
Journal of Statistical Research ISSN 0256 - 422 X
2012, Vol. 46, No. 2, pp. 91-103

MEDIATION ANALYSIS WITHOUT SEQUENTIAL IGNORABILITY:
USING BASELINE COVARIATES INTERACTED WITH RANDOM

ASSIGNMENT AS INSTRUMENTAL VARIABLES

DYLAN S. SMALL

Department of Statistics, The Wharton School of the University of Pennsylvania
Philadelphia, PA 19104, USA

Email: dsmall@wharton.upenn.edu

Editor’s note: For a commentary on this article by ElizabethL. Ogburn, please see page 103.

SUMMARY

In randomized trials, researchers are often interested in mediation analysis to understand
how a treatment works, in particular how much of a treatment’s effect is mediated by an in-
termediated variable and how much the treatment directly affects the outcome not through
the intermediate variable. The standard regression approach to mediationanalysis assumes
sequential ignorability of the mediator, that is that the mediator is effectivelyrandomly
assigned given baseline covariates and the randomized treatment. Sincethe experiment
does not randomize the mediator, sequential ignorability is often not plausible. Ten Have et
al. (2007,Biometrics), Dunn and Bentall (2007,Statistics in Medicine) and Albert (2008,
Statistics in Medicine) presented methods that use baseline covariates interacted with ran-
dom assignment as instrumental variables, and do not require sequential ignorability. We
make two contributions to this approach. First, in previous work on the instrumental vari-
able approach, it has been assumed that the direct effect of treatment and the effect of the
mediator are constant across subjects; we allow for variation in effects across subjects and
show what assumptions are needed to obtain consistent estimates for this setting. Second,
we develop a method of sensitivity analysis for violations of the key assumption that the
direct effect of the treatment and the effect of the mediator do not depend on the baseline
covariates.

Keywords and phrases: Causal Inference, Mediation Analysis, Instrumental Variables.

1 Introduction

Randomized trials are explicitly designed to estimate the effects of treatments but not how those
effects occur. Yet, many researchers are interested in how treatments that are evaluated using ran-
domized experiments achieve their effects. Mediation analysis seeks to open up the “black box”
of a treatment and explain how it works. For example, the PROSPECT study (Bruceet al., 2004)
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evaluated an intervention for improving treatment of depression in the elderly in primary care prac-
tices. The intervention consisted of having a depression specialist (typically a master’s-level clin-
ician) closely collaborate with the depressed patient and the patient’s primary care physician to
facilitate patient and clinician adherence to a treatment algorithm and provide education, support
and ongoing assessment to the patient. The intervention significantly reduced depression (as mea-
sured by the Hamilton test) four months after baseline. Researchers of this study are interested in
to what extent the effect of the intervention can be explained by its increasing use of prescriptive
anti-depressant medication as compared to other factors. Understanding the mechanism by which
a treatment achieves its effects can help researchers and policymakers design more effective treat-
ments (Gennetian, Bos and Morris, 2002; Kraemer et al., 2002). For example, if the PROSPECT
study intervention achieves its effects primarily throughincreasing use of antidepressants, then a
more cost-effective intervention might be designed that has the depression specialist focus her time
only on increasing use of antidepressants.

