Journal of Statistical Research ISSN 0256 - 422 X
2012, Vol. 46, No. 2, pp. 75-90

ROBUST REGRESSION ESTIMATOR FOR A SEMIPARAMETRIC
MEASUREMENT ERROR MODEL WITH MULTIPLE COVARIATES
USING MONTE-CARLO METHODS

ANASTASIOS A. TSIATIS
Department of Statistics, North Carolina State University, Raleigh, NC 27695-8203

Email: tsiatis@ncsu.edu

SUMMARY

Previous methods for deriving a locally efficient semiparametric estimator for the param-
eters in a regression model when some of the covariates are measured with error and no
additional assumptions are made on the distribution of covariates, i.e., the so called func-
tional measurement error model, involved solving a difficult ill-posed integral equation
which limits the utility of these methods to problems with only a few covariates. In this
paper we propose using the Landweber-Fridman regularization scheme for approximating
the solution to the integral equation. We show how Monte-Carlo methods can be used to
estimate the elements in the Landweber-Fridman regularization algorithm and how stochas-
tic approximation can be implemented together with the Monte-Carlo methods to find the
locally efficient estimator. This methodology allows the application of the semiparametric
theory to problems that were previously infeasible.

Keywords and phrases: Functional measurement error model; Ill-posed integral equation;
Landweber-Fridman regularization; Locally efficient semiparametric estimator; Stochastic
approximation.

1 Introduction

Consider the problem of estimating the parameter [ in a parametric regression model where the
conditional distribution of the response variable Y given covariates X and Z is given by the model

pY\X,Z(y|va;B)7 (L.1)

and §3 is, say g-dimensional. With a sample of complete data (Y;, X;, Z;), i = 1,...,n, assumed
independent and identically distributed, a consistent, asymptotically normal, and efficient estimator
for 5 can be obtained readily using the standard maximum likelihood estimator. In measurement
error problems, the variable X is not available, but rather, a surrogate W for X is. For example,
the covariate X may be measured with error in which case we would observe W = X + ¢, where €
denotes the measurement error. We will assume that the covariate Z is measured without error and
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available for analysis. For the purpose of this discussion we will assume that the distribution of W
given X and Z is known to us with density

pW\X,Z("U'xa z),

however, this assumption can be weakened to allow this density to be defined through a model with
a finite number of unknown parameters. For example, in a classical measurement error model it
is often assumed that the measurement error e follows a normal distribution with mean zero and
variance Ug independent of X and Z, in which case, the conditional distribution of W given X and
Z would be a normal distribution with mean X and variance o2. The measurement error variance
may be known in some cases or may be left as an unknown parameter which could be estimated if
we had replicate measurements of V.

In addition, we make the usual surrogacy assumption that Y 1l W|(X, Z), where “_1.” denotes
independence or conditional independence. In our previous illustration, the surrogacy assumption
would hold if the measurement error € was independent of (Y, X, Z). Specifically, the surrogacy
assumption is given as

pyiw,x,z(W|w, , 2) = py|x,z(ylz, 2). (1.2)

In order to be as robust as possible we will not make any additional assumptions regarding the
joint distribution of X and Z. Consequently, this is a semiparametric model which is also referred to
as a functional measurement error model by Carroll et al. (1995, Chap. 7). The statistical problem
is to estimate the parameter 3 in (1.1) from a sample of independent and identically distributed data
(Y;, Wi, Z;), i = 1,...,nfor this semiparametric model. In Tsiatis and Ma (2004), semiparametric
theory was used to derive estimators for such models. Specifically, they considered estimating (3
using the efficient score derived by computing the residual of the score vector with respect to 3 after
projecting it onto the nuisance tangent space. However, in order to derive the projection one needs to
posit some distribution for the conditional density of X given Z, which, of course, is unknown to us.
Because of the curse of dimensionality, estimating this conditional distribution nonparametrically is
infeasible. Rather, a lower dimensional, possibly incorrect, parametric model is posited. Tsiatis and
Ma showed that using the resulting efficient score as the basis for an estimating equation resulted in
a consistent, asymptotically normal estimator for 5 whether the posited distribution for X given Z
was correctly specified or not. Thus this estimator is a locally efficient semiparametric estimator.

