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SUMMARY

This paper discusses a new piecewise exponential estimator (NPEE) of a survival function
(SF) for censored data, which is continuous on [0, c0). For comparison purposes, we con-
sider the Kaplan-Meier estimator (KME) and the empirical Bayes type estimator (EBE)
derived by Rai et al. (1980). The EBE estimate beyond the last observation is determined
solely by the prior. The NPEE retains the spirit of the KME and provides an exponential
tail with a hazard rate determined by a novel nonparametric consideration. The NPEE has
been compared with the KME and EBE for small sample sizes by simulation. The sim-
ulation comparisons are by the measures of bias and three norms, (L1, L2, and L), for
three levels of censoring, (15%, 50%, 75%), and two sample sizes (10 and 30). Generally
speaking, the NPEE, which is asymptotically equivalent to the KME (Malla and Mukerjee
(2010)), seems to be better than the KME, especially when we have heavy censoring and/or
small sample sizes, and is at least as good as the EBE.
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1 Introduction

We compare the properties of three estimators of a continuous survival function (SF), S, under ran-
dom right censoring,- a new piecewise exponential estimator (NPEE), the Kaplan-Meier estimator
(KME), and an empirical Bayes type estimator (EBE). The idea of the piecewise exponential estima-
tor (PEXE) of the SF was first proposed by Kitchin, Langberg, and Proschan (1983) using the total
time on test (TTT) concept. It provides a continuous estimator of the SF, but it has had limited us-
age possibly because the estimator is undefined beyond the last observation even in the uncensored
case and for some other reasons discussed in detail in Section 2.2.1. Malla and Mukerjee (2010)
introduced the NPEE for censored data by proposing a completely new nonparametric approach for
estimating the hazard rates. This estimator is rather interesting. First, it is continuous on all of [0, c0)
while the others are not. Second, it retains the spirit of the KME and provides an entirely different
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exponential tail with a hazard rate determined by a novel nonparametric consideration (see Section
2.2.2 for detail), while the other estimators are usually undefined beyond the last observation. As
discussed in Malla and Mukerjee (2010), it is also interesting to see that the Nelson (1969, 1972)
estimator, also called the Nelson-Aalen estimator, of the SF, may be considered as the smallest step
function majorizing the NPEE with jumps at the uncensored observations. If the survivor function
under consideration is known to be continuous from prior knowledge, practitioners would prefer to
estimate a SF by a continuous estimator like NPEE.

Kaplan and Meier (1958) introduced the nonparametric estimator KME, also called Product-
Limit Estimator, of the SF when the data are censored. It enjoys good asymptotic properties and is
used extensively. Susarla and van Ryzin (1976, 1978) derived a Bayesian nonparametric estimator
EBE in the same setting by using a Dirichlet process prior under squared error loss and analyzed
its asymptotic properties. Although the EBE uses more of the information contained in censored
data than the KME, it possesses a great deal of difficultly to the users (i) for its computation and
(ii) for a subjective decision making in the choice of the prior distribution. Moreover, the EBE
estimate beyond the last observation depends only on the prior chosen. This estimator has also some
similarities with NPEE. Rai et al. (1980) have compared an empirical Bayes type version of this
estimator with the KME using various types of norms. It should be noted that neither of these two
estimators are continuous.

Malla and Mukerjee (2010) have shown that the NPEE is asymptotically equivalent to the KME.
The large sample properties of the KME have been studied by Breslow and Crowley (1974), Meier
(1975), and Phadia and van Ryzin (1980). Susarla and van Ryzin (1976, 1978) have studied the
large sample properties of EBE and shown that the pointwise relative asymptotic efficiency of the
EBE to KME is unity. Hence, from a large sample theory point of view, the estimators NPEE, KME,
and EBE are equivalent.

In this paper, we examine by simulation whether or not the new piecewise exponential estimator
has any advantages over these existing nonparametric estimators for the finite sample sizes. In a
similar study, Rai et al. (1980) has shown that the advantages of the EBE increases dramatically
as the degree of censoring increases, but the relative advantage of the EBE to the KME decreases
as the sample size increases. We compare these nonparametric estimators in four cases: when the
hazard rate of the true distribution is (i) constant, (ii) monotonically increasing, (iii) monotonically
decreasing, and (iv) non-monotone. These cases represent the types of the survival functions that
practitioners usually use in applications. The simulation comparisons are made by the measures
bias and three norms (L; norm, Ls norm, and L.,norm) for small sample sizes of 15 and 30 and
for three amounts of censoring (15, 50 and 75 percent). Generally speaking, the NPEE uses more
of the information from the censored data, seems to be better than KME, especially when we have
heavy censoring and/or small sample sizes, and is at least as good as the EBE. In general terms, the
advantages of the NPEE over the KME increases considerably, but over the EBE is minimal as the
amount of censoring increases.

