingd = (61, .. ., 6,) under the
quartic loss function

L(6,6(X)) = (8:(X) —6:)", (1.2)

i=1

whered(X) = (61(X),...,0,(X)) estimate® = (64,...,6,), and investigate the conditions for
which an estimatod (X ) = X + g(X ) dominatesX for p > 3. We give an extension to the earlier
work for the class of scale mixture of multivariate normadtdbutions. More important we show
the robustness of the superiority conditions for the classeler study.

As it is noted in the earlier work, the quartic loss is neitheadratic nor spherically symmetric.
Hence our results represent an interesting example of éie stfect whereby reasonably explicit
dominating estimators can be obtained in a setting thatsesdat unusual. To be honest we must
say that all fundamental computations are followed by ti#ies given in Fourdrinier et al. (2008).

We organize our paper as follows: In section 2, we survey amimaxity conditions under
quartic loss function. Section 3, is devoted to specifylmg$tein-type class of shrinkage estimators
as well as main results, while some practical models aredied in section 4 for discussing on the
superiority conditions.

2 Minimax estimatorsunder quartic loss

The measurement associated with the quartic loss given .BY ILR(0,6) = Ey[L(6,6(X))],
WhereFEy denotes the expectation with respect to the sampling bligioin (1.1).

It is easy to show that for the minimax estimad( X) = X, R(0,°(X)) = 3p, since the
integral of G is equal to 1. Following Stein (1981) we take the class ofritage estimator§(X)
of 8 of the formd (X)) = X + g(X) into consideration wherg is a function fromR? into R?.

Note that from Stein lemma for the weakly differentiabledtion g we can immediately con-
clude that

Eo[(X: — 0:)9:(X)] = / " B (X = 0:)9:(X)|V = t]dG (1)

= [ e o[y a0V = acte

— EBH((JLLI)’ (2.2)
where
. X NI &
(Lik) _ 1 K _
i /0 (tq) {Mijgz (X)‘V t]dG(t). 2.2)
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More precisely

k) = /Ooo (;q)idG(t). (2.3)

Lemma2.1 Assume thay is a three times weakly differentiable function fr@# into R? satisfying
Eog [g}(X)] < oo, for everyl < i < p. Then, under quartic loss (1.2), an unbiased estimatoreof th
risk differenceA, betweens(X) = X + g(x) andé®(X) = X is

P
09(X) = Z [gf(X) + 6,%((11’0’2)92»2(X) + 12/1((12’1’1) + 45((11’1’3) + 65((12’2’2) + 4%;((]3’3’1) .

i=1

Proof. First consider that

A9 = R(0,8(X)) — R(6,5°)
— Ey [L(6,6(X)) — L(6,5")]

:Ee{

Then by making use of Stein’s identity similar to Eq. (2.1) get

A (93 (X) + (4(X; = 0:)g7 (X) + 6(X; — 0:)97(X) + 4(Xi = 0:)°9:(X)] }

P
i=

—

o [(X: — 0,)g3(X)] = /Ooo Eo [(X,-, - e,;)g;‘%(X)]V - t} dG(t)

_ /0°° 1B, [aiigg(X)’V = t]ac()

_ Eeﬁt(ll,lﬁ)

Applying extended Stein’s identity (2.1) repeatedly, wealfin

B[ = 0°02(0] = [ Bo[(X: - 0262000 |V = ] G

:/0°° £ Eg {8; (Xi — 91')93(X)’V = t} dG(t)
Z/OOo t79 Ey {g?(X) +t‘q£§§gf(X)‘V = t}dG(t)

_ EGH((ZLOQ) + EQK((IQ,Z,Q).
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In a similar fashion, it yields
Eo[(Xi — 0:,)°q:(X)] = /OOO Eo[(X; — ei)?’gi(X)‘V =t]dG(t)
:/Oot—q Eo -2 (x, - 9i)2gi(X)‘V - t]dG(t)
0

LoX;
2 0 -(X)‘V - t] dG(t)

= | 79 Bp[2(X: — 0:)gi(X) + 71X — ;)% =g
|77 B2 = 000u(3) + 70X~ 0% 5500

o i B 0 0
— —q —q___ . —q . f——0. —
_/U £ B |27 5 0i(X) +1 ((X,, )5 igZ(X))‘V_t}dG(t)

