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SUMMARY

In this approach, we construct the necessary and sufficient conditions in order a James-Stein
type estimator outperforms the minimax estimator of the mean. Particularly weconsider
a class of scale mixture of multivariate normal distributions and derive thedominating
conditions under the quartic loss function. Some leading examples are alsoexhibited for
checking the efficiency of the proposed model and specifying theoretical computations.
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1 Introduction

Let X = (X1, . . . , Xp) be a random vector inRp distributed as a variance mixture of multivariate
normal distributions with un-known mean vectorθ = (θ1, . . . , θp). Thus we assume that the density
function ofX is of the form

f(X) =

∫ ∞

0

1

(2πt−q)
p

2

exp
(

− tq

2
‖x− θ‖2

)

dG(t), (1.1)

whereG is the distribution of a known non-negative random variableV . In other words, we consider
the conditional structure in whichX|V = t ∼ Np(θ, t

−qIp), q > 0 andV ∼ G(.). See Gupta and
Varga (1993, Theorem 2.7 3, pp. 78-79) for more details.

It is well-known, thatX is an inadmissible estimator ofθ under quadratic loss function for
p ≥ 3; we refer to the couple of works due to Strawderman (1974), Berger (1975), Brandwein
(1978) and Bock (1985). They considerably proposed improved estimatorsδ = (δ1, . . . , δp) under
quadratic loss. However, Berger (1978) considered loss functionsL which are polynomials in the
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coordinates ofδ−θ. He gave a developed example whenL(θ, δ) = ‖δ−θ‖4 = (
∑p

i=1(δi−θi)
2)2

(that is the square of the usual quadratic loss).
Let X = (X1, . . . , Xp) distributed according to the model (1.1). In this paper following Four-

drinier et al. (2008) we basically engage with the problem ofestimatingθ = (θ1, . . . , θp) under the
quartic loss function

L
(

θ, δ(X)
)

=

p
∑

i=1

(

δi(X)− θi
)4
, (1.2)

whereδ(X) = (δ1(X), . . . , δp(X)) estimatesθ = (θ1, . . . , θp), and investigate the conditions for
which an estimatorδ(X) = X+g(X) dominatesX for p ≥ 3. We give an extension to the earlier
work for the class of scale mixture of multivariate normal distributions. More important we show
the robustness of the superiority conditions for the classes under study.

As it is noted in the earlier work, the quartic loss is neitherquadratic nor spherically symmetric.
Hence our results represent an interesting example of the stein effect whereby reasonably explicit
dominating estimators can be obtained in a setting that is somewhat unusual. To be honest we must
say that all fundamental computations are followed by the utilities given in Fourdrinier et al. (2008).

We organize our paper as follows: In section 2, we survey on minimaxity conditions under
quartic loss function. Section 3, is devoted to specifying the Stein-type class of shrinkage estimators
as well as main results, while some practical models are included in section 4 for discussing on the
superiority conditions.

2 Minimax estimators under quartic loss

The measurement associated with the quartic loss given by (1.2) is R(θ, δ) = Eθ[L(θ, δ(X))],
WhereEθ denotes the expectation with respect to the sampling distribution (1.1).

It is easy to show that for the minimax estimatorδ0(X) = X, R(θ, δ0(X)) = 3p, since the
integral ofG is equal to 1. Following Stein (1981) we take the class of shrinkage estimatorsδ(X)

of θ of the formδ(X) = X + g(X) into consideration whereg is a function fromRp intoRp.
Note that from Stein lemma for the weakly differentiable function g we can immediately con-

clude that

Eθ

[

(Xi − θi)gi(X)
]

=

∫ ∞

0

Eθ

[

(Xi − θi)gi(X)
∣

∣

∣
V = t

]

dG(t)

=

∫ ∞

0

t−q Eθ

[ ∂

∂Xi
gi(X)

∣

∣

∣
V = t

]

dG(t)