The major difficulty with this method is that deriving the projection onto the nuisance tangent
space involves solving an ill-posed integral equation. In the paper by Tsiatis and Ma (2004), the
projection was derived by discretizing X which then reduced the problem to solving a finite linear
system of equations. This method, however, breaks down quickly as the dimensions of X and
Z increase. In this paper we will use Monte-Carlo methods to approximate the elements of the
Landweber-Fridman regularization scheme for solving ill-posed integral equations (see Kress 1989,
Chap. 15). This methodology will allow us to derive locally efficient semiparametric estimators for
[ in more complex settings that would not be feasible using discretization.
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2 Model Framework and Notation

We begin by introducing the notation and reviewing some of the theory that is necessary to obtain
the efficient score. If all the data (Y, X, Z, W) were available, then the score vector with respect to
B is equal to S3(Y, X, Z, W; B3), where

. dlogpy | x,z,w (ylr, z,w; B)
Sh(y, @, 2,w; B) = YIX‘Z(;; :

Because of the surrogacy assumption (1.2), it follows readily that
Sp(Y, X, Z,W; B) = S5(Y, X, Z; B),

where
alOgPY|X,Z(Z/|$> 2 3)

B
Also, because (Y, W, Z) is a many to one transformation of (Y, X, Z, W), we use the results of Rao

(1973, p. 330) to show that the resulting score vector for S with respect to the probability model for
(Y, W, Z) is given by

Si(y,w, 2 8) =

Ss(Y, W, Z;8) = E{S5(Y, X, Z; B)|Y, W, Z}. 2.1

Semiparametric theory, as described by Bickel et al. (1993), is used to derive the efficient
score. As such, we consider the Hilbert space H consisting of all ¢g-dimensional (where g de-
notes the dimension of the parameter 3) mean-zero, finite variance functions of the observed data
(Y, W, Z) equipped with the covariance inner product (h1, ho) = E{hT(Y,W, Z)hao(Y,W, Z)},
where hy, ho € H and superscript “7 denotes transpose. The nuisance parameters in the statistical
model define the joint density of (X, Z) which is left arbitrary (i.e., a nonparametric model for the
joint distribution of (X, Z)). The nuisance tangent space is defined as the mean-square closure of all
the nuisance score vectors for parametric submodels, and using arguments in Tsiatis and Ma (2004),
the nuisance tangent space A is shown to be equal to all g-dimensional, mean-zero measurable func-
tions of (Y, W, Z) (i.e., elements of ) such that

A = [E{a(X, 2)|Y,W, Z} : E{a(X,Z)} =0]. 2.2

We denote the score vector with respect to 3 by Sg(Y, W, Z) = Sg(Y, W, Z; Bo); i.e., the score
vector given by (2.1) evaluated at the true value of 3 which we denote by 3y. The projection of the
score vector with respect to 3 onto the nuisance tangent space A, II{Sg(Y, W, Z)|A}, where II{-|-}
denotes the projection of an element onto a linear subspace of the Hilbert space, is defined as the
element E{a’(X, Z)|Y,W, Z} € A, where E{a°(X, Z)} = 0, that satisfies the relationship

E([SB(Y, W, Z) — E{a"(X, Z)|Y, W, Z}]" B{a(X, Z)|Y, W, Z}) =0 (2.3)

for all [(X, Z) : E{c(X, Z)} =0).
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Remark 1. Because of the projection theorem for Hilbert spaces (Luenberger, 1969, p. 51) together
with the fact that A is a closed linear subspace we know that a"(X, Z) must exist and that the
projection E{a’(X, Z)|Y,W, Z} satisfying (2.3) must be unique although the function a®(X, 2)
may not be unique. U

In Tsiatis and Ma (2004), the projection was derived using iterated conditional expectation ar-
guments. For this exposition, it will be more natural to derive the projection using linear operators
and their adjoint as we now demonstrate.

3 Deriving the Efficient Score using Linear Operators

We first remind the reader of some basic results for linear operators and their adjoint. Let A be
some bounded linear operator mapping elements from a Hilbert space G to a Hilbert space ; i.e.,
A : G — H. The adjoint of a linear operator A is defined as the linear operator A* : H — G such
that for any g € G and any h € ‘H

(A(g),h) = (g, A"(h)),

where (-, -) denotes inner product defined for the corresponding Hilbert space.

For our problem we have already defined the Hilbert space H and we define the Hilbert space G
as the set of all g-dimensional mean-zero finite variance measurable functions of (X, Z) equipped
with the usual covariance inner product. We consider the bounded linear operator A : G — H to be
defined as A{g(X, 2Z)} = E{g9(X, Z)|Y,W, Z} for any g € G. The adjoint A* of A is easily shown
to be

A {W(Y,W. Z)} = E{h(Y.W, Z)|X, Z}

for any h € H. For completeness, we give a proof of this in the appendix.
We note that the linear subspace A defined by (2.2) is equal to A(G). To derive the projection
onto this linear subspace we use the following theorem given in Luenberger (1969, p. 160).