0X;

° 0 3
= tE [375—(1 (X)) 724 (X ‘V = t] dG(t
e[ S 0 a0 0
:3E9n512’1’1) + EengB’S’l).
Gathering all the above relevant terms, the result follow&]

From lemma 2.1 one can find that any estimaoX ) = X + g(X) dominates$’(X) = X
under the quartic loss (1.2) as soon/@s|g; (X )] < oo, for everyl < i < p, is satisfied and

Og(x) <0 Ve eRP

with strict inequality on a set of positive Lebesgue measure

3 Classof James-Stein Estimators

Two typical classes of Shrinkage Stein-type estimatorkidewell-known classes of James-Stein
estimators. We basically involve with two types of shrinkdgnctions. Item one includes the one

in (2.3) resulting on the following James-Stein (JS) estima
a

% X)=X - ——X. 3.1
a ( ) HX||2 ( )

For better understanding of the finiteness condititn[g;'(X)] < oo, we turn our attention to the
shrinkage function

a
g X)=gu(X)=—5 X, a>0.
X1

For the specified class in (3.1), applying Theorem 1 of BocK.ef1983) we have

e
E9(91a(4 )> = E0(||ml||4)
V:t)

1
_ /Oo 2B [x,? (161P) [V = 1)dG(0) < oo (32)
0

:&%(mw
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for p > 4 and such distribution in whichf[z) < 0.
Item two deals with the shrinkage functign ,(X) =
resulting on the following JS estimator

— x5 X (with @ > 0 andb > 0)

SIS (X)=X - —— X,
=X X

Now consider the JS class of estimators defined by (3.2).Hedfiiteness conditiofls[g}(X)] <
oo consider that

4 4
g!() ]
Bo(%5) < Bo (w
1 [ _
= bj/ t™Eg [X;% (thel?)
0

V= t] 2 dG(t)

1 oo
=5 [ 7+ 2)+ 200+ 217)0)° + 27)0]*] dG(r)
1
=7 [p(p +2)8 + 2(p + 2)]|0] 2K + ||0||4] < o0, (3.3)

provided that:|, < oo, i = 1,2 and|6]|2 < cc.

Lemma3.1 Assume thap > 5. Under quartic loss (1.2), an unbiased estimator of thediiff&rence
Ap betweers!*(X) andd®(X) = X is expressed as

rX} 1
0g.(X) = a{(a?’ + 24/1((11)(12 + 144/1( Ja + 1925(3)> ZH X[F + 65(1 (a —2t(p — 2)) X

. 1
2 (1 2 3
- 12<a K — (p— 10)ar® — 2x®) (p — 8)> W}
Proof. The result follows from Lemma 2.2 of Fourdrinier et al. (2p@8d Lemma 2.1. O

Theorem 1. Under the mode(1.1), the JS estimator given §8.1)dominatess® (X ') under quartic
loss(1.2), for all @ € R?, providedp > 7, and

0 <a<min {2/@((11)(17 —2),sup{s > 0/h(s) = O}} )
where
h(s) = s* + 126105 + 18spr(? — 1263 (p — 4 — 2v2)(p — 4+ 2V2).
Proof. Under conditioning, the risk differena®, is bounded above by

1
X2

aEt{Eg [(a?’ + 24t~ %% + 144at 27 + 192t 39) +6t % a—2t"(p—2))

X[

C12(a® — (p— 10)at =29 — 24~39(p — 8))Hxl”4] }

1
= aEt{Eg {( +12t79 a* +12a t 2 (p + 2) + 24pt ™~ 3q)||XH4

+6t7%(a—2t7(p — 2));”2} } (3.4)
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Thus applying Lemma A.3 of Fourdrinier et al. (2008), by tlssuamptiona < 2/@21)(19 — 2), the
bound in (3.4) reduces to

b B 1
a {(ad + 12680 + 125 (p + 2) + 24p(P + 65 (a — 26 (p — 2)) (p — 4))} Eo {HXH“]
1
[(a +126{0a” + 18aps® — 126 (p — 4 = 2V2)(p — 4 + 2\6))} & {Xll“} '

setting
h(a) = a® + 12/{511)(12 + 18ap/£512) — 12/{,(]3) (p—4—2V2)(p—4+2V2)

it is clear thath(0) = —12&@3) (p—4—2v2)(p— 4 +2V2) < 0sincep > 7 and ngl) > 0.
Furthermore this cubic polynomial is increasingiiand hence negative on the inter{@lag] where
ag is its smallest root,y > 0. Finally, for0 < a < min{%gl)(p— 2), a0}, We haved, < 0, which
is the desired domination result(]

