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SUMMARY

We introduce the Interactive Decision Committee method for classificaticen viligh-
dimensional feature variables are grouped into feature categoriespréposed method
uses the interactive relationships among feature categories to buildlbas#iers which
are combined using decision committees. A two-stage or a single-stagjd 5rbss-
validation technique is utilized to decide the total number of base classifieesttibined.
The proposed procedure is useful for classifying biochemicals obakis of toxicity ac-
tivity, where the feature space consists of chemical descriptors aneldpenses are binary
indicators of toxicity activity. Each descriptor belongs to at least oneri¢sccategory.
The support vector machine, the random forests, and the tree-Bds&bost algorithms
are utilized as classifier inducers. Forward selection is used to sele@ghedmbinations
of the base classifiers given the number of base classifiers. Simulat@iasdemonstrate
that the proposed method outperforms a single large, unaggregassdietan the pres-
ence of interactive feature category information. We applied the peapoethod to two
toxicity data sets associated with chemical compounds. For these datthsgispposed
method improved classification performance for the majority of outcarnegpared to a
single large, unaggregated classifier.

Keywords and phrasesChemical toxicity; Decision committee method; Ensemble; En-
semble feature selection; QSAR modeling; Statistical learning
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1 Introduction

The assessment of potential toxicity associated with daagsommercial chemicals is an important
topic in medicinal chemistry and toxicology. Standard ¢ityiassessment requirgsvivotesting in
animals, which is expensive, time consuming, and raisesattoncerns. For these reasons, only a
small fraction of commercial chemicals have been testeghsitely. Thus, there is increasing inter-
est in developing models for accurate toxicity predictitmbetter prioritize chemicals for testing,
with an ultimate goal of purely computational toxicity pretibn. Quantitative Structure-Activity
Relationship (QSAR) modeling is one of the most popular apgines to develop computational
toxicity models (Richard, 2006). QSAR approaches modetétaionship between chemical struc-
tures and target biological activities and the resultingleis are used to predict the target biological
activities using the chemical descriptors of new compourteigternal prediction accuracy is one
of the most important issues in QSAR modeling. However, oastently available QSAR toxic-
ity models have relatively low prediction ability for newrapounds (Stouch et al., 2003; Johnson,
2008).

The goal of this paper is to develop a new modeling proceduraprove computational models
of animal toxicity. We propose an extension of the decisiomittee method to use functional
information of existing feature categories to improve aacy of the classification model. Simula-
tion studies demonstrate that the proposed method outpesfa single classifier in the presence of
interactive association between feature categories. @ddst of our knowledge, our paper is the
first study to consider the interactive relationship amaoxigting feature categories to combine base
classifiers for more accurate classification in the decismmmittee context. To set the stage for
our contribution, we briefly introduce the basic idea of tlegidion committee method and related
issues.

The decision committee method, sometimes calladembleor classifier fusionis known to
perform better than a single classifier by integrating rplétibase classifiers which are individu-
ally trained by a deterministimducer (a mapping from a training sample to a classifier) into the
combined classification system (Opitz and Maclin, 1999;atals et al., 2008). The basic idea of
the decision committee method is that each base classifiqorozide complementary information
about the pattern to be classified, which may lead to bettdoqeance in the classification task
(Vale et al., 2008).

In addition, aggregating multiple predictions from diffet base classifiers can resolve the prob-
lem of overtraining (Shin and Markey, 2006). Aggregatiorthis procedure by which multiple
classifiers are combined into a single large classifier. Adgdwice of the aggregation rule can
improve the classification accuracy. There are many difteiggregation rules in the decision com-
mittee method literature (Clemen, 1989; Ali and Pazzarfgl ietterich, 1997). Researchers have
focused on three methods to aggregate base classifierstisglthe best one (winner takes all),
voting for the most popular class, and stacking with somerokbarning algorithm. The winner
takes all strategy selects one best base classifier. Vaiirthhé most popular class takes an average
over outputs from the base classifiers with or without weightand classifies the examples into the
class that has the most votes. Stacking (or stacked gezagrali), introduced by Wolpert (1992), is
a general method of learning with meta-level classifieragipredictions from the base classifiers
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as inputs (Sigletos et al., 2005). In this study, we combiaselclassifiers by using either voting
(majority vote) or stacking. We discuss aggregation rutedeitail later in this paper.