The estimators are introduced and briefly discussed in Section 2. The details of the simulations
and resulting comparisons are given in Section 3. In Section 4, we discuss the results and include
some concluding remarks.
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2 The Estimators

Let X1, Xo,..., X, be arandom sample from S and let Y7, Y5,...,Y,, be a random sample from
a DF, C, with no mass at 0. We observe only {(7},6;) : 1 <i<n}h 0< Ty <Tp <--- < T,
where T; = min{X;,Y;} and 6; = I(X; <Y;), which is 1 if X; <Y; and 0 otherwise. We assume
that the m failures or uncensored observations are at d; < do < --- < d,,, with d; > 0, and we
let dg = 0 and d,,11 = oo. Thus, there are no ties among the uncensored observations, which
occur with probability 1. Tied censored observations are ordered arbitrarily among themselves. If
there are ties between censored observations and an uncensored one, the uncensored one precedes
the censored ones except for the last observation where the the censored observations precede the
uncensored one.

2.1 The Kaplan-Meier Estimator

Under the assumption of no ties among the uncensored observations, the Kaplan-Meier (1958) esti-
mator of S is given by

AKME n—i o .
S (t)_};[t<n_i+1) . 0<t< Ty 2.1)
for t > T, SKME(t) = 0 if d,, = T, and it is undefined if d,,, < T},. In the latter case,
some nonparametric suggestions have been made for this ambiguity. Efron (1967) (among others)
suggested the estimator, SK™F | by setting the tail estimate to 0 on ¢ > T},, which is equivalent
to assuming that the last observation is uncensored whether it is censored or not, i.e., d,, = T,
while Gill (1980) suggested the defective estimator, S5 P, by setting SKMF (t) = SKME(T, )
fort > T,.

2.2 The Piecewise Exponential Estimators

We assume that F(X;) = p < oo and that SKME (T} = 0, which is equivalent to the assumption
that the last observation is uncensored and d,,, = T;,. Let

SEME in magnitude

0=ag<a; <as <--- < ay be the jumps of
atdp,dy,ds, ..., d,,, respectively, and let

AO:OandAk.:Zf:laiforlSkﬁm.

2.2.1 The Piecewise Exponential Estimator (PEXE)

Kitchin, Langberg and Proschan (1983) proposed an estimator, called the piecewise exponential
estimator (PEXE) using the total time on test (TTT) concept. Assume that F' is strictly increasing
with a finite mean, pp, and the observations are uncensored. The TTT transform of F' is defined by

FH()
TR(t) = /0 S(u)du, 0<t<1,
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where F~1(0) = 0 and F~1(1) is the right endpoint of the support of F that could be co. Note that
T5='(1) = pp. It can be seen that

d

1
— T )] = here \p is the hazard rate of F. 2.2
dr  F ()|t7F(z) /\F(Z)’ where Ag 1S the hazard rate o 2.2)

An empirical estimate of T (t) is given by

IN

k—1 k
t< —,
n

k—1
TRl () = %Z(n—Hl)(Ti—THH [t— k- 1] (n—k+1)(Tx = Ti—1),

n n
1
for 1 < k < n, where Xy = 0 and an empty sum is 0. From (2), a natural estimator of the hazard
rate is given by
N 1 1 k—1 k
Ar(t) = = : <t< =
r(t) (n—k+1)(T — Tr—1) TTTF n ~ T

1<k <n, (2.3)

where TTT}F is the total time on test by the n — k + 1 survivors after (k — 1)th failure in the interval
[Ti—1,Tk), 1 <k < n. Using this, one can define the PEXE of F' for the uncensored case by

SPX(t) = e™ Jo Ar(du o [0, T},], and undefined on (7, 00).

From our independence assumption, the 7;’s may be considered as a random sample from the
DF, H =1 — H, where H = (1 — F)(1 — C). Since the T}’s are uncensored, all the results above
for F hold for H if the symbols H and H are used to replace F' and S, respectively. Using this as
an analogy, Kitchin et al. (1983) define the PEXE of .S in the censored case by setting

-1

. 1
Ap(t) = Z TTTH | = TTTE dp1 <t<d, 1<k<m, (2.4)
di—1<T;<dj k

SPX(0) = §PX(dy) = 1, and

SPX(1) = §PX (dy_y)e Jaa M@ g s 1<k <m. 2.5)
For t > d,,, §PX (t) is left undefined even in the uncensored case.

We believe that there are two serious deficiencies in PEXE. First of all, it does not utilize the
KME that has many known optlmahty properties. Secondly, although it is natural to estimate g by
(3) in view of (2), since A H= A F+ )\c under independence of F' and C, such a justification for A F
in terms of TTTk s cannot be given using (2) or any modification of it. Thus, we believe that this
estimator should not be used.