Theorem 2. Under the mode{1.1), the JS type estimator i{3.1) dominatess’(X') under quartic
loss(1.2), for all 8 € R?, providedp > 5 and0 < a < 25511)(19 —4).

Proof. Applying Lemma A.2 of Fourdrinier et al. (2008) and contimgiin the same way as Theo-
rem 3.1, the result follows. [J

Theorem 3. Under the mode(1.1), the risk R(0, §/°) of the JS estimator @ = 0 under quartic
loss(1.2)is

3 4

3 a a
Dp (p+2) — dap &V + 6a® — 4 +
(p+2) ( ! w0 -2) kP p-2)p-1)

and it is finite providegh — 4 > 0.

Proof. Similar to the computations in the proof of Proposition 2 Fourdrinier et al. (2008), the
risk of JS estimators & under quartic loss (1.2) is given by

R(0,6;%) = { Z( |X|2)4Xi4]}
{ [||X||4] l '4<1_II;H2>4H’

t is independent off X||?|t for i = 1,...,p. As the distribution of Y;|¢ is

since Y;|t =

X2
1x12
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Beta (1/2,(p —1)/2) and the distribution of X |||t is ¢~ x2,

Ey [ X } = EFy[Y7]

X Z
_E [B@JFQ’ (p—1)/2)
B(3,(p—1)/2)
_ 3
S p(p+2)
since [;° dG(t) = 1 and
4 a ! 4 2 2 a® a*
o [IX1° (1= 5z ) | = BB |1~ allXIP 4 602 — 4 +
/OO{QQ 2)—4a t’q+6a274a73
o |t y i)

al

T -2 -4
Simplifying the above result, completes the proofl]
Similar to the Lemma 3.1, we have the following parallel tesuthe Lemma 3.1 of Fourdrinier
et al. (2008) under the model (1.1).
Lemma3.2 Assume thap > 3. Under quartic loss (1.2), an unbiased estimator of thediffgrence
Ay betweerns;) 7 (X) andd’(X) = X is expressed as

}da(t).

N ¢ 1
3gas(X) = a[ (a3 +24kMa? + 1446 a + 192t3> L=l qop@)
‘ ! ! (1 X)* + b)* X +0
2 2
W (g1 4@y IXIE o )y 1 9D wy_ IXI°
I 5 { IR R (P YR
1
+12px (@ + 26D }
P 2 ) X o

Theorem 4. Under the mode(1.1), the JS estimatoﬁ;{i(X) given by(3.2) dominatess®(X)
under quartic losg1.2), for all 8 € R?, providedp > 3 and

0<a§2/£((11)(p—2) and meaa:{a+ fig _a”+ 12kq a(p +12) + 24pk .

q (1)
0+ 2K
12/@(11) (3p/<a¢(11) —a— 4&21)) !

The proof is similar to that of given in Theorem 3.1 with sont#ities provided in the proof of
Theorem 3.1 of Fourdrinier et al. (2008).

4 Examples

In this section we provide some examples of scale mixtureoahal distributions to determine the
superiority conditions proposed in the previous sectiagtigely. Examples consist of multivariate
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Student’s t (MT), multivariate Slash (MS) and multivarigeponential power (MEP) distributions.
For this purpose, we need to compute the express%rgiven by (2.2) for each distribution.
4.1 MT distribution

Suppose thaKX is distributed according to a MT distribution with unknowsthtion parametef,
scalel,, andv > 0 degrees of freedom, denoted &y ~ ¢,(8, I,,, v), with the following pdf

) ptv

f(m)m <1+$;$) ’

The distribution is the mixture of multivariate normal distitions with the inverse gamma distribu-
tion as the weight function given by

t
vitz—le=%

0=

(4.1)

Note that hereg = 1. Then using equations (2.2) and (4.1) we obtain
(z‘)_/ool”t2 e d v\i T (5 —1)

Ky = t = .