In the decision committee methodiversityamong base classifiers is one of the key factors
to improve classification performance, and can be even nmopertant than the aggregation rule
(Assareh et al., 2008). Lam (2000) and Shipp and Kunchev@2(2tharacterized diversity by inde-
pendence among the base classifiers (independency), tgnibemake different decisions (orthog-
onality), and complementary effects (complementaritypagbase classifiers. Krogh and Vedelsby
(1995) define diversity as disagreement among the baséfidesen feature variables. It is obvious
that there would be no accuracy gained by aggregating neiltipssifiers which provide identical
information about the classification pattern. Diverse siféeys provide varied information for the
classification patterns.

One can increase the diversity among base classifiers thresgmpling individuals as training
sets (for example, boosting (Freund and Schapire, 1997pagding (Breiman, 1996)), selecting
different subsets of feature variables (for example, theloan forests (Breiman, 2001) and the
random subspace algorithm (Ho, 1998)), or using differgpes of learning algorithms to build
base classifiers. Recent research has improved classifigagirformance further by integrating

boosting or bagging with feature selection (for exampleef@owski, 2005) and (Assareh et al.,
2008)).

In ensemble feature selection, each base classifier iettdiased on different subsets of fea-
ture variables. See Opitz (1999), Abeel et al. (2009), Valal.e2008), and Tuv et al. (2009) for
more details. Many recent studies of chemical toxicity hatized the ensemble feature selection
method to develop QSAR models. Budka and Gabrys (2010)expalridge regression ensemble in
which base classifiers were trained using different featubesets selected by the “plus-L-takeaway-
R” method (van der Heijden et al., 2004). Dutta et al. (200@ppsed an ensemble feature selection
method to identify an optimal subset of chemical descriptmsed on different types of learning
algorithms applied simultaneously. Neither study, howewensidered the potential interactive re-
lationship between existing categories of descriptorslulting these two studies, most published
articles in the decision committee method literature haee$ed on finding better aggregation rules
or on feature selection using marginal prediction abilBager and Kohavi, 1999; Assareh et al.,
2008; Tuv et al., 2009).

When feature variables belong to some informative categid@se classifiers with feature vari-
ables belonging to each category as input covariates yi#fleteht predictions of outcome due to
fundamental differences in the information contained i@ tariables. Eventually, this increases
the diversity among base classifiers. Each category migiviger important insight into the data
structure by itself (the univariate method) or via assémmtvith other categories (the interactive
method). It is scientifically reasonable to assume thaeudsfit feature categories may be interac-
tively associated, and that such relationships could effecclassification task.

In this paper, we propose the interactive decision comm({tfeC) method to improve prediction
accuracy in binary classification problems when high-disiemal feature variables are grouped into
feature categories. The method uses the interactiveartdtips between existing feature categories
to build base classifiers in the decision committee conflxis is our first contribution. Our second
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contribution is to utilize a two-stage 5-fold cross-vatida (CV) technique to choose the number of
base classifiers to be combined using the Support Vector Ma¢8VM) algorithm. This technique
reduces problems on overtraining by controlling the sizéhefdecision committee method.

The rest of this article is organized as follows. In Sectipw& provide detailed information on
two real toxicity data sets of chemical compounds. Next, escdbe the IDC method and setup
for the IDC method. This includes a general setting for theislen committee method and aggre-
gation rules, and a brief introduction to the three classifie inducers: Support Vector Machines,
Random forests, and AdaBoost. We provide simulation stuidi€Section 5 and numerical results
on the toxicity data associated with chemical compoundstti@n 6. Finally, we conclude with a
discussion of some of the limitations of the proposed methad further research topics to pursue.

2 Toxicity Data sets

In this study, two sets of toxicity data sets associated ehmical compounds are used for model
development. Each data set consists of bimamjivo endpoints based on animal experiments.

2.1 ToxRefDB data

Historical animal toxicity data for 320 compounds are stoirethe Toxicity Reference Database
(ToxRefDB), developed by the National Center for Compotadi Toxicology in the US Environ-
mental Protection Agency (US EPA) (Martin et al., 2009, ?).td 78in vivo toxicity endpoints are
available for each compound. Theserivo toxicity endpoints were based on chronic, sub-chronic,
developmental, and reproductive toxicity experiments.ua&d a subset of the original data for this
study, due to the relatively low ratio of active compoundsfmst animal toxicity testings. Eighteen
endpoints with the highest activity ratios were selectediiodel development. Also, we excluded
duplicates, and those compounds that could not be handledbgescriptor generating software.
Across the eighteen endpoints, the number of compoundsmeradpoint subset ranged from 237
to 249 (Table 1). Toxicity results were coded as 1 (activegc)por -1 (inactive, non-toxic).