2.2.2 The New Piecewise Exponential Estimator (NPEE)

Note that SKME( t)=1— Ag_qfordi_1 <t <d, 1 <k<m.Ournew plecew1se exponential
estimator, SVPEE of S on [0, d,) is obtained by defining the naive hazard rate, A by

ag/(dp — di—1)

At) = 1A,

dk:—l S t < dka 1 S k S m, (26)
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and then defining SV PF¥ on [0, d,,] using this hazard rate:

a

GNPEB(y SNPEE(dk_l)efﬁk,leu

ap(t—dp_q)

= e Mte TTMeDEShD gy <t <dy, 1<k<m, (27

where
k

dp,
~ a; ~ .

Note that SNPEE(d,.) > 0. Malla and Mukerjee (2010) has showed that

dm dm
/ SNPEE(y at < pKME = / SEME (1) dt, the estimator of i using the KME,  (2.9)
0 0

and has extended SV PP by adding a conditionally exponential tail on [d,,, oo) so that AN FPFF =
J2° §NPEE (1) dt = pKME,

Their estimate of S for ¢ € [d,y,, 00) is given by SV PFE (1) = ¢=Am g~ Atait(t=dm)

where

Meait = e ) 3 (I — i), (2.10)
i=1
forl1 <k <m,
dy R
I, = / SEME(t)dt = (1 — Ag_1)(dy — dj—1),and
di—1
di. . _ _ a
I = * GNPEE(4) gt — ¢ (1= Ap_1)(dy — dr—1) 1_ e—ﬁ} '
di—1 Ak

Join the separate exponential ‘pieces’ to form the estimator.

2.3 An Empirical Bayes type Estimator

Susarla and van Ryzin (1976, 1978) derived the following nonparametric Bayes estimate of .S using
a Dirichlet process prior under squared error loss and analyzed its asymptotic properties:

1-46;

gee (g = 2o + N 7 {am,oo) +(n—i+1)

a(0,00) +n a(T;,00) + (n — 1) ) 2.11)

T; <t

where « is a finite positive measure on (0,00) and N(t) = #{T; > t}. The value of «(0, c0) is
chosen to reflect the strength of one’s belief in the prior relative to n, and the estimator becomes the
KME if (0, 00) = 0. The case they analyzed specifically was when (¢, 00)/a(0, 00) = e~*o¢ for
some Ag > 0. For the simulation study, Rai et al. (1980) has chosen two cases: «(0,00) = /n
and (0, 00) = n, in which their empirical Bayes type estimator is mean-squared consistent, and
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inconsistent respectively. See Rai et al. (1980) for the detailed discussions of these choices and see
the pioneering paper of Ferguson (1973) for the theory of Dirichlet processes and their applications
in nonparametric statistical inference. They have compared their empirical Bayes type versions of
the estimator with the KME by extensive simulations and showed uniform improvement over the
KME by using three types of norms: L; norm, Ly norm and L, norm. For our study, we choose
their mean-squared consistent empirical Bayes type estimator:

1-96;

SEBE(t):ﬁe*wN(t)H Ve T4 (n—i+1) | o1

Vitn o 22| e AT+ (n— )

>4

where A = “=1— is the unique maximum likelihood estimator of  for the exponential distribution,

S
i=1

the prior guess, under censoring (see Bartholomew (1957)).

For a pedagogical purpose, Figure 1 shows a graphical comparison of these estimators for esti-
mating the survival function of the exponential distribution with the hazard rate, A = 5 by using a
moderate sample size n = 20 and the exponential censoring 60%. It is well known that KME over-
estimates the survival function. The EBE coincides with the KME at each uncensored observation,
goes down as an exponential between uncensored observations and then jumps down to the KME
estimate. The NPEE does not jump, but gives a continuous piecewise exponential.

3 The Simulation Study

In this section, we present the results of a simulation study comparing three nonparametric estima-
tors of the survival function .S. The first estimator is the Kaplan-Meier estimator (KME) of (1). The
second estimator is the new piecewise exponential estimator (NPEE) which is given by (6), (7) and
(10). The final estimator is the empirical Bayes type estimator given by (12).

We choose the exponential distribution (density f(t) = A exp(—At), A > 0,¢ > 0) with param-
eter \ as a censoring distribution. By choosing the suitable value of A\, we can get different amounts
of censoring in each simulation situation. The simulation model is that of random censoring: corre-
sponding life and censoring random variables are independent and the censoring random variables
are identically distributed.