Theorem 1. For a fixed h € H, the element g € G minimizes ||h — A(g)|| if and only if
A*A(g) = A",

where A* denotes the adjoint of A and the norm ||h — A(g)|| = {(h — A(g),h — A(g))}/2. O

As a consequence of Theorem 1, the projection of Sg(Y, W, Z ), an element of , onto the closed
linear subspace A = A(G) is the solution to the normal equation

A A{a(X, 2)} = A {Sp(Y, W, Z)}, 3.1)
or, equivalently,
B[B{a%(X, 2)[Y,W. Z}| X, Z| = B{Ss(Y. W, 2)| X, Z}. (G2)

Equation (3.2) is exactly the solution that was given by Tsiatis and Ma (2004) in their equation (9)
for finding the projection.
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4 Issues in Deriving the Efficient Score

The definition of the efficient score is given as
St (Y. W, Z) = (Y, W, Z) — IL{S5(Y, W, Z) | A}.
As we just demonstrated,
Serr(Y, W, Z) = 85(Y, W, Z) — A{a(X, Z)},

where o’ (X, Z) is a solution to (3.1). Because S(Y, W, Z) = E{S;;(Y, X, Z)|Y,W, Z}, we can
also write the efficient score as

Ser(Y, W, Z) = A{S5(Y, X, Z) — a°(X, Z)}.
Two issues arise immediately when deriving the efficient score:

(i) The solution to equation (3.1) depends on knowing the joint density of X and Z. However,
since both A and A* are conditional expectations which also condition on Z, the solution to
equation (3.1) just depends on the conditional distribution of X given Z and not additionally
on the marginal distribution of Z. This is important because no additional assumptions are
needed regarding the marginal distribution of Z for any of the asymptotic results regarding
consistency and asymptotic normality to hold. Nonetheless, the solution to equation (3.1)
still depends on knowing the conditional distribution of X given Z which our functional
measurement error model leaves unspecified.

(ii) Even if the conditional distribution of X given Z were known, equation (3.1) is an ill-posed
integral equation which is difficult to solve.

To address issue (i), we posit a model for the distribution of X given Z; namely, px z(x|z;9)
in terms of a finite-dimensional parameter 1), which may be misspecified, and define

Ag(Y, X, 2); 8,9} = Epyplg(Y, X, 2)|Y, W, Z}, 4.1)
ALY, W, 2); 8y = Es{h(Y,W,2)|X,Z}, 4.2)

where the conditional expectation in (4.2) is with respect to the conditional density of (Y, W) given
(X, Z), which, by the surrogacy assumption (1.2), is equal to the product of py | x, z (y|z, z; B), (i.e.,
the correctly specified model with the true density being at 8 = o) and pw|x,z (w|z, 2), which is
assumed known. The conditional expectation in (4.1) is with respect to the conditional density of X
given (Y, W, Z) which is obtained using Baye’s rule; namely,

py|x,zWlT, 2; B)pw x, z(w|r, 2)px|z(2]2; )

. _ . 4.3
pxivwz (el v, 7 5, 9) I pyvix.zWlz, 2 B)pwx.z(w|z, 2)px 7 (@] 2;0)dx @3

In terms of this notation we define the projected score vector as

Seff(KWa Zﬂﬂﬁ) = A[{SZ’(Y)Xa Z7B) —QO(X7Z;671/))};6,’(/) ) (44)
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where o' (X, Z; 3,) is the solution to the normal equation

A7[A{a®(X, Z: B,0); 8,0} B] = A" [ALSH(Y, X, Z:8); 5,0} ). 45

The estimator for S is obtained as the solution to the estimating equation
> Sest (Vi, Wi, Zis B,4bn) = 0, (4.6)
i=1

where ’L/A}n is an estimator that is root-n consistent. That is, even if the model for the conditional
distribution of X given Z is misspecified, we will assume that there exists a constant ¢)* which is
the limit in probability of t,, such that n'/2(1),, — 1)*) is bounded in probability. It was shown
in Tsiatis and Ma (2004) that the estimator which solves (4.6) is asymptotically equivalent to the
estimator which solves the equation

> Ser(Yi, Wi, Zi5 8,4%) = 0. 4.7)

i=1

Under suitable regularity conditions, the estimator in (4.7) will be a consistent, asymptotically nor-
mal estimator if the estimating function, evaluated at 5 = [, has expectation zero. We will now
give a short argument to show that

E{Ses(Y,W, Z; Bo, ")} =0 (4.8)

even if the posited model for px |z (x|z; ) is misspecified. By using the law of iterated conditional
expectations, the expectation on the left hand side of (4.8) is also equal to