The standard approach to mediation analysis (Judd and Kenny, 1981; Baron and Kenny, 1986;
MacKinnon et al., 2002) makes a strongsequential ignorability assumption that, in addition to the
intervention being randomly assigned, the mediating variable (e.g., antidepressant use) is also effec-
tively randomly assigned given the assigned intervention and the measured confounding variables
(i.e., the mediating variable is sequentially ignorable, meaning that there are no unmeasured con-
founders of the mediating variable-outcome relationship)(Ten Have et al., 2007). In the PROSPECT
study, potential unmeasured confounders of the mediating variable (antidepressant use)-outcome
(depression) relationship include medical comorbiditiesduring the follow-up period, which deter
elderly depressed patients from taking antidepressant medications because of so many other med-
ications that are necessitated by their medical comorbidities and also predisposes patients to more
depression (Ten Have et al., 2007). To address such unmeasured confounding, Ten Have et al.
(2007) develop an alternative approach to mediation analysis that allows for unmeasured confound-
ing but relies on having a baseline covariate that interactswith random assignment in predicting the
mediating variable, and does not modify the effects of the mediating variable or the direct effect
of the randomized treatment. For example, for the PROSPECT study, Ten Have et al. considered
the following baseline covariates: baseline depression and baseline suicide ideation. Ten Have et
al.’s approach to mediation analysis uses a rank preservingmodel for causal effects and g-estimation
(Robins, 1994). The assumption underlying Ten Have et al.’sapproach, that there is a baseline co-
variate that interacts with random assignment in predicting the mediating variable but that does not
modify the effect of the mediating variable or the direct effect of the randomized assigned treatment,
can be viewed as an assumption that the baseline covariate interacted with random assignment is an
instrumental variable (IV) for the mediating variable in a structural equation model. Dunn and Ben-
tall (2007) show that two stage least squares estimation of this structural equation model with the
baseline covariate interacted with random assignment as anIV produces essentially equivalent re-
sults to that ofg-estimation of the rank preserving model. Gennetian, Bos and Morris (2002), Albert
(2008) and Joffe et al. (2008) provide further discussion ofthis two stage least squares approach.

This paper makes two contributions to the approach of using baseline covariates interacted with
random assignment as IVs for mediation analysis when sequential ignorability does not hold. First,
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in previous work on the instrumental variable approach, it has been assumed that the effect of the
mediator and the direct effect of treatment are constant across subjects; we allow for variation in
effects across subjects and show what assumptions are needed to obtain consistent estimates for this
setting. Second, we develop a method of sensitivity analysis for violations of the key assumption
that the direct effect of the treatment and the effect of the mediator do not depend on the baseline
covariates.

Our paper is organized as follows. Section 2 provides the notation and setup. Section 3 de-
scribes the model we will consider. Section 4 reviews the standard regression approach to mediation
analysis. Section 5 presents the instrumental variables approach. Section 6 develops a method of
sensitivity analysis for the effect of departures from the key assumption that the baseline covariate
does not modify the causal effects of the random assignment or the mediating variable. The methods
are applied to the PROSPECT study.

2 Setup and Notation

We assume there areN subjects who are an iid sample from a population. We assume that the
treatmentR is randomized.

The observed variables for subjecti are the following:Yi is the observed outcome,Ri is the
observed randomized zero-one treatment assignment,Xi is a vector of observed baseline covariates
other than treatment assignment andMi is the observed mediation variable. The potential outcomes
for subjecti areY

(r,m)
i , r = 0 or 1 andm ∈ M whereM is the set of possible values the

mediating variable can take on;Y (r,m)
i is the outcome variable that would be observed if subject

i were randomized to levelr of the treatment and through some hypothetical mechanism were to
receive or exhibit levelm of the mediator. To establish a unique potential outcome, weassume that
all such hypothetical mechanisms lead to the same potentialoutcome (Ten Have et al., 2007). The
observed outcomeYi is equal toY (Ri,Mi)

i . The potential mediating variables for subjecti areM (r)
i ,

r = 0 or 1; M (r)
i is the level of the mediating variable that would be observedif subject i were

assigned levelr is the level of the mediating variable of the treatment. The observed mediating
variableMi equalsM (Ri)

i .
We let the random variablesY,R,X, Y (r,m)(r = 0, 1,m ∈ M),M (r)(r = 0, 1) be the values of

the observed outcome, treatment assignment, baseline covariates, potential outcomes and potential
mediating variables for a randomly chosen subject from the population.