= Eθκ
(1,1,1)
q , (2.1)

where

κ(l,j,k)
q =

∫ ∞

0

( 1

tq

)l[ ∂j

∂Xj
i

gki (X)
∣

∣

∣
V = t

]

dG(t). (2.2)
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More precisely

κ(i)
q =

∫ ∞

0

(

1

tq

)i

dG(t). (2.3)

Lemma2.1. Assume thatg is a three times weakly differentiable function fromRp intoRp satisfying
Eθ

[

g4i (X)
]

< ∞, for every1 ≤ i ≤ p. Then, under quartic loss (1.2), an unbiased estimator of the
risk difference∆θ betweenδ(X) = X + g(x) andδ0(X) = X is

ðg(X) =

p
∑

i=1

[

g4i (X) + 6κ(1,0,2)
q g2i (X) + 12κ(2,1,1)

q + 4κ(1,1,3)
q + 6κ(2,2,2)

q + 4κ(3,3,1)
q

]

.

Proof. First consider that

∆θ = R(θ, δ(X))−R(θ, δ0)

= Eθ

[

L(θ, δ(X))− L(θ, δ0)
]

= Eθ

{

p
∑

i=1

[

g4i (X) + (4(Xi − θi)g
3
i (X) + 6(Xi − θi)

2g2i (X) + 4(Xi − θi)
3gi(X))

]

}

.

Then by making use of Stein’s identity similar to Eq. (2.1) weget

Eθ

[

(Xi − θi)g
3
i (X)

]

=

∫ ∞

0

Eθ

[

(Xi − θi)g
3
i (X)

∣

∣

∣
V = t

]

dG(t)

=

∫ ∞

0

t−q Eθ

[ ∂

∂Xi
g3i (X)

∣

∣

∣
V = t

]

dG(t)

= Eθκ
(1,1,3)
q

Applying extended Stein’s identity (2.1) repeatedly, we find

Eθ

[

(Xi − θi)
2g2i (X)

]

=

∫ ∞

0

Eθ

[

(Xi − θi)
2g2i (X)

∣

∣

∣
V = t

]

dG(t)

=

∫ ∞

0

t−q Eθ

[ ∂

∂Xi
(Xi − θi)g

2
i (X)

∣

∣

∣
V = t

]

dG(t)

=

∫ ∞

0

t−q Eθ

[

g2i (X) + t−q ∂2

∂X2
i

g2i (X)
∣

∣

∣
V = t

]

dG(t)

= Eθκ
(1,0,2)
q + Eθκ

(2,2,2)
q .
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In a similar fashion, it yields

Eθ

[

(Xi − θi)
3gi(X)

]

=

∫ ∞

0

Eθ

[

(Xi − θi)
3gi(X)

∣

∣

∣
V = t

]

dG(t)

=

∫ ∞

0

t−q Eθ

[ ∂

∂Xi
(Xi − θi)

2gi(X)
∣

∣

∣
V = t

]

dG(t)

=

∫ ∞

0

t−q Eθ

[

2(Xi − θi)gi(X) + t−q(Xi − θi)
2 ∂

∂Xi
gi(X)

∣

∣

∣
V = t

]

dG(t)

=

∫ ∞

0

t−q Eθ

[

2t−q ∂

∂Xi
gi(X) + t−q ∂

∂Xi

(

(Xi − θi)
∂

∂Xi
gi(X)

)∣

∣

∣
V = t

]

dG(t)

=

∫ ∞

0

t−qEθ

[

3t−q ∂

∂Xi
gi(X) + t−2q ∂3

∂X3
i

gi(X)
∣

∣

∣
V = t

]

dG(t)

=3Eθκ
(2,1,1)
q + Eθκ

(3,3,1)
q .

Gathering all the above relevant terms, the result follows.�
From lemma 2.1 one can find that any estimatorδ(X) = X + g(X) dominatesδ0(X) = X

under the quartic loss (1.2) as soon asEθ

[

g4i (X)
]

< ∞, for every1 ≤ i ≤ p, is satisfied and

ðg(x) ≤ 0 ∀x ∈ R
p

with strict inequality on a set of positive Lebesgue measure.

