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SUMMARY

In this paper we have shown that the conditional expectation of the n-th power of the vari-
able can be expressed as a function of hazard rate. Based on these properties some char-
acterizations of exponential, normal, Pareto, power function and uniform distributions are
given.
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1 Introduction

It is well known that characterizations of statistical distributions play a vital role in statistical the-
ory. Mean residual lives or conditional expectations have been frequently used in reliability theory
and in financial modeling. Actuaries use tail conditional expectations and tail conditional variances
as measures of risk. Ahmed [1] characterized beta, binomial, and Poisson distributions by con-
necting conditional expectation with hazard rate. Osaki [6] presented characterization of gamma
and negative binomial distributions. Nassar [5] characterized mixture of exponential distributions.
Further discussions on characterization of various distributions can be found in Ahsanullah and
Hamedani [2], Galambos and Kotz [3], Kotz [4], and Shanbhag [7].

This paper characterizes normal, uniform, Pareto, and exponential distribution. The article is
organized as follows. In Section 2, we present the necessary and sufficient condition for identifying
each distribution from their higher order conditional mean expressed in terms of hazard rate.
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Notation

X a random variable having an absolutely continuous distribution

f(x) a probability density function (pdf)

F (x) a cumulative distribution function (cdf)

h(t) = f(t)
1−F (t) , 0 < F (t) < 1, a hazard function

Exponential distribution, Exp(λ) with pdf

f(x, λ) =

 λ e−λx x > 0, λ > 0

0 otherwise.

Normal distribution, N(µ, σ) with pdf

f(x, µ, σ) =

 1
σ
√
2π
e−

1
2 (
x−µ
σ )2 −∞ < x, µ <∞, σ > 0

0 otherwise.

Pareto distribution, PA(x, α, δ) with pdf

f(x, α, δ) =

 δαδ

xδ+1 0 < α < x <∞, δ > 0

0 otherwise.

Power function distribution, POW(x, a, b,m) with pdf

f(x, a, b,m) =

 mxm−1

bm−am −∞ < a < b <∞,m > 0

0 otherwise.

Uniform distribution, U(x, a, b) with pdf

f(x, a, b) =

 1
b−a −∞ < a < b <∞

0 otherwise.

2 Main Results
We present below a lemma which will be used in the characterizations of the theorems.

Lemma 2.1. Let X be an absolutely continuous (with respect to Lebesgue measure) random vari-
able with cdf F (x) and pdf f(x). We assume α = inf{x|F (x) > 0} and β = sup{x|F (x) < 1}. If
for any positive integer n, E(Xn) exists, then

E(Xn|X > t) = A(n) + g(t)h(t), α < t < β,
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where A(n) is independent of t but may depend on n and h(t) = f(t)
1−F (t) iff

f(x) = ce
∫ A(n)−g(t)−tn

g(t)
dt

and c is determined by the condition ∫ β

α

f(x)dx = 1.

Proof. We have ∫∞
t
xnf(x)dx

F̄ (t)
= A(n) + g(t)h(t), −α < t < β

that is, ∫ ∞
t

xnf(x)dx = A(n)F̄ (t) + g(t)f(t).

Differentiating the above equation with respect to t, we obtain

−tnf(t) = −A(n)f(t) + g′(t)f(t) + g(t)f ′(t).

On simplification, we get
f ′(t)

f(t)
=
A(n)− g′(t)− tn

g(t)
.

Integrating the above equation with respect to t, we have

f(x) = ce
∫ A(n)−g′(x)−xn

g(x)
dx,

where c is determined by the condition
∫ β
α
f(x)dx = 1.

The following theorem gives a characterization of Exp(λ).

Theorem 1. Let X be an absolutely continuous random variable with pdf f(x) and finite E(Xn)

for any positive integer n, 0 < x <∞. Then

E(Xn|X > t) =

n∑
r=0

n(r)
tn−r

λr+1
h(t), (2.1)

where n(r) = n(n − 1)(n − 2) · · · (n − r + 1), n(0) = 1. iff X has the exponential distribution
Exp(λ), λ > 0.

Proof. If X has exponential distribution, then (2.1) is true. Suppose that

E(Xn|X > t) =

n∑
r=0

n(r)
tn−r

λr+1
h(t),

then A(n) = 0 and

g(t) =

n∑
r=0

n(r)
tn−r

λr+1
.
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We have
tn + g′(t) = λg(t).

Then
f ′(t)

f(t)
=
A(n)− (tn + g′(t))

g(t)
= −λ.

Hence
f(x) = e−

∫
λdx = ce−λx

Using the boundary conditions F (0) = 0 and F (∞) = 1, we have

F (x) = 1− λe−λx, x > 0, λ > 0.