We consider the following model for potential outcomes:

Y
(r,m)
i = Y

(0,0)
i + θMi

m+ θRi
r, (2.1)

where the(Y (0,0)
i , θMi

, θRi
) are iid random vectors. HereθMi

represents the effect for subjecti of
a one unit increase in the mediator on the outcome holding thetreatment fixed at any levelr. The
parameterθRi

represents the direct effect for subjecti of the treatment on the outcome holding the
mediator fixed at any levelm. Let θM = E(θMi

) be the average effect of a one unit increase in the
mediator andθR = E(θRi

) be the average direct effect of the treatment.
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3 Review of Standard Regression Approach

The standard regression approach of Baron and Kenny (1986) is to estimateθM andθR by least
squares regression ofYi on Mi andRi. Under the maintained assumption thatR is randomized,
the standard regression approach provides consistent estimates ofθM andθR under the additional
assumption thatM is sequentially ignorable givenR:

Mi⊥⊥Y
(Ri,m)
i ,m ∈ M, (3.1)

whereM is the set of possible values of the mediating variableM . The sequentially ignorable
assumption (3.1) means thatM is effectively randomly assigned givenR. Under model (2.1), the
sequential ignorability assumption (3.1) is equivalent to

Mi⊥⊥Y
(0,0)
i , θMi

, θRi
. (3.2)

See Imai, Keele and Yamamoto (2010) for further discussion of the sequential ignorability assump-
tion. The sequentially ignorable assumption (3.1) will be violated if there are confounders of the
mediator-outcome relationship. Measured baseline confounders of the mediator-outcome relation-
ship can be controlled for by controlling for these confounders in the regression. If there are mea-
sured postbaseline confounders, the regression on the measured confounders will produce an unbi-
ased estimate ofθM but notθR; to obtain an unbiased estimate ofθR, Y − θ̂M can be regressed on
R (Vansteelandt, 2009; Ten Have and Joffe, 2010).

4 Instrumental Variables Approach

The standard regression approach can only control for measured confounders of the mediator-
outcome relationship. The IV approach using baseline covariates interacted with treatment assign-
ments can control for unmeasured confounders when baselinecovariate(s) interacted with treatment
assignment are valid IVs. This IV approach for mediation analysis models has been discussed by
Dunn and Bentall (2007) and Albert (2008), and the closely relatedg-estimation approach has been
discussed by Ten Have et al. (2007). These authors have considered models in which the direct
effect of treatment and the effect of the mediating variableare the same for all subjects. We will
allow these effects to vary from subject to subject as in (2.1) and provide conditions needed for the
instrumental variable to be consistent.

Denote a vector of baseline covariates byX. We assume that the association ofX with the
potential outcomes is linear:

E(Y (0,0)|X) = α+ βT
X (4.1)

Then, we can write the observed dataYi as

Yi = βT
Xi + θRRi + θMMi + ǫi,

ǫi = (θRi
− θR)Ri + (θMi

− θM )Mi + Y
(0,0)
i − E(Y

(0,0)
i |Xi) (4.2)
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The least squares regression ofY on X, R andM will produce biased estimates if there are un-
observed confounders of the mediator-outcome relationship that makeǫi correlated withMi. The
method of instrumental variables (IVs) seeks to replaceMi with its expectation given instrumental
variables that help to predictMi and are uncorrelated withǫi. The interactions between the baseline
covariatesX andR are valid IVs if the following conditions hold:

(IV-A1) The interaction betweenR andX is helpful for predictingM in a linear model, i.e.,E∗(M |R,X) 6=
E∗(M |R,X, RX) whereE∗(M |A) = argminλE(M−λT

A)2 denotes the best linear pre-
dictor ofM givenA.

(IV-A2) The average direct effect of the treatment givenX, E(θRi
|Xi = X), is the same for allX,

i.e.,E(θRi
|Xi) = X) = θR for all X. Likewise, the average effect of the mediating variable

givenX, E(θMi
|Xi = X), is the same for allX, i.e.,E(θMi

|Xi = X) = θM for all X.

(IV-A3) The value of the mediating variable is independent of the effect of the mediating variable
given the treatment and the baseline covariates

Mi⊥⊥θMi
|Ri,Xi (4.3)

(IV-A1) says thatRX helps to predictM . (IV-A2) and (IV-A3), and the assumption thatR is
randomly assigned, together guarantee thatRX is uncorrelated withǫi, which we show in the fol-
lowing.

Proposition 4.1. Under (IV-A2) and (IV-A3) and the assumption that R is randomly assigned, each
component of R×Xi is uncorrelated with ǫi.