2.2 Rat LDsq data

The acute toxicity data of organic chemical compounds irrdéfheaused by oral exposure to chem-
icals, described in Zhu et al. (2009), were utilized. Theadainsist of 5,917 chemical compounds
with toxicity activity, originally collected from diffenet sources (National Library of Medicine database
(2008)). The acute toxicity activity presents the mediaghdedose of a toxic substance in the
negative log scale{log LDs5y). LDsyq is the dose level required to kifl0% of the animals of a
tested population. Sedykh et al. (2011) categorized chmmmpounds into three activity cat-
egories using the acute toxicity guidelines (OECD, 1996|ua 1998) and used only two cat-
egories for QSAR modeling: ’'toxic’ compounds- {og LDso > 3) and 'non-toxic’ compounds
(—log LD5g < 2). Chemical compounds with < —log LDso < 3 were not used for analysis.
Following Sedykh et al. (2011), 3,404 chemical compoundssified in either toxic or non-toxic
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activity categories are used in our study. Each toxicitylteswas coded 1 (active, toxic), or -1
(inactive, non-toxic).

2.3 Chemical descriptors computed by DRAGON

For each toxicity data set introduced in 2.1 and 2.2, a lagge&theoretical molecular descrip-
tors were computed by DRAGON software DRAGON (2006). 2,488naical descriptors and 521
chemical descriptors were available for compounds in thé&R&dDB data and in the Rat Ljg data,
respectively, after removing descriptors which showedosthmo variation in the data set (here-
after “invariant”). The selected chemical descriptorsobgl to one of the following ten descrip-
tor categories: 2D-autocorrelation (calculated from topg@al and atomic mass), 1D-functional
group counts, 2D-eigenvalue-based indices (all 2D-det®s based on eigenvalues), 2D-molecular
properties (measures of certain physical properties)aibi-centered fragments, 2D-topological
descriptors (a number of topological patterns), 2D-cotinigg indices (number of indices), OD-
constitutional descriptors (hnumber of atoms), 2D-walk path counts, and 2D-fingerprints. These
categories are different logical blocks of molecular diggors computed by DRAGON. For each
data set, the categories of the chemical descriptors anautimer of chemical descriptors belong-
ing to each category after removing invariant descriptogggaven in Table 2. Since different feature
categories are associated with different theoretical oubd& structure, it is reasonable to build base
classifiers using the various feature categories and to in@nflase classifiers using a decision com-
mittee method. For the Rat Ljp data set, chemical descriptors belonging to 2D-fingerprivere
not provided, so nine categories were used to build a cleasdn model.

3 Methods and experimental setup

3.1 Background methods
3.1.1 General setting for the decision committee method

Suppose we have training data consistingqfairs {(y;, z;)}"_,, wherey; € {—1,1} is a binary
outcome for class level, ang € R? is ap-dimensional feature vector. Following the presentation i
Kuncheva et al. (2001), we definekssifieras amag : « € R? — {—1,1}. Letu(C(x)) denote
the output, either class label 6for continuous decision value 6fthat will be introduced in Section
3.1.3 below. During the construction phase, multiple badasstfiersC(z) = {C1(z),...,CL(x)}
are trained, and a collection of first-level outpwtaC(z)) = {u(Ci(x)),...,u(Cr(z))} are ob-
tained. Then the final class lab@lcan be obtained by aggregating the base classifiers thrbegh t
aggregation ruleF(C(x)) defined in the next section.

3.1.2 Aggregation rules: Voting and stacking

We first introduce two voting schemes that were used in thidyst Suppose we have outputs
{u(Cy(z)),...,u(CL(x))}, whereu(C;(x)) denotes the first-level output obtained from a first-
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Table 1: All endpoints for the chemical toxicity and the tatamber of available chemical compounds for each endpo@gien for
both chemical toxicity data sets. The numbers in parenthéseote the percentage of active compounds for each endpoin

Data Endpoints Toxicity Test species Total number of compounds
category (% of active compounds)