In our simulation study we first use the Weibull distribution (density f(t) = a A t*~! exp(—At®),
hazard rate h(t) = a A t* where a, A > 0, t > 0) with scale parameter \ and shape parame-
ter «v as our life distribution as it is flexible enough to accommodate constant (o« = 1), increasing
(o > 1), or decreasing (o < 1) hazard rate situations of the real life distributions. We have chosen
the values of the parameters as (i) « = land A = 1, (ii) @« = 2 and A = 1, and (iii) « = 0.5 and
A = 1 to accommodate three possibilities of the hazard rate. The value of the scale parameter A for
the Weibull distribution is chosen 1, but can be chosen arbitrarily as monotonicity of the hazard rate
is independent of the parameter A\. We note that case (i) also represents the exponential distribution



A Comparison of a New Piecewise Exponential Estimator . .. 55

Figure 1: Graphs of the nonparametric estimators of a S.F.
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and thus the simulations in Tables 1 and 2 are for the case in which Bayes prior guess of the EBE
has the correct parametric form, while it has incorrect form for the simulations in Tables 3-6 and
9. The second set of simulations in Tables 7 and 8 compare the same estimators as before but for
the underlying lognormal distribution (density f(t) = exp[—3 (-4)2]/t(27)!/?0, hazard rate
h(t) = f(t)/(1 — @[MT_“]) where ¢ > 0, ¢ > 0) with parameters ¢ = 5 and 0 = 1. These
simulation comparisons of the estimators are for the underlying distribution in which the hazard rate
is non-monotone and again Bayes prior guess of the EBE has the incorrect parametric form. In fact,
the hazard rate for a lognormal distribution begins at zero, rises to a maximum, then decreases very
slowly to zero, irrespective of the choices of the parameters (Sweet(1990)).

These estimators are compared by simulation using bias of the estimators in Tables 2, 4, 6 and
8. The bias of the estimator S(t) of S(t) is given by bias = S(t) — S(t), which is calculated at
five quantiles: q.1, q.2, ¢.5, ¢s, and q.9. In fact, we computed bias at 0.1(0.1)0.9 but the results
were more or less the same at 0.3(0.1)0.7. So, we only included the results at ¢ 5 from the range
in order to reduce the size of the Tables. To study the effect of the sample size and amount of
censoring, comparisons are catried out for the sample sizes 15 and 30 and at three different amount
of censoring: 15, 50 and 75 percent. Each simulation carried out was based on calculating the
estimates of the underlying SF from 50,000 samples of the conditions of the table entry. Each entry
for the bias gives the mean of these 50,000 biases calculated.

To study the effect of the sample sizes, we have presented the comparisons of the estimators
for the sample sizes 10, 30, 60, 100 for three amount of censoring in Table 9. We also compare
the estimators by using norms for the conditions of the table entry in tables 1, 3, 5 and 7. Rai et
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al. (1980) has used the norms comparison approach for the same set up as ours to compare their
Bayesian type estimators of the survival function with the Kaplan-Meier estimator. The norms for
comparison of the estimator S(t) of S(t) are the L norm, the Ly norm, and the L, norm:

Ly norm : / T80 — S dt
0

Ly norm : \//0 (S(t) —S(t))? dt

Lo norm: sup |S(t) — S(t)].
¢

Columns 5 and 6 of Table 1 give the comparison of the estimators using the L, norm for the Weibull
density above with « = 1, A = 1 for the sample sizes 10 and 30. The purpose of this simulation was
to compare the estimation performance of the estimators as n increases and/or censoring percentage
increases. The comparisons of the estimators due to all three norms in Tables 1, 3 and 5 are for
the Weibull curves estimation and in Table 7 for the lognormal curve. The expected value of the
Ly norm is the integrated mean-squares error. The remaining set-up for these simulations is the
same as described above for the bias calculation. Each simulation carried out in Tables 1, 3, 5 and
7 was based on calculating the mean norm of 50,000 samples with its standard error in parenthesis.
The integrals for the L; and Lo norms were calculated numerically using a grid of approximate
length 0.01. The same grid was used for the L., norm. For example, for the first entry in column
three (0.280) for the estimator NPEE of Table 1, 50,000 samples each of size 10 were generated
from the Weibull distribution with parameters « = 1 and A = 1 and an exponential distribution of a
suitable parameter value was used as a censoring distribution to yield 15% censoring. For the ordered
sample say Z(1), Z(a), - - -, Z(10)» k = 100(Z(10) — Z(1)) partition points with an approximate 0.01
distance between two consecutive points between Z(;) and Z(1g) were created. The L; norm was
then approximated by Z?Zl 15(j) = S()| A;, where A; is the distance between two consecutive

partition points for the 5 interval and 2521 is the sum over all such intervals. This numerical
integration was repeated for each of the 50,000 samples of size 10. The entry 0.280 is the mean
estimate of the estimator NPEE for these 50,000 calculations and (.011) is the standard error of this
mean.