3 Class of James-Stein Estimators

Two typical classes of Shrinkage Stein-type estimators include well-known classes of James-Stein
estimators. We basically involve with two types of shrinkage functions. Item one includes the one
in (2.3) resulting on the following James-Stein (JS) estimator

δJSa (X) = X − a

‖X‖2X. (3.1)

For better understanding of the finiteness conditionEθ

[

g4i (X)
]

< ∞, we turn our attention to the
shrinkage function

g(X) = ga(X) = − a

‖X‖2 X, a > 0.

For the specified class in (3.1), applying Theorem 1 of Bock etal. (1983) we have

Eθ

(g4i (x)

a4

)

≤ Eθ

( 1

‖x‖4
)

= EtEθ

(

1

‖x‖4
∣

∣

∣

∣

V = t

)

=

∫ ∞

0

t2qEθ

[

χ−2
p

(

t‖θ‖2
)

∣

∣

∣
V = t

]2
dG(t) < ∞ (3.2)
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for p > 4 and such distribution in whichκ(−2)
q < ∞.

Item two deals with the shrinkage functionga,b(X) = − a
‖X‖2+bX (with a > 0 andb > 0)

resulting on the following JS estimator

δJSa,b(X) = X − a

‖X‖2 + b
X.

Now consider the JS class of estimators defined by (3.2). For the finiteness conditionEθ[g
4
i (X)] <

∞ consider that

Eθ

(g4i (x)

a4

)

≤ Eθ

(‖x‖4
b4

)

=
1

b4

∫ ∞

0

t−2qEθ

[

χ2
p

(

t‖θ‖2
)

∣

∣

∣

∣

V = t

]2

dG(t)

=
1

b4

∫ ∞

0

t−2q
[

p(p+ 2) + 2(p+ 2)tq‖θ‖2 + t2q‖θ‖4
]

dG(t)

=
1

b4

[

p(p+ 2)κ(2)
q + 2(p+ 2)‖θ‖2κ(1)

q + ‖θ‖4
]

< ∞, (3.3)

provided thatκ(i)
q < ∞, i = 1, 2 and‖θ‖2 < ∞.

Lemma3.1. Assume thatp ≥ 5. Under quartic loss (1.2), an unbiased estimator of the riskdifference
∆θ betweenδJSa (X) andδ0(X) = X is expressed as

ðga(X) = a
[

(

a3 + 24κ(1)
q a2 + 144κ(2)

q a+ 192κ(3)
q

)∑p
i=1 X

4
i

‖X‖8 + 6κ(1)
q

(

a− 2t(p− 2)

)

1

‖X‖2

− 12

(

a2κ(1)
q − (p− 10)aκ(2)

q − 2κ(3)
q (p− 8)

)

1

‖X‖4
]

.

Proof. The result follows from Lemma 2.2 of Fourdrinier et al. (2008) and Lemma 2.1. �

Theorem 1. Under the model(1.1), the JS estimator given by(3.1)dominatesδ0(X) under quartic
loss(1.2), for all θ ∈ Rp, providedp ≥ 7, and

0 < a < min
{

2κ(1)
q (p− 2), sup{s ≥ 0/h(s) = 0}

}

,

where

h(s) = s3 + 12κ(1)
q s2 + 18spκ(2)

q − 12κ(3)
q (p− 4− 2

√
2)(p− 4 + 2

√
2).