ToxRefDB CHR: Mouse: Liver Hypertrophy (Y1) chronic mouse 39 27.62 %)
CHR: Mouse: Liver Proliferative Lesions (Y2) chronic mouse 239 (138.91 %)
CHR: Mouse: Liver Tumors (Y3) chronic mouse 239 (30.13 %)
CHR: Mouse: Tumorigen (Y4) chronic mouse 239 (138.49 %)
CHR: Rat: Liver Hypertrophy (Y5) chronic rat 247 (26.32 %)
CHR: Rat: Liver Proliferative Lesions (Y6) chronic rat 2424.32 %)
CHR: Rat: Tumorigen (Y7) chronic rat 247 (39.27 %)
DEV: Rabbit: General Fetal Weight Reduction (Y8) developtak rabbit 237 (20.68 %)
DEV: Rabbit: Pregnancy Related Embryo Fetal Loss (Y9) dgwalental rabbit 237 (29.54 %)
DEV: Rabbit: Pregnancy Related Materl Preg Loss (Y10) dgwelental rabbit 237 (45.99 %)
DEV: Rabbit Skeletal Axial (Y11) developmental rabbit 237321 %)
DEV: Rat: General Fetal Weight Reduction (Y12) developrakntrat 249 (34.94 %)
DEV: Rat: Pregnancy Related Embryo Fetal Loss (Y13) devatgal rat 249 (22.09 %)
DEV: Rat: Pregnancy Related Materl Preg Loss (Y14) devetpal rat 249 (119.68 %)
DEV: Rat: Skeletal Axial (Y15) developmental rat 249 ( 44%3
MGR:Rat: Kidney (Y16) reproductive rat 244 ( 30.33 %)
MGR: Rat: Liver (Y17) reproductive rat 244 (42.62 %)
MGR: Rat: Viability PND4 (Y18) reproductive rat 244 (27.80%

Rat LD, Acute toxicity activity 3,404 (45.92 %)
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Table 2: Ten categories of chemical descriptors. The numbeescriptors belonging to each cat-
egory was obtained after removing invariant descriptorseeSE molecular descriptors were derived
using DRAGON software.

Number of variables

Category of variables
ToxRefDB Rat LDy

0D-constitutional descriptors 40 37
2D-topological descriptors 98 75
2D-walk and path counts 47 10
2D-connectivity indices 33 15
2D-autocorrelations 96 61
2D-eigenvalue-based indices 235 60
1D-functional group counts 64 131
2D-atom-centered fragments 81 104
2D-molecular properties 28 27
2D-fingerprints 382 -
Total 1,104 520
level classifielC;, [ = 1, ..., L. The simplest aggregation rule is to take the average ofutputs:

L
Fi(C(x)) = > u(Ci(z)/L.
=1

A second aggregation rule is
Fo(C(x)) = BIR(C), wherep, = (R,(C)" R,(C)) ' R(C) " ys.

Here, R(C) = (1, u(C1(2)), ..., u(Cr(x))) and Ry (C) = (1, u(Cr(x1)), - - -, i(Cr,e(w))) de-
note a collectiof{ u(C;(z))}L_, for the test set and the training set, respectivelg.andy,s are the
covariates and known class labels for the training set. Timerfinal decision rule is

o= -1, if F(C(x)) < c*,
+1, if F(C(x)) > c*,
whereF(C(x)) can be eithef; (C(x)) or F2(C(z)) andc* is a pre-determined threshold value.

Second, we employed a special type of stacked generalizatiich is slightly different from
the procedure proposed by Wolpert (1992). Instead of ugiogsevalidation, we split the data into
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a training set X;, Y;), validation se{ X,, Y, ), and testing setX, Y5). LetC‘},l =1...L denote
level-1 classifiers, wheré is the number of base classifiers, afiél denote a level-2 classifier. In
the stage-1, training sé€X, Y;) is used as an input to train for the classification task, afrehrning
rules are obtained. Next, we apply each learning rule to &fidation set and obtain sets of level-

1 outputs{;(CH (X))} ;. Now {u(Cl(X,)), Y, }~ , are used as level-2 inputs for the stage-2
learning algorithm to learn stage-2 aggregation fite: {1(C3(2))}-, € {~1,1}F s {~1,1}.
For example, the SVM algorithm could be used as a level-Isiflaation inducer, and the logistic
regression model could be a stage-2 learning algorithm.

3.1.3 Classification inducer:C-BSVM, Random forests, AdaBoost

In this study, we employed three different learning aldoms as classification inducers: the Support
Vector Machine (SVM), AdaBoost (AdaBoost.M1, tree), anch&am forests. In this section, we
provide a brief review of these three learning algorithms.