The simulations have been done in MATLAB R2008b. The discussion of Tables 1-9 and con-
clusions are given in the Section 4.

4 Discussions and Conclusions

After a careful examination of the simulation comparisons by the bias and three norms (L1, Lo, and
L) we come to the following conclusions:

(¢) The continuous New piecewise exponential estimator (NPEE) which is defined on [0, c0) is
at least as good as the other two estimators KME and EBE for every case simulated. When
the underlying distribution is Weibull (o« = 1, A = 1), i.e., exponential, our NPEE is better
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than both KME and EBE (Tables 1 and 2). We note that it is a case in which we expect the
NPEE and EBE to be favored because NPEE is a piecewise exponential estimator and EBE’s
prior distribution is exponential. When underlying distributions are not exponential (in fact,
they are Weibull (o« = 2, A = 1), Weibull (o« = 0.5, A = 1) or lognormal (1 = 5, o = 1)),
NPEE appears at least as good as the EBE, but it is again better than the KME in terms
of both the measures used. Despite the fact that EBE’s prior is incorrect for these cases,
EBE is the most improved estimator among the estimators considered. The dominance of
the NPEE may be due to the fact that the survival functions of the underlying distributions
considered are monotonically decreasing while these distributions represent various possible
patterns (constant, increasing, decreasing, or increasing and decreasing) of the hazard rates of
the life distributions.

(#4) All three estimators considered for this study show improvement (deterioration) with increase
(decrease) in sample size (amount of censoring). The KME is the most improved (deterio-
rated) estimator with increase in the sample size (amount of censoring) (Tables 1, 3, 5, 7 and
9). In other words, the large sample advantages of the KME over other estimators may not
show up, particularly with heavy censoring until fairly large samples are taken. The advantage
of the NPEE over the EBE is minimal as the amount of censoring increases.

In Tables 2, 4, 6 and 8, a minus sign before the number indicates that the SF is underestimated by
the estimator and no sign indicates that it is overestimated. As we can see the estimators NPEE and
EBE are usually negatively biased while the estimator KME always shows a positive bias except
for the cases in which the amount of censoring is large (75%) at the largest quantile considered. In
these cases, NPEE and EBE do not show any regular pattern of bias while KME is even undefined
for some cases. The undefined cases are indicated by the symbol ‘NA’ in the tables.

Based on these simulations, we feel that the NPEE is a predictor of the survival function that
is at least as good as the EBE and better than the KME. The drawback of the NPEE is that it is
more complicated to calculate than the KME, but with computer aid this should not be a problem.
The complication of the choice of the priori distribution for EBE and its added complication to the
calculation might make EBE a second choice over the NPEE. These simulation studies cannot prove
the superiority of the NPEE over the EBE and KME as measured by bias and norms, but can make
such a conclusion more plausible.

Finally, in closing, we remark that it will be interesting to see a comparison between the NPEE
and EBE, EBE with a more flexible parametric family as its prior and «(0, c0) as a function of the
observed data. We also plan to show the weak convergence equivalence of the NPEE with the KME
and use NPEE in place of the survival function in the definition of the mean residual life function to
derive a continuous estimator of the MRL and study its properties.
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Table 1: Norms Comparison of the Estimators for Weibull (o« = 1, A = 1) Survival Curve for the
Sample Sizes n and Censoring Percentages C'P (Based on 50, 000 Iterations™)

L1 Norm Lo Norm Lo Norm
Estimator | CP n =10 n =30 n =10 n =30 n =10 n =30
NPEE 0.280(.011) | 0.201(.008) || 0.182(.007) | 0.106(.004) || 0.200(.005) | 0.141(.004)
EBE 15 | 0.290(.012) | 0.213(.008) || 0.190(.007) | 0.111(.005) || 0.210(.006) | 0.143(.004)
KME 0.350(.009) | 0.235(.007) || 0.220(.006) | 0.127(.003) || 0.270(.005) | 0.150(.004)
NPEE 0.284(.012) | 0.220(.008) || 0.190(.008) | 0.120(.005) || 0.211(.007) | 0.148(.005)
EBE 50 | 0.295(.013) | 0.225(.009) || 0.198(.008) | 0.128(.004) || 0.225(.008) | 0.153(.005)
KME 0.361(.007) | 0.271(.007) || 0.275(.004) | 0.206(.004) || 0.342(.006) | 0.247(.003)
NPEE 0.287(.011) | 0.225(.008) || 0.215(.010) | 0.125(.008) || 0.240(.012) | 0.155(.007)
EBE 75 | 0.297(.011) | 0.230(.008) || 0.224(.011) | 0.132(.008) || 0.249(.013) | 0.165(.008)
KME 0.444(.004) | 0.396(.003) || 0.414(.003) | 0.380(.003) || 0.607(.003) | 0.580(.001)