Proof. Consider a component ofR×Xi, RXi1. From (4.2),ǫi = (θRi
−θR)Ri+(θMi

−θM )Mi+

{Y (0,0)
i −E(Y

(0,0)
i |Xi)}. We will prove thatCov(RXi1, ǫi) = 0 by showing thatRXi1 is uncorre-

lated with each of the three summands that make upǫi, namely(i) Cov(RXi1, (θRi
− θR)Ri) = 0;

(ii) Cov(RXi1, (θMi
− θM )Mi) = 0 and(iii) Cov(RXi1, Y

(0,0)
i − E(Y

(0,0)
i |Xi)) = 0. For (i),

sinceRi is randomized, we haveE[(θRi
− θR)Ri] = 0 so thatCov(RiXi1, (θRi

− θR)Ri) =

E(RiXi1(θRi
− θR)Ri). Furthermore, we have

E(RiXi1(θRi
− θR)Ri) = E(R2

i )E(Xi1(θRi
− θR))

= 0,

where the first equality follows from the fact thatR is randomized and the second equality follows
from (IV-A2). This proves(i). For(ii), we first note that

E[(θMi
− θM )Mi] = E[E[(θMi

− θM )Mi|Ri,Xi]]

= E[E[(θMi
− θM )|Ri,Xi]E[Mi|Ri,Xi]]

= 0,
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where the second equality follows from (IV-A3) and the thirdequality follows from (IV-A2) and the
fact thatR is randomized. Thus,Cov(RiXi1, (θMi

− θM )Mi) = E(RiXi1(θMi
− θM )Mi), and

E(RiXi1(θMi
− θM )Mi) = E[E[RiXi1(θMi

− θM )Mi|Ri,Xi]]

= E[RiXi1E[(θMi
− θM )Mi|Ri,Xi]

= E[RiXi1E[(θMi
− θM )|Ri,Xi]E[Mi|Ri,Xi]]

= 0,

where the third equality follows from (IV-A3) and the fourthequality follows from (IV-A2) and the
fact thatR is randomized. This proves(ii). For(iii),

Cov(RiXi1, Y
(0,0)
i − E[Y

(0,0)
i |Xi]) = E[RiXi1{Y (0,0)

i − E[Y
(0,0)
i |Xi]}]

= E(Ri)E[Xi1{Y (0,0)
i − E[Y

(0,0)
i |Xi]}]

= 0,

where the second equality follows fromR being randomized and third equality from properties of
conditional expectation. This proves(iii). �

Assumption (IV-A3) is weaker than the sequential ignorability assumption (3.1) because (IV-
A3) does not say thatY (0,0)

i is independent ofMi. Assumption (IV-A3) says that the level of
the mediating variable is independent of the effect the mediating variable has, while sequential
ignorability says that not only is the level independent of the effect, but also the level is independent
of all the person’s potential outcomes. In the context of thePROSPECT study, (IV-A3) says that
antidepressant use is independent of the effect that the antidepressant would have, while sequential
ignorability says that not only is antidepressant use independent of its effect, but antidepressant use
is also independent of unmeasured medical comorbidities and any other unmeasured variables that
affect depression. Note that (IV-A3) is automatically satisfied if θRi

andθMi
are the same for all

subjects as is assumed by Ten Have et al. (2007), Dunn and Bentall (2007) and Albert (2008).
Under (IV-A2)-(IV-A3), we have

E∗(Y |R,X, R×X) = α+ βT
X+ θRR+ θME∗(M |R,X, R×X) + E∗(ǫ|R,X, R×X)

= α+ βT
X+ θRR+ θME∗(M |R,X, R×X),

The two-stage least squares estimates ofθR andθM are found as follows:

1. RegressM onR,X andR×X using least squares and obtain the predicted valuesÊ(M |R,X, R×
X).

2. RegressY onR, X andÊ(M |R,X, R ×X) using least squares. The coefficient onR is θ̂R

and the coefficient on̂E(M |R,X, R×X) is θ̂M .