Proof. Under conditioning, the risk difference∆θ is bounded above by

aEt

{

Eθ

[

(a3 + 24t−qa2 + 144at−2q + 192t−3q)
1

‖X‖4 + 6t−q(a− 2t−q(p− 2))
1

‖X‖2

−12(a2t−q − (p− 10)at−2q − 2t−3q(p− 8))
1

‖x‖4
]}

= aEt

{

Eθ

[

(a3 + 12t−q a2 + 12a t−2q(p+ 2) + 24pt−3q)
1

‖X‖4

+6 t−q(a− 2t−q(p− 2))
1

‖X‖2
]}

. (3.4)
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Thus applying Lemma A.3 of Fourdrinier et al. (2008), by the assumptiona < 2κ
(1)
q (p − 2), the

bound in (3.4) reduces to

a
[

(a3 + 12κ(1)
q a2 + 12aκ(2)

q (p+ 2) + 24pκ(3)
q + 6κ(2)

q (a− 2κ(1)
q (p− 2))(p− 4))

]

Eθ

[

1

‖X‖4
]

= a
[

(a3 + 12κ(1)
q a2 + 18apκ(2)

q − 12κ(3)
q (p− 4− 2

√
2)(p− 4 + 2

√
2))
]

Eθ

[

1

‖X‖4
]

.

setting

h(a) = a3 + 12κ(1)
q a2 + 18apκ(2)

q − 12κ(3)
q (p− 4− 2

√
2)(p− 4 + 2

√
2)

it is clear thath(0) = −12κ
(3)
q (p − 4 − 2

√
2)(p − 4 + 2

√
2) < 0 sincep ≥ 7 andκ(1)

q > 0.
Furthermore this cubic polynomial is increasing ina and hence negative on the interval[0, a0] where
a0 is its smallest roota0 > 0. Finally, for0 < a < min{2κ(1)

q (p− 2), a0}, we have∆θ < 0, which
is the desired domination result.�

Theorem 2. Under the model(1.1), the JS type estimator in(3.1)dominatesδ0(X) under quartic
loss(1.2), for all θ ∈ Rp, providedp ≥ 5 and0 < a ≤ 2κ

(1)
q (p− 4).

Proof. Applying Lemma A.2 of Fourdrinier et al. (2008) and continuing in the same way as Theo-
rem 3.1, the result follows.�

Theorem 3. Under the model(1.1), the riskR(0, δJSa ) of the JS estimator atθ = 0 under quartic
loss(1.2) is

3

(p+ 2)

(

κ(2)
q p (p+ 2)− 4ap κ(1)

q + 6a2 − 4
a3

κ
(1)
q (p− 2)

+
a4

κ
(2)
q (p− 2)(p− 4)

)

and it is finite providedp− 4 > 0.

Proof. Similar to the computations in the proof of Proposition 2.2 of Fourdrinier et al. (2008), the
risk of JS estimators at0 under quartic loss (1.2) is given by

R(0, δJSa ) = Et

{

Eθ

[

p
∑

i=1

(

1− a

‖X‖2
)4

X4
i

]}

= pEt

{

Eθ

[

X4
i

‖X‖4
]

Eθ

[

‖X‖4
(

1− a

‖X‖2
)4
]}

,

since Yi|t =
X2

i

‖X‖2

∣

∣

∣

∣

t is independent of‖X‖2|t for i = 1, . . . , p. As the distribution ofYi|t is
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Beta (1/2, (p− 1)/2) and the distribution of‖X‖2|t is t−1χ2
p,

Eθ

[

X4
i

‖X‖4
]

= EtEθ[Y
2
i ]

= Et

[

B( 12 + 2, (p− 1)/2)

B( 12 , (p− 1)/2)

]

=
3

p (p+ 2)
,

since
∫∞

0
dG(t) = 1 and

Eθ

[

‖X‖4
(

1− a

‖X‖2
)4
]

= EtEθ

[

‖X‖4 − 4a‖X‖2 + 6a2 − 4
a3

‖X‖2 +
a4

‖X‖4
]

=

∫ ∞

0

[

t−2q p (p+ 2)− 4 a p t−q + 6a2 − 4
a3

t−q(p− 2)

+
a4

t−2q(p− 2)(p− 4)

]

dG(t).

Simplifying the above result, completes the proof.�
Similar to the Lemma 3.1, we have the following parallel result to the Lemma 3.1 of Fourdrinier

et al. (2008) under the model (1.1).