! 0 2 (%) (2> r (%)

Consequently since

2
L v (2) v (—2)  (v—=2)(v—4)
Ky —7V_2<oo, Ky —7(1/_2)(1/_4)<oo7 Kq = < 00,

the finiteness conditions in (3.2) and (3.3) are satisfied.

4.2 MSdistribution

Suppose thaKX is distributed according to a MS distribution with unknovatétion parametef,
scalel, and shape > 0, denoted byX ~ S,(0, I,,, ¢), with the following pdf

1
flx) = q/ uq+p*1¢p(uw;u0,Ip)du

0
ptaq _ _92
25 17(p42rq;||m2 I )
x#0
= (27) % ||lz—6|r+a 70

P
) a0

wherey(a; 2) = [t te~tdt =307, k,(a+k) . See Wang and Genton (2006) for more details.
Note that the MS distribution is a scale mixture of the nordiaiributions (see e.g. Fang et al.,
1990) and so it can be represented as:

X|V =t~ Ny(0,t77L,), V~U(0,1). (4.2)
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Figure 1:R(0,5/%) for MT model when p = 7

Note that here, we havierather thary in (2.2). Thus by making use of the equations (2.2) and (4.2)

we have
. 1 i
ﬁﬁ’):/ adt = -1
q 0 q7Z

Here we face an unusual situation sincegfet i = 1, orq = i = 2 the required finiteness conditions
do not satisfy. However far > 3 one can immediately find that all the required finiteness itimms
are satisfied.

43 MEP

Suppose thaX is distributed according to a MEP distribution with unknolenation parametef,
scalel, and kurtosis parametgr € (0,1), denoted byX ~ EP,(0, I,,, 3), with the following pdf
(see Gomez et al., 1998)
pl' (L 1
f@) = — (j) - exp {2 (@~ 0)'(x - e)f} .
78T (1 n %> 91+

First consider that forr € (0,1) ando > 0; we denote by5,(.; o) the density of the (positive)
stable distribution having characteristic function (see8rodnitsky and Taqqu, 2000, p.8)

¢(2) = exp [_Ja‘z|ae—i% asign(z):| )

For the index of stability or characteristic exponent (0, 1) the Laplace transform of the distri-
bution functionF of the densityS,,(.; o) is (see Samorodnitsky and Taqqu, 2000, pA5)z) =
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Figure 2: R(0,5;°) for MSmodel when p = 7

exp (—o®2). In particular, forc = 2= we have the densit,(.;2- =) and thenlp(z) =
exp (—%ta).

Afterward, note that the MEP distribution is a scale mixtofehe normal distributions (see
Theorem 1 of Gmez-Sinchez-Manzano et al., 2006) and so it can be represented as:

X|V =t~ Ny(0,1’T,), V ~ fy() where

MtE-HP(1+ 2
fult) = UE8) g, (172:4) @3)
r (1 + 5%)
Similarly, we takey = —2 in (2.2) and thus using the equations (2.2) and (4.3) we obtai
, oo oltg—gpp (142
R = / % ( +2)t1’—3sﬁ (t—2;21—%) dt
0 r (1 + %)
25 (14 2) o

— ( + 2) / t21+p73sﬁ <t72;21_%> dt. (44)

0

r (1 + %)
Note that if we take the mixing variable in (4.3) to Hé = 2(1/) " V=2 thenFyy (t) is proportional

to t—P/QSB (t,1). Thus from equation (2.2.18) of Zolotarev (1986) or Theotkeonf Nolan (1997),
(4.4) reduces to

/i(_l)g x / 127585 (t;1) dt
0

xcosf) 71 cos(f — 1) 5)

sin 3¢ cosé *

~ /Ooo L2 /05 g(&, B, 2)e 9EP D dedr,  g(&,8,x) = (
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the second integral in (4.5) does not converge. See Matslirakemura (2004) for more details.
Thus we conclude that the finiteness condition in (2.2) do¢satisfy and our method do not work
in this example.
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