Using the theory of instrumental variables for single-equation linear models (Wooldridge, 2002,
Ch. 5), the two stage least squares estimates are consistentunder (IV-A1)-(IV-A3) because(i)
Cov(R×X, ǫ) = 0 under (IV-A2)-(IV-A3) and(ii) the coefficient onR×X in the linear projection
of Y ontoR, X andR×X is not0 under (IV-A1).
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We now discuss the variance-covariance matrix ofκ̂ = (α̂, β̂, θ̂R, θ̂M ). First, consider the
following additional assumptions:

(AA-1) The distribution of the direct effect of the treatment and the effect of the mediating variable
do not depend onXi,

θR,i, θM,i⊥⊥Xi.

(AA-2) Var({Y (0,0)
i − E(Y

(0,0)
i )}|Xi = X) is the same for allX.

Under (AA-1)-(AA-2), theV ar(ǫi|Ri,Xi) is the same for allRi,Xi. Then a consistent estimate
of the variance-covariance matrix ofκ̂ is σ̂2

ǫ (A
T
A)−1 whereσ̂2

ǫ = 1
N

∑N

i=1 ǫ̂
2
i , ǫ̂i = Yi − α̂ −

β̂
T
Xi− θ̂RRi− θ̂MMi andA is a matrix withN rows consisting of a column of ones, columns for

each of the variables inX for theN subjects, a column of the values ofR for theN subjects and a
column of the values of̂E∗(M |R,X, R ×X) for theN subjects (Wooldridge, 2002, Ch. 5). By a
consistent estimate of the covariance matrix, we mean that

√
N ˆCov(κ̂N ) is a consistent estimator

of
√
NCov(κ̂N ), whereκ̂N is the two stage least squares estimator ofκ based onN observations.

Suppose that either (a) theY (0,0)
i −E(Y

(0,0)
i |Xi) have a distribution that depends onXi; and/or

(b) the direct effects of treatment and the effect of the mediating variable have a distribution that
might depend onX but the mean is the same for allX, i.e.,E(θR,i|Xi) = θR andE(θM,i|Xi) =

θM . Then, the two stage least squares estimate remains consistent, but the usual standard error might
be inconsistent. A consistent estimate of the covariance matrix under regularity conditions (White,

1982; Wooldridge, 2002, Ch. 5.2.5) is the “sandwich” estimator, (AT
A)−1

(

∑N

i=1 ǫ̂
2
iA

T
i Ai

)

(AT
A)−1,

whereAi = (1,Xi, Ri,Mi)
T .

Inferences from two stage least squares become unreliable if the IV(s) are “weak,” which in our
setting means that the interaction betweenR andX is only a weak predictor ofM in the linear
model, i.e.,E∗(M |R,X, RX). Specifically, when the IV(s) are weak, the two stage least squares
estimates can have a large bias in the direction of the ordinary least squares estimates ofY onX,
R andM , and the coverage of the confidence intervals for the two stage least squares estimates can
be poor (Bound, Jaeger and Baker, 1995). Stock, Wright and Yogo (2002) provided a criterion for
when IV inference is reliable based on the partialF statistic for testing that the coefficient on the
R×X variable are zero from the first stage regression ofM onR, X andR×X. Inference can be
expected to reliable when thisF statistic is greater than 8.96, 11.59, 12.83, 15.09, 20.88 and 26.80
for 1, 2, 3, 5, 10 and 15 variables inX respectively. This criterion is based on the goal of having a
nominal0.05 level test of the coefficient onM have at most actual level0.15, and the chance that
we falsely say that a nominal0.05 level test ofM has at most actual level0.15 be at most0.05.

In our notation, we have assumed that all of the baseline variablesX that we control for are
interacted with the randomized interventionR to form instrumental variables. We might want to
control for additional baseline variablesZ that we do not think satisfy (IV-A2); controlling for
these additional baseline variables might increase precision. In order to control for such additional
baseline variablesZ, we includeZ in both the first and second stage regressions but do not useR×Z

as instrumental variables.
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Figure 1: Box plots of the outcome in the intervention and control groups.