E[A (S (Y, W, Z; B0, 0")}; Bo] (49

which is true because A* involves a conditional expectation with respect to a correctly specified
conditional distribution. By the definition of the efficient score given in (4.4), the term inside the
brackets of (4.9) is equal to

A*(A[{S5(Y, X, Z: o) — (X, Z: Bo, ")} o, v |1 o ) =
AT [ALS3 (Y. X, Z3 Bo); Bo, 67} o | — A™[A{a® (X, 23 Bo, 47): B, 0"} Bo

which equals zero as a consequence of (4.5). Consequently, (4.9) is also equal to zero, which implies
that the estimating function is an unbiased estimator of zero and that the resulting estimator for /3,
given by the solution to (4.7), will be consistent and asymptotically normal even if the model for the
conditional distribution of X given Z, in terms of v, was misspecified.

Item (ii) regarding the computations involved in solving the integral equation is critical. In the
case where X was a single covariate, Tsiatis and Ma (2004) showed that a reasonable solution could
be obtained by discretizing X. However, if X is multivariate or with additional Z, the problem
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becomes prohibitive and other methods for obtaining approximate solutions to the integral equation
are necessary to make this approach feasible. Toward that end, we consider the Landweber-Fridman
regularization scheme for solving ill-posed integral equations as discussed by Kress (1989, p. 239)
which we now describe.

Because the linear operator A is itself a projection operator, this implies that the norm of A is
less than or equal to one; i.e., || A|| < 1, where the norm of a linear operator is defined, say, in Kress
(1989, p. 13). For such a case, the Landweber-Fridman regularization scheme would approximate
the solution a®(X, Z) in (3.1) by

t
(X, Z) = 0 (I-0A A A{Ss(Y,W,2)}
k=0
t
= 0) (I-0A*AFA*A{S;(Y, X, 2)}, (4.10)
k=0

where § < 1 is a scalar constant and ¢ is an integer that serves as a regularization parameter where
the accuracy of the approximation becomes better as ¢ increases but the stability becomes worse. To
be clear about the notation

(A" A){S3(Y, X, 2)} = E{E(E[E{S;(Y, X, 2)|[Y,W, Z}|X, Z|[Y,W, Z)|X, Z},

and so on.
As as consequence of (4.4) and (4.10), we can approximate the estimating equation (4.7) by

> MY, Wi, Zi; B.0%) =0, 4.11)
i=1
where
t
= A;[ S5V, X, Z;8) = 0 (1 - 04" A)F A" A[SH(Y, X, Z: 8); B,0°}: B, 0"
k=0
t+1

= A |S5(Y. X, Z:8) + Y ek, )0H (A" )M {S5(Y, X, 2 8): 8,471 8,07,

k=1

Al{g(K X7 Z)167,(/)*} = E,Bﬂl)*{g(}/? X? Z)|}/7L7Wi; Z’L}’ and

¢

c(k,t) = (D" Y [0k =D —k+ DY k=1,...t+1. (4.12)
t=k—1

Of course, to implement this methodology we need to evaluate, or, at least approximate

(A*A)k A*{S5(Y, W, Z)} for different k as well as choose appropriate values for the regularization

parameters 6 and t.
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S Implementation using Monte-Carlo Methods

Computing terms such as (A*A)k A*{S5(Y, W, Z)} involves repeated conditional expectations al-
ternating between conditioning on (X, Z) which involves the conditional density of (Y, W) given
(X, Z) and conditioning on (Y, W, Z) which involves the conditional density of X given (Y, W, Z).
For that matter even Sg(Y, W, Z) = A{S;(Y,X,Z)} involves computing a conditional expec-
tation. Computing such repeated conditional expectations using numerical integration is infeasi-
ble. We therefore propose using Monte-Carlo simulations to approximate these iterated condi-
tional expectations. In order to proceed we need to be able to generate random (Y, W)’s from
the conditional density of py w|x,z(y, w|z, z; ) and random X’s from the conditional density of
PX|Y,W, z(x|y,w, z; B,1). Since the latter distribution depends on the conditional density of X
given Z, which may be misspecified, we have some flexibility in choosing this conditional density
to facilitate the Monte-Carlo data generation. Assuming we can generate random data from these
conditional distributions, we will now describe how Monte-Carlo methods can be used to find ap-
proximations to the integral equations and the locally efficient estimator. Later we will illustrate in
greater detail how these methods can be used when modeling binary data with a logistic regression
model.