Lemma3.2. Assume thatp ≥ 3. Under quartic loss (1.2), an unbiased estimator of the riskdifference
∆θ betweenδJSa,b(X) andδ0(X) = X is expressed as

ðga,b(X) = a

[

(

a3 + 24κ(1)
q a2 + 144κ(2)

q a+ 192t3
)

∑p
i=1 X

4
i

(‖X‖2 + b)4
− 12pκ(2)

q

1

‖X‖2 + b

+ 6κ(1)
q (a+ 4κ(1)

q )
‖X‖2

(‖X‖2 + b)2
− 12κ(1)

q (a+ 2κ(1)
q )(a+ 8κ(1)

q )
‖X‖2

(‖X‖2 + b)3

+ 12pκ(2)
q (a+ 2κ(1)

q )
1

(‖X‖2 + b)2

]

.

Theorem 4. Under the model(1.1), the JS estimatorδJSa,b(X) given by(3.2) dominatesδ0(X)

under quartic loss(1.2), for all θ ∈ Rp, providedp ≥ 3 and

0 < a ≤ 2κ(1)
q (p− 2) and b ≥ max

{

a3 + 24κ
(1)
q a2 + 12κ

(2)
q a(p+ 12) + 24pκ

(3)
q

12κ
(1)
q (3pκ

(1)
q − a− 4κ

(1)
q )

, a+ 2κ(1)
q

}

.

The proof is similar to that of given in Theorem 3.1 with some utilities provided in the proof of
Theorem 3.1 of Fourdrinier et al. (2008).

4 Examples

In this section we provide some examples of scale mixture of normal distributions to determine the
superiority conditions proposed in the previous section precisely. Examples consist of multivariate
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Student’s t (MT), multivariate Slash (MS) and multivariateexponential power (MEP) distributions.
For this purpose, we need to compute the expressionκ

(i)
q given by (2.2) for each distribution.

4.1 MT distribution

Suppose thatX is distributed according to a MT distribution with unknown location parameterθ,
scaleIp andν > 0 degrees of freedom, denoted byX ∼ tp(θ, Ip, ν), with the following pdf

f(x) =
Γ
(

p+ν
2

)

(πν)
p

2Γ
(

ν
2

)

(

1 +
x′x

ν

)− p+ν

2

.

The distribution is the mixture of multivariate normal distributions with the inverse gamma distribu-
tion as the weight function given by

G(t) =
ν

ν
2 t

ν
2
−1e−

νt
2

2
ν
2 Γ
(

ν
2

) . (4.1)

Note that here,q = 1. Then using equations (2.2) and (4.1) we obtain

κ
(i)
1 =

∫ ∞

0

ν
ν
2 t

ν
2
−i−1e−

νt
2

2
ν
2 Γ
(

ν
2

) dt =
(ν

2

)i Γ
(

ν
2 − i

)

Γ
(

ν
2

) .

Consequently since

κ
(1)
1 =

ν

ν − 2
< ∞, κ

(2)
1 =

ν2

(ν − 2)(ν − 4)
< ∞, κ

(−2)
1 =

(ν − 2)(ν − 4)

ν2
< ∞,

the finiteness conditions in (3.2) and (3.3) are satisfied.

4.2 MS distribution

Suppose thatX is distributed according to a MS distribution with unknown location parameterθ,
scaleIp and shapeq > 0, denoted byX ∼ Sp(θ, Ip, q), with the following pdf

f(x) = q

∫ 1

0

uq+p−1φp(ux;uθ, Ip)du

=











q2
p+q
2

−1γ

(

p+q

2
;
‖x−θ‖2

2

)

(2π)
p
2 ‖x−θ‖p+q

x 6= 0

q
p+q

(

1
2π

)

p

2 x = 0

,

whereγ(a; z) =
∫ z

0
ta−1e−tdt =

∑∞
k=0

(−1)kza+k

k!(a+k) . See Wang and Genton (2006) for more details.
Note that the MS distribution is a scale mixture of the normaldistributions (see e.g. Fang et al.,

1990) and so it can be represented as:

X|V = t ∼ Np(θ, t
− 1

q Ip), V ∼ U(0, 1). (4.2)
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Figure 1:R(0, δJSa ) for MT model when p = 7

Note that here, we have1q rather thanq in (2.2). Thus by making use of the equations (2.2) and (4.2)
we have

κ
(i)
1
q

=

∫ 1

0

t−
i
q dt =

q

q − i
.