4.1 Application to PROSPECT study

We use the PROSPECT study data set provided by Ten Have et al. (2007) under the Article Informa-
tion link at theBiometrics website http://www.tibs.org/biometrics. There are 297 subjects, 145 were
randomized to the intervention and 152 to the control. The outcome is the subject’s Hamilton score
(a measure of depression, with a higher score indicating more depression) four months after the
intervention. Figure 1 shows the distribution of the outcome in the intervention and control groups.

The mediating variable is an indicator for whether the subject used antidepressants during the
period from the intervention to four months after the intervention. The intervention significantly
increases the mediator – the intervention is estimated to multiply the odds of antidepressant use by
6.7 with a 95% confidence interval of (3.9, 11.7).

The second row of Table 1 shows estimates from the standard regression approach. The baseline
covariates used are(i) an indicator of whether the subject had used antidepressants in the past and
(ii) a baseline ordinal measure of antidepressant use that ranges from 0 (no baseline use of antide-
pressants) to 4 (highest level of baseline use of antidepressants). The intervention is estimated to
have a direct effect of reducing depression and antidepressant use is estimated to reduce depression,
but neither effect is significant.

Following Ten Have et al. (2007), we consider as instrumental variables the interaction between
the randomized intervention and the baseline covariates. The partialF statistic for the instruments
in the first stage regression is27.13 indicating that these are not weak instruments. The two stage
least squares estimates are shown in the third row of Table 2.The confidence intervals are based on
the assumption that theǫi are homoskedastic, but the confidence intervals are similarif we use the
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sandwich covariance estimates that allow for heteroskedasticity.

Method Direct effect of intervention Mediator effect

Standard Regression -1.67 (-3.69, 0.36) -1.02 (-3.40, 1.36)

IV -0.94 (-3.92,2.04) -2.87 (-8.89, 3.15)

Table 1: Estimates for the direct effect of the interventionand the mediator (antidepressant use)
effect in the PROSPECT study. 95% confidence intervals are inparentheses.

5 Sensitivity Analysis

In this section, we will consider the sensitivity of inferences to violations of assumption (IV-A2) that
the average direct effect of the treatment givenX and the average effect of the mediating variable
givenX are the same for allX. Consider the following parametric family of violations ofassumption
(IV-A2):

E[θRi
|Xi = X] = θR + τT

R(Xi − E[X]),

E[θMi
|Xi = X] = θM + τT

M (Xi − E[X]). (5.1)

(IV-A2) is satisfied ifτR = 0 andτM = 0. Suppose we know the value ofτR, τM andE[X].
Then, we can write,

Yi −Riτ
T
R(Xi − E[X])−Miτ

T
M (X− E[X]) = βT

Xi + θRRi + θMMi + ǫi,

ǫi = (θRi
− E(θRi

|Xi))Ri + (θMi
− E(θMi

|Xi))Mi + Y
(0,0)
i − E(Y

(0,0)
i |Xi) (5.2)

Now, we show thatRi ×Xi are valid IVs for estimatingθR andθM when the response variable
is Yi − τT

R(Xi − E[X])− τT
M (Xi − E[X].

Proposition 5.1. Under (5.1), (IV-A3) and the assumption that R is randomly assigned, each com-
ponent of R×Xi is uncorrelated with ǫi.

Proof. Consider a component ofR × Xi, RXi1. From (5.2),ǫi = (θRi
− E(θRi

|Xi))Ri +

(θMi
− E(θMi

|Xi))Mi + {Y (0,0)
i − E(Y

(0,0)
i |Xi)}. We will prove thatCov(RXi1, ǫi) = 0 by

showing thatRXi1 is uncorrelated with each of the three summands that make upǫi, namely(i)
Cov(RXi1, (θRi

− E(θRi
|Xi))Ri) = 0; (ii) Cov(RXi1, (θMi

− E(θMi
|Xi))Mi) = 0 and(iii)

Cov(RXi1, Y
(0,0)
i − E(Y

(0,0)
i |Xi)) = 0. For (i), sinceRi is randomized, we haveE[(θRi

−
E(θRi

|Xi))Ri] = 0 so thatCov(RiXi1, (θRi
−E(θRi

|Xi))Ri) = E(RiXi1(θRi
−E(θRi

|Xi))Ri).
Furthermore, we have

E(RiXi1(θRi
− E(θRi

|Xi))Ri) = E(R2
i )E(Xi1(θRi

− E(θRi
|Xi)))