We begin by showing how to evaluate, for the -th individual in the sample, the contribution to
the observed score vector with respect to 3;

We propose generating m random X’s from the conditional distribution of X|Y = Y, W =

W, Z = Z; and denoting these as x§0>, e ,xg,?). We then approximate (5.1) by

A{S5(Y. X, Z;8): B,0" =m™ 'Y S5V, 2\, Zis ).

Jj=1

We also note that by construction

where, we emphasize by using E* that, this expectation is taken with respect to the Monte-Carlo
data generating distribution. Because the data generating process always begins conditional on the
observed data (Y;, W;, Z;), expectations E* are necessarily conditional expectations with respect to
the observed data. In equation (5.2) we made this conditional expectation explicit, but, from here
on, we will suppress this notation and it will be assumed that any reference to E£* is a conditional
expectation with respect to the observed data. Equation (5.2) is true for any choice of m > 1.

In order to compute E{a’(X, Z)|Y;, W;, Z;}, which is part of the estimating equation (4.7),
using the Landweber-Fridman regularization scheme given by (4.10), we need to approximate quan-
tities such as

A(AT AP A S (Y, W, Z; B,0%); B, } = A (AT A)FHISK(Y, X, Z; B)B, ¥}, (5.3)



Robust Regression Estimator for a Semiparametric error model . . . 83

for different £ = 0, ...,t. We proceed as follows: As before, we generate x(-o)

,7=1,...,m from
the conditional distribution of (X[Y =Y;, W = W;, Z = Z;). Next, we generate (y, a )7 51))7 Jj=
1,...,m from the conditional distribution of (Y, W|X = ,TEO) Z = Z;) and x§ ),j =1,....m

from the conditional distribution of (X|Y = yjl) W = w(l)7 Z = Z;). We then approximate (5.3),
for k = 0 by

m= > S5, Y, Zi; B).
j=1

Continuing in this iterative fashion, we generate (y( ), 5 ))
Y,W|X = ( A Z;) and a:( ) from the condltlonal distribution of (X|Y = y(e),W =

w](-e), Z =17 and approximate (5.3) by

from the conditional distribution of

m= S5 2 Z3: ) (5.4)

fork = 0,...,t. We again note that the conditional expectation £ ;. {(5.4)} is equal to the statistic
(5.3).

Recall that our goal is to get an estimator for 5 by solving the approximating estimating equation
(4.11). If we denote by O = {O; = (Y;,W;, Z;),i = 1,...,n} the sample of observed data, then
from the development above we know that

m t+1
EW{Zm*ZZ (k, 00" S5 (y57 ﬂ,zl,mO} ZMYZ,W“Z“M)

Jj=1k=0

where ¢(0,¢) = 1 for all ¢ and c(k, t) for kK > 1 was defined by (4.12). Therefore, we want to find
the value S that solves the estimating equation

> M(0;;8) =0.
i=1

Note that we are suppressing the parameter ¢* since this remains fixed when solving the estimating
equation for 3.

Using Monte-Carlo methods we showed how to generate unbiased estimators for Y .-, M (O;; 8);
namely, Y27 M (O;; ), where

m t+1

M0 8) =m Y ek, )07 S5 2, 22, ), (5.5)

7j=1 k=0

such that E5{> ;" M(Oy;8)} = S27, M(Oy; 8). With these Monte-Carlo generated unbiased
estimators for the elements in the estimating equation, we will now show how a modified version
of stochastic approximation that was proposed by Yin and Wu (1997) can be used to obtain an
approximation to the root of the estimating equation y ..., M (O;; 8) = 0.
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Stochastic approximation, first proposed by Robbins and Monro (1951), is a recursive procedure
for finding the root of an equation H(j3) = 0, where E(H|3) = H(3), using data (Hy, 3;), £ =
1,2, .... For our purposes H(3) = S0 | M(O;,8), H = 3", M(Oy; ), which, as we showed
above, has the property that E(H|3) = EE(PI ) = >oi, M(Oy; B). Specifically, we will consider
two variants of stochastic approximation. At the initial stage we will use a recursive scheme where
the next iterate in the recursion is given by

g(un N Sy v(O) (5.6)

where () = ¢—1 Z LB, MO = 1 Zf; L7 M(04; 39), and J is a g x ¢ matrix which
roughly approximates the gradlent matrix OH (3)/98". Under some mild regularity conditions the
sequence 4 will converge to /3,,, the solution to the estimating equation S, M(O;,8) =0.