Here we face an unusual situation since forq = i = 1, orq = i = 2 the required finiteness conditions
do not satisfy. However forq ≥ 3 one can immediately find that all the required finiteness conditions
are satisfied.

4.3 MEP

Suppose thatX is distributed according to a MEP distribution with unknownlocation parameterθ,
scaleIp and kurtosis parameterβ ∈ (0, 1), denoted byX ∼ EPp(θ, Ip, β), with the following pdf
(see Gomez et al., 1998)

f(x) =
pΓ
(

p
2

)

π
p

2Γ
(

1 + p
2β

)

21+
p

2β

exp

{

−1

2
[(x− θ)′(x− θ)]

β
}

.

First consider that forα ∈ (0, 1) andσ > 0; we denote bySα(.;σ) the density of the (positive)
stable distribution having characteristic function (see Samorodnitsky and Taqqu, 2000, p.8)

φ(z) = exp
[

−σα|z|αe−iπ
2

αsign(z)
]

.

For the index of stability or characteristic exponentα ∈ (0, 1) the Laplace transform of the distri-
bution functionF of the densitySα(.;σ) is (see Samorodnitsky and Taqqu, 2000, p.15)LF (z) =
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Figure 2:R(0, δJSa ) for MS model when p = 7

exp (−σαzα). In particular, forσ = 2−
1
α we have the densitySα(.; 2

− 1
α ) and thenLF (z) =

exp
(

− 1
2 t

α
)

.
Afterward, note that the MEP distribution is a scale mixtureof the normal distributions (see

Theorem 1 of Ǵomez-Śanchez-Manzano et al., 2006) and so it can be represented as:

X|V = t ∼ Np(θ, t
2Ip), V ∼ fV (.) where

fV (t) =
21+

p

2
− p

2β Γ
(

1 + p
2

)

Γ
(

1 + p
2β

) tp−3Sβ

(

t−2; 21−
1
β

)

(4.3)

Similarly, we takeq = −2 in (2.2) and thus using the equations (2.2) and (4.3) we obtain

κ
(i)
−2 =

∫ ∞

0

t2i
21+

p

2
− p

2β Γ
(

1 + p
2

)

Γ
(

1 + p
2β

) tp−3Sβ

(

t−2; 21−
1
β

)

dt

=
21+

p

2
− p

2β Γ
(

1 + p
2

)

Γ
(

1 + p
2β

)

∫ ∞

0

t2i+p−3Sβ

(

t−2; 21−
1
β

)

dt. (4.4)

Note that if we take the mixing variable in (4.3) to beW = 2(1/β)
−1

V −2 thenFW (t) is proportional
to t−p/2Sβ(t, 1). Thus from equation (2.2.18) of Zolotarev (1986) or Theorem1 of Nolan (1997),
(4.4) reduces to

κ
(i)
−2 ∝

∫ ∞

0

t2i−
p

2 Sβ (t; 1) dt

∝
∫ ∞

0

x2i

∫ π
2

0

g(ξ, β, x)e−g(ξ,β,x)dξdx, g(ξ, β, x) =

(

x cos ξ

sinβξ

)

β

β−1 cos(β − 1)ξ

cos ξ
(4.5)
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the second integral in (4.5) does not converge. See Matsui and Takemura (2004) for more details.
Thus we conclude that the finiteness condition in (2.2) does not satisfy and our method do not work
in this example.
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