= 0,
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where the first equality follows from the fact thatR is randomized and the second equality follows
from properties of conditional expectation. This proves(i). For(ii), we first note that

E[(θMi
− E(θMi

|Xi))Mi] = E[E[(θMi
− E(θMi

|Xi))Mi|Ri,Xi]]

= E[E[θMi
− E(θMi

|Xi)|Ri,Xi]E[Mi|Ri,Xi]]

= 0,

where the second equality follows from (IV-A3) and the thirdequality follows from the fact thatR is
randomized and properties of conditional expectation. Thus,Cov(RiXi1, (θMi

−E(θMi
|Xi))Mi) =

E(RiXi1(θMi
− E(θMi

|Xi))Mi), and

E(RiXi1(θMi
− E(θMi

|Xi))Mi) = E[E[RiXi1(θMi
− E(θMi

|Xi))Mi|Ri,Xi]]

= E[RiXi1E[(θMi
− E(θMi

|Xi))Mi|Ri,Xi]]

= E[RiXi1E[(θMi
− E(θMi

|Xi))|Ri,Xi]E[Mi|Ri,Xi]]

= 0,

where the third equality follows from (IV-A3) and the fourthequality follows from the fact thatR is
randomized and properties of conditional expectation. This proves(ii). For(iii),

Cov(RiXi1, Y
(0,0)
i − E[Y

(0,0)
i |Xi]) = E[RiXi1{Y (0,0)

i − E[Y
(0,0)
i |Xi]}]

= E(Ri)E[Xi1{Y (0,0)
i − E[Y

(0,0)
i |Xi]}]

= 0,

where the second equality follows fromR being randomized. This proves(iii). �
Based on Proposition 2, we can make inferences forθR andθM under (IV-A1), (IV-A3) and

(5.1) by replacingYi byYi−Riτ
T
R(Xi−E[X])−Miτ

T
M (X−E[X]) in the two stage least squares

inference procedure from Section 5. Specifically, for givenvalues ofτR andτM , we regressY −
RτT

R(X−E[X])−MτT
M (X−E[X]) onR, X andÊ(M |R,X, R×X) using least squares. Then,

the estimated values ofθR andθM givenτR, τM are the coefficients onR andÊ(M |R,X, R×X)

respectively. The variance-covariance matrix of the estimate ofκ = (α,β, θR, θM ) givenθR and
θM is σ̂2

ǫ (A
T
A)−1 where nowσ̂2

ǫ = 1
N

∑N

i=1[Yi − Riτ
T
R(Xi − E[X]) − Miτ

T
M (X − E[X]) −

α̂− βT
Xi − θ̂RRi − θ̂MMi]

2.
To carry out a sensitivity analysis for possible violationsof the assumption (IV-A2) that the

average direct effect of the treatment givenX and the average effect of the mediating variable given
X are the same for allX, we consider how inferences vary over plausible values ofτR andτM .
The sensitivity parametersτR andτM have the following interpretation: thejth component ofτR

says how much does a one unit increase in thejth component ofX change the direct effect of the
treatment; thejth component ofτM says how much does a one unit increase in thejth component
of X change the effect of the mediator. Shepherd, Gilbert and Mehrotra (2007) discuss methods for
eliciting plausible values of sensitivity parameters fromsubject matter experts.

Table 2 shows the results of a sensitivity analysis for the PROSPECT study. We considered
values ofτR that allowed for the direct effect of the treatment to increase by one point for subjects
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who used antidepressants in the past compared to those subjects who did not use antidepressants in
the past and the direct effect of the treatment to increase byone point for subjects who had a one
category higher baseline use of antidepressants; we also considered values ofτM that allowed for
the effect of the mediator to be one point higher for subjectswho used antidepressants in the past
compared to those subjects who did not use antidepressants in the past and the effect of the mediator
to be one point higher for subjects who had a one category higher baseline use of antidepressants.
Table 2 shows that inferences about the direct effect of the intervention and the mediator effect are
fairly sensitive to violations of the assumption (IV-A2) inthe range considered. The point estimates
of the direct effect of the intervention range from -3.63 to 0.94 and the point estimates of the mediator
effect range from -2.87 to 5.33.