Stochastic approximation is an efficient way of finding the root of the estimating equation even
if J is obtained in an ad hoc fashion and not necessarily a “good” (i.e., consistent) estimator of
OH(B)/0BT. To implement the proposed methodology we recommend using the naive estimator
for S which ignores measurement error as the initial value for the stochastic approximation recursion
in (5.6). That is, we take B (1) to be the solution to the naive score equation that would have been
used if there was no measurement error; namely,

> S5V, Wi, Zi:8) = 0. (57

i=1
We also recommend that the matrix J in (5.6) be approximated by
= 0S5(Y:, Wi, Zs; BW)

opT ’

J =
i=1
i.e., minus the naive observed information matrix had there been no measurement error.

However, stochastic approximation as described by (5.6) does not provide for a good estimate
of the gradient OH (3)/0B8%, which, as we will see in the next section, is important for deriving
an estimator for the asymptotic variance of Bn Because the sequence B in (5.6) converges suffi-
ciently fast, there is not enough variation in this sequence to get a good estimator of the derivative.
Consequently, we will consider additional perturbation of the 5’s in the stochastic approximation
recursions in order to also obtain reasonable estimators for the derivative of the estimating equation.

Toward that end, we will now consider how to estimate the gradient matrix OH (3)/037 while
introducing the second variant of stochastic approximation. This is based on the premise that the
initial algorithm (5.6) will give us a sequence B® which will eventually be in a small neighborhood
of fn. Consequently, the function M (O;, ) will be approximately linear in 8 in a neighborhood
about Bn That is, in a neighborhood of Bn,

M(0;, B) ~ F) (1, g, (5.8)

where the elements of the j-th row of the ¢ x (¢ + 1) matrix F; are denoted by fo;i, f1ji,- - -, fqjis
and the j-th element of M (O;, ) is

M;(0;, B) = foji + fr5:81 + ... + fqg5iBqs
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where 3, denotes the r-th element of 5 forr =1,...,q.

Because EE{M (0;,8)} = M(O;, 3), we propose estimating the matrix F; by least squares
using all the available data {M(O;, 39 + €9)), 39) 4 @)} for g = 1,...,¢, where €9 is a ¢-
dimensional vector of additional random perturbations that we may add to obtain a better estimate
for the gradient. Specifically, the least squares estimate for F; after the /-th iteration in the recursion
is given by

PO _ M(Z)B(f)(B(l)TB(E))*l’

A %

where ME—Z) is a ¢ x ¢ matrix made up of the ¢ ¢-dimensional column vectors M (O;, 3(9) + €(9))
forg=1,...,¢ and BY is the £ x (¢ + 1) matrix made of the ¢ (q 4 1)-dimensional row vectors
{1,(B9 +€9)T} for g = 1,..., . If we partition the matrix FZ-(Z) as [Fi(e)0|ﬁi(e)1], where Fl-(g)o is
the first column of Fi(e) and Fi(m is the ¢ x ¢ matrix corresponding to the last ¢ columns of Fi(é),

then a reasonable estimator for 3+1) would be the solution to the linear equation

SED 4+ 5O o,

i=1
that is,

R SR S 59

Because of (5.8), a natural estimator for the gradient matrix is given by

n

DO — Y EO,

2
=1

Therefore our proposal for stochastic approximation is to use the recursion (5.6) with no addi-
tional random perturbation initially until the estimator stabilizes and then to switch to the recursion
given by (5.9). At the end of this process, say, after a total of £* iterations, the final estimator for 3
would be

Bn = BEFY, (5.10)

and the final estimator for the gradient matrix would be

D= D). (5.11)

6 Estimator for the Asymptotic Variance

Using standard results for M -estimators, see, for example, Stefanski and Boos (2002), we know
that, under suitable regularity conditions, the estimator 3,, that solves the estimating equation

n

S M(0,5) = 0

i=1
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will be asymptotically normal with mean zero and variance matrix

{D(Bo)} 'V (Bo){DT (Bo)} ', (6.1)

where D(8) = E{0M(0,3)/95"} and V(8) = E{M (0, 5)M" (0, §)}.

In the previous section we discussed how to use the results of our stochastic approximation to
obtain an estimator for the gradient matrix. If the estimating function M (O, 8) was known, then we
can estimate V(o) by n=' S0, M(O;, Bn) M (O, B,,). However, since M (O, 8) is not known
exactly, we propose using the linear approximation to estimate M (O;, Bn) by Fi(f*)o + Fi(e*)l Bn
and hence to estimate the variance matrix by

V= SEER 4 EEONG ) (FE0 4 BT ©62)

i=1
The asymptotic variance for $,, is then estimated using the sandwich variance estimator
(D)~"'V(DT)~1, (6.3)

where D is obtained using (5.11) and V is obtained using (6.2).