The following theorem gives a characterization of N(0, 1) distribution.

Theorem 2. Let X be an absolutely continuous random variable with pdf f(x) for −∞ < x <∞.
Suppose E(Xn) exists for some positive integer n, then X is N(0, 1) iff

E(Xn|X > t) = A(n) + g(t)h(t), −∞ < t <∞,

where A(n) = 0,

g(t) = tn−1 + (n− 1)tn−3 + · · ·+ (n− 1)(n− 3) · · · 4t2 + (n− 1)(n− 3) · · · 2, (2.2)

for odd n and A(n) = (n− 1)(n− 3) · · · 3,

g(t) = tn−1 + (n− 1)tn−3 + · · ·+ (n− 1)(n− 3) · · · 3t, (2.3)

for even n.

Proof. It is easy to show that if X is distributed as N(0, 1), then (2.2) and (2.3) are true for odd and
even integers respectively. We will prove only if condition. If n is odd integer, then using (2.2), we
obtain

A(n)− (g′(t) + tn) = −tg(t).

If n is even integer, then from (2.3), we have

A(n)− (g′(t) + tn) = −tg(t).

Thus for all integer n,
f ′(t)

f(t)
= −t.

On integrating with respect to t and using the condition
∫∞
−∞ f(x)dx = 1, we get

f(x) =
1√
2π
e−

1
2x

2

, −∞ < x <∞.

The following theorem gives the characterization of Pareto distribution.
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Theorem 3. Let X be a continuous random variable with pdf f(x), 0 < α < x <∞. Then X has
a Pareto distribution, PA(δ, α) iff,

E(Xn|X > t) =
tn+1

δ − n
h(t), for any fixed n < δ and t > α. (2.4)

Proof. It is easy to show that if X has the distribution PA(α, δ), then (2.4) is true. We will prove
here the only if condition. If

E(Xn|X > t) =
tn+1

δ − n
h(t)

then A(n) = 0 and g(t) = tn+1

δ−n . We have

g′(t) =
n+ 1

δ − n
tn ⇒ g′(t) + tn

g(t)
=
δ + 1

t

Thus
f ′(t)

f(t)
=
δ + 1

T

Using the boundary conditions F (α) = 0 and F (∞) = 1, we obtain

f(x) =

 δαδ

xδ+1 0 < α < x <∞
0 otherwise.

The following theorem gives a characterization of the power function distribution.

Theorem 4. Let X be an absolutely continuous random variable with pdf f(x), −∞ < a < x <

b <∞. Then for −∞ < a < t < b <∞ and m > 0

E(Xn|X > t) =

 h(t)
m+n (bm+nt−m+1 − tn+1), m+ n 6= 0

(ln b− ln t)t1−m, m+ n = 0,
(2.5)

iff X has the power function distribution with

f(x) =
mxm−1

bm − am
, m 6= 0.

Proof. If f(x) = mxm−1

bm−am , then (2.5) is true. Suppose that m > 0 and m+ n 6= 0, then

g(t) =
1

m+ n
(bm+nt−(m−1) − tn+1)

g′(t) =
1

m+ n
(−(m− 1)bm+nt−m − (n− 1)tn)

tn + g′(t) = tn +
1

m+ n
(−(m− 1)bm+nt−m − (n+ 1)tn)

=
m− 1

m+ n
(tn − bm+nt−m)

tn + g′(t)

g(t)
=
m− 1

t
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Therefore,

f(t) = c e
∫
m−1
t dt = ctm−1.

Using the boundary conditions F (a) = 0 and F (b) = 1, we have then

f(x) =
mxm−1

bm − am
, m > 0, −∞ < a < x < b <∞.

Suppose m > 0 and m+ n = 0, then A(n) = 0 and g(t) = (ln b− ln t)t1−m. We have

tn + g′(t) = (1−m)(ln b− ln t)t−m

Thus
f ′(t)

f(t)
=
A(n)− tn − g′(t)

g(t)
=
m− 1

t

f(x) =
mxm−1

bm − am

Therefore,

f(t) = ce
∫
m−1
t dt = ctm−1

Using the boundary conditions F (a) = 0 and F (b) = 1, we have then

f(x) =
mxm−1

bm − am
, m > 0 −∞ < a < x < b <∞.

The following theorem gives a characterization of the uniform distribution.

Theorem 5. Suppose thatX is an absolutely continuous random variable with pdf f(x) and−∞ <

a < x < b <∞. Then X has a uniform distribution U(a, b) iff

E(Xn|X > t) =

 bn+1−tn+1

n+1 h(t) for any n, n 6= −1

(ln b− ln t)h(t) for n = −1,

where −∞ < a < t < b <∞

Proof. The proof follows from the Theorem 4 with m = 1.
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