τR τM Direct effect of intervention Mediator effect

(0,0) (0,0) -0.94 (-3.92,2.04) -2.87 (-8.89, 3.15)

(0,1) (0,0) -2.75 (-5.73, 0.24) 1.73 (-4.03, 7.76)

(1,0) (0,0) -1.58 (-4.54, 1.39) -1.24 (-7.24, 4.77)

(1,1) (0,0) -3.39 (-6.39, -0.38) 3.36 (-2.73, 9.45)

(0,0) (0,1) -1.03 (-4.00, 1.94) -1.62 (-7.63, 4.40)

(0,1) (0,1) -2.84 (-5.84, 0.16) 2.98 (-3.09, 9.05)

(1,0) (0,1) -1.67 (-4.64, 1.30) 0.02 (-5.99, 6.02)

(1,1) (0,1) -3.48 (-6.51, -0.45) 4.61 (-1.52, 10.75)

(0,0) (1,0) -1.09 (-4.06, 1.88) -2.16 (-8.18, 3.86)

(0,1) (1,0) -2.90 (-5.89, 0.09) 2.44 (-3.61, 8.49)

(1,0) (1,0) -1.73 (-4.70, 1.24) -0.52 (-6.53, 5.48)

(1,1) (1,0) -3.54 (-6.57, -0.51) 4.07 (-2.05, 10.20)

(0,0) (1,1) -1.18 (-4.16, 1.79) -0.91 (-6.92, 5.11)

(0,1) (1,1) -2.99 (-6.01, 0.02) 3.69 (-2.41, 9.79)

(1,0) (1,1) -1.82 (-4.80, 1.15) 0.73 (-5.29, 6.75)

(1,1) (1,1) -3.63 (-6.69, -0.58) 5.33 (-0.86, 11.51)

Table 2: Estimates for the direct effect of the interventionand the mediator (antidepressant use)
effect in the PROSPECT study under different values of the sensitivity parametersτR andτM . The
first component ofτR andτM corresponds to past antidepressant use and the second component
corresponds to baseline antidepressant use. 95% confidenceintervals are in parentheses.
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6 Discussion

The standard regression approach to mediation analysis assumes sequential ignorability of the me-
diator, that is that the mediator is effectively randomly assigned given baseline covariates and the
randomized treatment. Since the experiment does not randomize the mediator, sequential ignorabil-
ity is often not plausible. Ten Have et al. (2007,Biometrics), Dunn and Bentall (2007,Statistics in
Medicine) and Albert (2008,Statistics in Medicine) presented methods that use baseline covariates
interacted with random assignment as instrumental variables, and do not require sequential ignor-
ability. In this paper, we have discussed the setting in which there is variation in effects across
subjects and shown what assumptions are needed to obtain consistent estimates for this setting when
using baseline covariates interacted with random assignment as instrumental variables. We have
also developed a method of sensitivity analysis for violations of the assumption that the baseline co-
variates interacted with random assignment are valid instrumental variables, in particular violations
of the assumption that the direct effect of the treatment andthe effect of the mediator do not depend
on the baseline covariates. Gennetian, Bos and Morris (2002) have discussed baseline covariates
that might be approximately valid instrumental variables when interacted with the randomized in-
tervention, such as site in a multisite randomized experiments and baseline characteristics such as
age or gender. These authors also identified potential concerns that the effect of the mediator or
the direct effect of the treatment might vary with these baseline variables. Our sensitivity analy-
sis method is useful for quantifying what inferences can be made under plausible violations of the
assumption that the effect of the mediator or the direct effect of the treatment does not vary with
baseline characteristics.

Dedication

This paper is dedicated to my friend and mentor Tom Ten Have. Tom provided a lot of insightful
suggestions in the early stage of this work, and unfortunately passed away before I could discuss the
later stages of the work with him.
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