Even with these recommendations, there are still additional issues that need to be considered.
There is the choice of 6 and ¢ in (3.1) for the Landweber-Fridman regularization algorithm, the
number of Monte-Carlo replicates m in equation (5.5) for the unbiased estimator of M (O;, 3) at
each iteration, the number of iterations for the first stage of the stochastic approximation, for the
second stage of the stochastic approximation we have to decide how large the random perturbations
€(9) should be, and the total number of iterations £*. Although, we will not be able to give general
results for the best choice of these values, we will give some recommendations based on empirical
results from several examples which we used for illustration.

7 Example and Simulation Results

To illustrate these methods we conducted a simulation experiment similar to that in Tsiatis and Ma
(2004) except that we considered two covariates measured with error instead of one which is a
scenario where the methods of Tsiatis and Ma would not be feasible. Although we only used two
covariates we could have easily applied this methodology to more than two covariates without any
additional difficulty. Specifically, we let the response variable Y be a binary indicator and considered
the quadratic logistic regression model

logit{ P(Y = 1| X1, X5)} = B1 + B2X1 + s X7 + BsXo,

where logit(p) = log{p/(1—p)} and (31, B2, B3, B4) = (—1.0,0.7,0.7,0.5). To allow for measure-
ment error we only observe W, = X + €; and Wy = X5 + €5, where €1 and €5 are independently
normally distributed with mean zero and standard deviation o; and oo respectively, and indepen-
dent of (Y, X1, X5). In this illustration we took (X7, X») to be a bivariate normal both with variance



Robust Regression Estimator for a Semiparametric error model . . . 87

1, with means —1 and 0 respectively, and correlation .71. We allowed for a substantial amount of
measurement error by taking o.; = 0.0 = 4.

The estimator for 5 and its asymptotic variance were obtained using the stochastic approximation
methods described in sections 5 and 6. The key to implementing these methods is to derive the
approximate estimating function M (O;; B) given by (5.5). This entails generating random deviates
from the conditional distribution of (Y, Wy, Ws) given (X1, X2) and random deviates from the
conditional distribution of (X7, X3) given (Y, W7, W5) in order to derive S;(yj(-k), x§-k), Z;; 8) in
(5.5). Specifically, given (X; = 1, X2 = x2) we can generate random deviates (Y, Wy, W5) easily
as independent variables from a Bernoulli with probability exp(8; + Box1 + B323 + Baxz2)/{1 +
exp(f1 + B2x1 + B33 + Bawa)}, N(z1,02), and N (z2,02,), respectively. In order to generate
random deviates from the conditional distribution of (X7, X3) given (Y, Wy, W5) we use a rejection
sampling scheme. Using Baye’s rule the conditional density is derived as

e(xlv X2, y)p(xla .’E2|U)1, ’LUQ)
normalizing constant

p(x1a$2‘yawlaw2): 7y2071a

where
0 __exp{(B1 + Baw1 + B3af + Paxa)y}
(551 , L2, y) = P .
{1+ exp(B1 + Baw1 + B32] + Paw2)}

We note that this is a different but equivalent representation for the conditional density of X =
(X1,X>2) given Y and W = (W7, W5) than that given by equation (4.3) that lends itself more easily
to rejection sampling. Consequently, if we could generate a random (X7, X5) from the conditional
density p(z1, z2|ws, wa), then we could generate from the conditional density p(x1, z2|y, w1, w2)
by keeping this (X7, X2) if another randomly generated uniform random variable is less than
0(x1,x2,y), otherwise, repeating this process until we keep such an (X1, X5).

Even though the true underlying distribution of (X7, X3) was a bivariate normal with posi-
tive correlation, for the purposes of Monte-Carlo data generation, we took X; and X5 to be inde-
pendent normal random variables. This not only facilitates the ease in generating random draws
but also serves to show the robustness of the method to misspecification. Specifically, we took
X; ~ N(y;, crjz«), Jj = 1,2 where p; and 032. were estimated using the sample average and sample
variance of the W;’s. Clearly, not allowing for correlation of X; and X, and overestimating the
variance by using the sample variance of the measured with error 1¥’s leads to misspecification. For
such a scenario random deviates from the distribution of (X5, X3) given (W7, W3) can be generated

by taking independent
X. o N (UJZWJ' o 030l )
] .