Table 2: Bias Comparison of the Estimators at the Quantiles (¢) for Weibull (o« = 1, A = 1) Survival
Curve with the Sample Size n and Censoring Percentages C' P (Based on 50, 000 Iterations™)

Bias(NPEE) Bias(EBE) Bias(KME)
CP q n=10 n=30 | n=10 n=30 | n=10 n=30
0.1 | -0.0036 -0.0028 | -0.0045 -0.0037 | 0.0057  0.0041
0.2 | -0.0032 -0.0024 | -0.0039 -0.0033 | 0.0056  0.0047
15 | 0.5 | -0.0030 -0.0023 | -0.0036 -0.0028 | 0.0055  0.0042
0.8 | -0.0033 -0.0024 | -0.0037 -0.0030 | 0.0054  0.0047
0.9 | -0.0036 -0.0033 | -0.0042 -0.0037 | 0.0058  0.0041
0.1 | -0.0038 -0.0036 | -0.0047 -0.0034 | 0.0060  0.0050
0.2 | -0.0034 -0.0031 | -0.0043 -0.0038 | 0.0059  0.0051
50 | 0.5 | -0.0035 -0.0028 | -0.0038 -0.0035 | 0.0061  0.0047
0.8 | -0.0036 -0.0030 | -0.0042 -0.0032 | 0.0056  0.0051
0.9 | -0.0039 -0.0034 | -0.0044 -0.0040 | 0.0060  0.0054
0.1 | -0.0043 -0.0040 | -0.0047 -0.0043 | 0.0067  0.0052
0.2 | -0.0040 -0.0036 | -0.0047 -0.0040 | 0.0064  0.0054
75 | 0.5 | -0.0043 -0.0035 | -0.0047 -0.0042 | 0.0060  0.0053
0.8 | -0.0045 -0.0042 | -0.0049 -0.0041 | 0.0060  0.0055
0.9 | -0.0040 -0.0040 | -0.0045 -0.0040 | 0.0066  0.0053
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Table 3: Norms Comparison of the Estimators for Weibull (o« = 2, A = 1) Survival Curve for the
Sample Sizes n and Censoring Percentages C'P (Based on 50, 000 Iterations™)

L1 Norm Lo Norm Lo Norm
Estimator | CP n =10 n =30 n =10 n =30 n =10 n =30
NPEE 0.411(.009) | 0.390(.012) || 0.342(.006) | 0.338(.006) || 0.335(.005) | 0.329(.008)
EBE 15 | 0.410(.010) | 0.388(.013) || 0.345(.006) | 0.341(.007) || 0.338(.006) | 0.328(.008)
KME 0.445(.007) | 0.398(.010) || 0.381(.004) | 0.353(.004) || 0.357(.005) | 0.340(.007)
NPEE 0.417(.009) | 0.395(.013) || 0.360(.008) | 0.351(.005) || 0.340(.007) | 0.335(.009)
EBE 50 | 0.416(.009) | 0.397(.013) || 0.366(.008) | 0.348(.005) || 0.342(.008) | 0.340(.008)
KME 0.471(.007) | 0.410(.006) || 0.410(.004) | 0.382(.005) || 0.374(.006) | 0.355(.005)
NPEE 0.421(.011) | 0.395(.014) || 0.371(.010) | 0.355(.007) || 0.345(.012) | 0.337(.007)
EBE 75 | 0.420(.011) | 0.388(.013) || 0.377(.011) | 0.358(.008) || 0.344(.013) | 0.340(.008)
KME 0.510(.005) | 0.450(.006) || 0.464(.003) | 0.402(.004) || 0.392(.003) | 0.375(.003)

Table 4: Bias Comparison of the Estimators at the Quantiles (¢) for Weibull (o« = 2, A = 1) Survival
Curve with the Sample Size n and Censoring Percentages C' P (Based on 50, 000 Iterations™)