2 2 ’ 2 2
0j +0g 0510

We conducted 1000 simulations, each with sample size n = 500. For the Landweber-Fridman
regularization scheme we found that the regularization parameter # = .6 and the regularization
parameter integer ¢ = 4 worked well, although we found the results to be insensitive to slight
deviations from these values. (We illustrate by also giving results for ¢ = 3). For the first stage of
the stochastic approximation using (5.6) we used 50 iterations with m = 100. We found that this
was sufficient to give us a reasonable approximation to the desired estimator but would not give us
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a good estimator for the gradient matrix. Therefore, we also used an additional 20,000 iterations for
the second stage of the stochastic approximation using (5.9) with m = 1 and random perturbations
generated from a normal distribution with mean zero and standard deviation of .05. The estimator
was obtained using (5.10), the asymptotic variance matrix of the estimator was estimated using the
sandwich variance (6.3), and 95% confidence intervals were constructed using the estimate + 1.96
estimated standard errors. For comparison, we also considered the naive estimator (5.7), where the
parameters were estimated using standard logistic regression maximum likelihood with W instead
of X in the quadratic logistic regression model.

The results of the simulations are summarized in Table 1. As expected, the naive estimators for
[ are severely biased whereas the locally efficient estimators all give good results. These estimators
exhibit little bias, the average of the estimated variances closely approximates the Monte-Carlo
variance, and the proportion of times that the estimated 95% confidence interval covers the true
value is close to the nominal level.

Table 1: Bias, variance and coverage probabilities of the naive, and locally efficient semiparametric
estimators for the quadratic logistic regression model with normal measurement error

Estimator B1(=1)  B2(0.7) B3(0.7) S4(0.5)
naive mean —0.85 0.53 0.49 0.28
emp sd 0.17 0.19 0.08 0.12
est sd 0.16 0.19 0.09 0.12
emp cov 0.83 0.83 0.31 0.55
semipar (f = 4) | mean —1.01 0.74 0.73 0.51
emp sd 0.23 0.30 0.14 0.19
est sd .0.23 0.30 0.14 0.19
emp cov 0.94 0.94 0.95 0.95
semipar (f = 3) | mean —1.00 0.74 0.73 0.50
emp sd .0.23 0.29 0.13 0.19
est sd 0.23 0.30 0.15 0.19
emp cov 0.95 0.94 0.96 0.94

semipar (¢ = 4) and semipar (¢t = 3) denote the locally efficient semiparametric estimators derived
using the regularization parameter ¢ equal to 4 and 3, respectively; emp sd is the empirical Monte-
Carlo standard deviation of the estimators; est sd is the average of the estimated standard deviations;
emp cov is the proportion of the simulations whose estimated 95% confidence intervals cover the
true value of the parameters.
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8 Discussion

Using the Landweber-Fridman regularization scheme for solving ill-posed integral equations to-
gether with Monte-Carlo methods for estimating the elements in this regularization scheme and
stochastic approximation to obtain solutions to the estimating equation we showed how to obtain a
locally efficient semiparametric estimator for the regression parameters in a functional measurement
error model. By adding additional perturbation in the stochastic approximation we were also able
to estimate the asymptotic variance of the proposed estimator. These methods are general enough to
be applied to a wide variety of regression models with multiple covariates measured with error that
were too difficult to solve using existing methodology.

We illustrated our method by considering a quadratic logistic regression model with two covari-
ates measured with error. The algorithm was programmed in FORTRAN and it took about 5 minutes
on average on a Pentium Dual Core 2.13 GHz 2GB RAM computer to obtain results for a single run
with a sample size of 500. Because of the manner in which the algorithm works an increase in
the sample size or the number of covariates measured with error would increase the running time
linearly rather than exponentially which would be necessary for existing methods.

There is still the issue of how to best choose the tuning parameters that are used for the Landweber-
Fridman regularization scheme and the stochastic approximation. The most time consuming part of
this process was obtaining a good estimator for the gradient matrix. In our example, we experi-
mented with different values of these tuning parameters until we obtained answers that were stable.
For the range of measurement error we were considering, the choice of § = .6 and t = 3 as the
regularization parameters seemed to work reasonable well. At this point we cannot give firm recom-
mendations on the number of iterations or the magnitude of the perturbations to use in general and
suggest that one experiments with these until the results stabilize.

A Deriving the Adjoint
We need to show that for any g(X,Z) € G and h(Y, W, Z) € H that
(A{g(X, 2)}, n(Y, W, Z)) = (9(X, Z), A{M(Y, W, Z2)}),

where (g1, g2) = E(g¥ g2). This follows because

B|BU" (X, 2)[¥. W, ZW0(Y. W.2)| = E| Blg" (X, 2)W(Y. W. )Y, W, 2}

— B{"(X. Z)h(Y. W, 2)} = E| B{g" (X, Z)h(Y. W, Z)|X, Z}}

— B|g" (X, 2B W 2)|x,2)]
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