Bias(NPEE) Bias(EBE) Bias(KME)
CP q n=10 n=30 | n=10 n=30 | n=10 n=30
0.1 | -0.0056 -0.0055 | -0.0058 -0.0056 | 0.0069  0.0060
0.2 | -0.0054 -0.0052 | -0.0059 -0.0056 | 0.0067  0.0059
15 | 0.5 | -0.0054 -0.0052 | -0.0062 -0.0057 | 0.0067  0.0059
0.8 | -0.0055 -0.0051 | -0.0061 -0.0059 | 0.0070  0.0064
0.9 | -0.0050 -0.0050 | -0.0055 -0.0053 | 0.0071  0.0066
0.1 | -0.0058 -0.0055 | -0.0060 -0.0057 | 0.0072  0.0065
0.2 | -0.0056 -0.0054 | -0.0054 -0.0053 | 0.0070  0.0060
50 | 0.5 | -0.0058 -0.0054 | -0.0056 -0.0053 | 0.0069  0.0060
0.8 | -0.0057 -0.0054 | -0.0058 -0.0055 | 0.0073  0.0066
0.9 | -0.0056 -0.0054 | -0.0056 -0.0053 | 0.0067  0.0065
0.1 | -0.0063 -0.0058 | -0.0064 -0.0062 | 0.0075  0.0068
0.2 | -0.0059 -0.0056 | -0.0058 -0.0055 | 0.0075  0.0067
75 | 0.5 | -0.0058 -0.0056 | -0.0055 -0.0056 | 0.0074  0.0070
0.8 | -0.0058 -0.0055 | -0.0059 -0.0056 | 0.0076  0.0070
0.9 | 0.0028 0.0024 | 0.0030 0.0025 NA NA
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Table 5: Norms Comparison of the Estimators for Weibull (o = 0.5, A = 1) Survival Curve for the
Sample Sizes n and Censoring Percentages C' P (Based on 50, 000 Iterations™)

L1 Norm Lo Norm Lo Norm
Estimator | CP n =10 n =30 n =10 n =30 n =10 n =30
NPEE 0.451(.009) | 0.443(.012) || 0.380(.007) | 0.374(.009) || 0.366(.005) | 0.355(.008)
EBE 15 | 0.457(.009) | 0.445(.011) || 0.378(.007) | 0.376(.009) || 0.365(.006) | 0.353(.008)
KME 0.480 (.007) | 0.455(.009) || 0.405(.004) | 0.380(.007) || 0.390(.005) | 0.362(.007)
NPEE 0.458(.009) | 0.450(.012) || 0.383(.008) | 0.377(.008) || 0.372(.007) | 0.366(.007)
EBE 50 | 0.460(.009) | 0.453(.013) || 0.385(.009) | 0.376(.009) || 0.373(.008) | 0.363(.007)
KME 0.497(.007) | 0.460(.008) || 0.415(.004) | 0.390(.005) || 0.412(.006) | 0.382(.005)
NPEE 0.473(.011) | 0.388(.010) || 0.386(.010) | 0.381(.007) || 0.375(.011) | 0.373(.008)
EBE 75 | 0.474(.010) | 0.391(.011) || 0.387(.010) | 0.378(.008) || 0.374(.012) | 0.376(.008)
KME 0.503(.004) | 0.470(.005) || 0.486(.003) | 0.405(.003) || 0.455(.004) | 0.396(.004)

Table 6: Bias Comparison of the Estimators at the Quantiles (¢) for Weibull (o = 0.5, A = 1) Sur-
vival Curve with the Sample Size n and Censoring Percentages C'P (Based on 50, 000 Iterations™)

Bias(NPEE) Bias(EBE) Bias(KME)
CP q n=10 n=30| n=10 n=30 | n=10 n=30
0.1 | -0.0066 -0.0065 | -0.0064 -0.0063 | 0.0070  0.0063
0.2 | -0.0064 -0.0064 | -0.0065 -0.0064 | 0.0072  0.0064
15 | 0.5 | -0.0064 -0.0063 | -0.0066 -0.0063 | 0.0072  0.0063
0.8 | -0.0065 -0.0062 | -0.0065 -0.0063 | 0.0071  0.0062
0.9 | -0.0064 -0.0062 | -0.0066 -0.0061 | 0.0072  0.0064
0.1 | -0.0068 -0.0066 | -0.0067 -0.0064 | 0.0074  0.0065
0.2 | -0.0067 -0.0044 | -0.0066 -0.0064 | 0.0075  0.0064
50 | 0.5 | -0.0067 -0.0064 | -0.0064 -0.0063 | 0.0075  0.0063
0.8 | -0.0067 -0.0065 | -0.0065 -0.0064 | 0.0073  0.0065
0.9 | -0.0066 -0.0062 | -0.00065 -0.0060 | 0.0074  0.0063
0.1 | -0.0070 -0.0068 | -0.0068 -0.0068 | 0.0077  0.0066
0.2 | -0.0069 -0.0067 | -0.0067 -0.0067 | 0.0077  0.0067
75 | 0.5 | -0.0068 -0.0066 | -0.0068 -0.0066 | 0.0076  0.0068
0.8 | -0.0067 -0.0065 | -0.0069 -0.0065 | 0.0076  0.0070
0.9 | 0.0031  0.0026 0.0032 0.0027 NA NA
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Table 7: Norms Comparison of the Estimators for Lognormal (i = 5, ¢ = 1) Survival Curve for
the Sample Sizes n and Censoring Percentages C'P (Based on 50, 000 Iterations™)

L1 Norm Lo Norm Lo Norm
Estimator | CP n =10 n = 30 n =10 n = 30 n =10 n = 30
NPEE 0.711(.015) | 0.701(.014) || 0.680(.017) | 0.676(.013) || 0.674(.012) | 0.656(.014)
EBE 15 | 0.723(.018) | 0.707(.015) || 0.685(.016) | 0.677(.013) || 0.672(.012) | 0.655(.012)
KME 0.876(.011) | 0.788(.009) || 0.706(.012) | 0.687(.010) || 0.750(.009) | 0.707(.008)
NPEE 0.717(.014) | 0.707(.012) || 0.686(.012) | 0.679(.010) || 0.681(.007) | 0.666(.009)
EBE 50 | 0.722(.014) | 0.709(.013) || 0.686(.012) | 0.678(.011) || 0.682(.008) | 0.669(.009)
KME 0.910(.009) | 0.845(.010) || 0.755(.008) | 0.699(.007) || 0.790(.006) | 0.730(.005)
NPEE 0.725(.011) | 0.715(.010) || 0.687(.010) | 0.685(.007) || 0.685(.011) | 0.670(.007)
EBE 75 | 0.725(.010) | 0.718(.011) || 0.687(.010) | 0.682(.008) || 0.687(.012) | 0.673(.008)
KME 0.966(.006) | 0.903(.007) || 0.794(.005) | 0.735(.004) || 0.830(.004) | 0.780(.004)

Table 8: Bias Comparison of the Estimators at the Quantiles (g) for Lognormal (4 = 5, 0 = 1)
Survival Curve with Sample Size n and Censoring Percentages C'P (Based on 50, 000 Iterations™

Bias(NPEE) Bias(EBE) Bias(KME)
CP| ¢ n=10 n=30 | n=10 n =30 n=10 n=30
0.1 | -0.0086 -0.0085 | -0.0077  -0.0074 | 0.0075 0.0073
0.2 | -0.0085 -0.0084 | -0.0078  -0.0074 | 0.0077  0.0075
15 | 0.5 | -0.0085 -0.0084 | -0.0075 -0.0073 | 0.0077 0.0074
0.8 | -0.0085 -0.0083 | -0.0074  -0.0072 | 0.0078 0.0076
0.9 | -0.0082 -0.0080 | -0.0076  -0.0072 | 0.0077 0.0076
0.1 | -0.0088 -0.0085 | -0.0079  -0.0076 | 0.0077 0.0074
0.2 | -0.0089 -0.0086 | -0.0078  -0.0076 | 0.0079  0.0076
50 | 0.5 | -0.0090 -0.0087 | -0.0079  -0.0075 | 0.0078  0.0076
0.8 | -0.0091 -0.0085 | -0.0077  -0.0075 | 0.0077 0.0076
0.9 | -0.0090 -0.0087 | -0.0076 -0.00074 | 0.0079 0.0076
0.1 | -0.0090 -0.0088 | -0.0080 -0.0077 | 0.0078 0.0076
0.2 | -0.0089 -0.0086 | -0.0080 -0.0076 | 0.0077  0.0075
75 | 0.5 | -0.0088 -0.0086 | -0.0081 -0.0078 | 0.0081 0.0077
0.8 | -0.0089 -0.0085 | -0.0079  -0.0075 | 0.0080 0.0076
0.9 | 0.0034 0.0028 | 0.0036  0.00233 NA NA
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Table 9: L, Norm Comparison of the Estimators for Weibull (o = 2, A = 1) Survival Curve for the
Sample Sizes 10, 30, 60 and 100 (Based on 50, 000 Iterations™)

Sample size
Estimator | CP n =10 n = 30 n = 60 n = 100
NPEE 0.342(.006) | 0.338(.006) | 0.320(.004) | 0.308(.005)
EBE 15 | 0.345(.006) | 0.341(.007) | 0.318(.005) | 0.308(.006)
KME 0.381(.004) | 0.353(.004) | 0.327(.004) | 0.310(.004)
NPEE 0.360(.008) | 0.351(.005) | 0.331(.006) | 0.312(.005)
EBE 50 | 0.366(.008) | 0.348(.005) | 0.330(.006) | 0.311(.004)
KME 0.410(.004) | 0.382(.005) | 0.341(.006) | 0.315(.004)
NPEE 0.371(.010) | 0.355(.007) | 0.335(.006) | 0.315(.005)
EBE 75 | 0.377(.011) | 0.358(.008) | 0.334(.006) | 0.317(.005)
KME 0.464(.003) | 0.402(.004) | 0.365(.003) | 0.325(.003)
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