Support Vector Machines (Vapnik, 1998) are among the mogtilao machine learning algo-
rithms based on the kernel method. In the classificationlpnopSVMs find a decision functiofi
for a given set of attributes, and predict the class labkbf targety according to the sign of (z)
as follows:

+1, if f(x) >0,
-1, if f(z) <O.

b(x) = sign(f(x)) =

SVMs provide multiple types of outputs, including a deaisi@lue f(x) € R! and a class label
b(z) € {—1,1}. Many different types of SVMs have been developed, and weeata bound
constraint version of thé’ classification ¢-BSVM) algorithm as a base classifier. To implement
the C-BSVM algorithm, theksvm function in thelibsvm library (Chang and Lin, 2001) in thi
package R Development Core Team (2010) is utilizedC1BSVM, the successive overrelaxation
(SOR) algorithm for quadratic programs is used to train S\iMshe modifiedTRON QP solver
(Lin et al., 1999; Karatzoglou et al., 2006). For more dstancerning th&€'-BSVM algorithm,
we refer the reader to Mangasarian and Musicant Mangasandiusicant (1999). We use linear
and radial basis kernels for all SVM models in data analyaisl the quadratic polynomial kernel
was added for simulation studies:

Linear kernel : k(z,2') =< z,2’ >
Quadratic polynomial kernel:  k(z,2') = (scale- < z, 2’ > +offset)?
Radial basis function kernel (RBF):  k(x,2) := exp (—oljz — 2||?),

where< -, - > denotes the inner product of two vectors, @&ni$ a kernel function. Most internal
parameters of SVM learning are obtained by the internall&-®. For the regularization margin
in the Lagrange formulation (C value), we use a default sefupfor a relatively simple but robust
prediction function. For the two example data sets in thislgtwe did not observe any marked
differences in prediction accuracy by using different eal§1, 50, and 100) for the regularization
margin.
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Random forests Breiman (2001) increase diversity among bkssifiers by using bootstrap
samples and a random selection of features. A large numhegesf are then combined by majority
voting without pruning for the individual trees. BreimarO(®) proved that random forests can im-
prove classification performance by reducing the cormfdtetween individual trees and improving
each individual tree’s performance. In this study, the jwtézh of class labehs(z) € {—1,1} is
used. We implemented a random forests algorithm by usingRthackagerandomForests(Liaw
and Wiener, 2002). In this study, the number of variablesloarly sampled at each split wa#p,
whereX € R? (default set-up) and the number of minimum observationsHemode was 1. For
each forest, 500 individual tree were grown.

AdaBoost Adaptive Boosting-reund and Schapire (1997)) generates a set of classHigues-
tially and then aggregates them by a weighted majority gatiethod. In the first step of AdaBoost,
n observations in the training set have a weight equa)tg and at each step, the procedure updates
the weight according to the classification performance éngtrevious step. AdaBoost aggregates
outcomes from the base classifiers by summing their prabtbipredictions, and then selecting
the best prediction performance (weighted majority vatinim this study, the prediction of class
labelh;(xz) € {—1,1} is used. We implement AdaBoost by using Reackageadabag In this
study, the minimum number of observations that must exist mode in order for a split to be at-
tempted was 5 and the maximum depth of any node of the finaltases (the root note counted as
depth 0). The complexity parameter w@s, and the weight updating coefficient was calculated by
1 log ((1 — erron) /error). For each forest, 100 individual trees were grown with cotaional cost
included as a consideration.

3.2 Proposed method
3.2.1 Two-stage cross-validation

As discussed in Hansen and Salamon (1990) and Opitz andiMa8I99), the decision committee
method can reduce test-set error sufficiently by aggregatfiew base classifiers, instead of combin-
ing all base classifiers. Higher prediction accuracy candhéesed by eliminating some irrelevant
or noisy base classifiers. During this selection phase,diveafrd selection approach is adopted to
find optimal combinations of base classifiers similar to Bran (1996). In the first step, the best
base classifier based on the given prediction accuracysstsel, and denoted lgy* (). In the sec-
ond step, each of the remaining base classiiﬁ(f-jr,@)(gc)}lLZ*I1 is integrated withC (x) by a given
aggregation ruleF(C(x)). The best pair of base classifiers is picked up, and denotét by). For
each step of the forward selection approach, the predieticaracy is assessed, and only one best
base classifier is added. The forward selection procedutemsure that the matrix of first-level
outcomes from selected base classifiers has full rank bywieigoedundant base classifiers.

In this study, we propose a 5-fold cross-validation (CV) Inoet to decide the total number of
base classifier& to be incorporated in the final classifier. The training seaisdomly split into
five subsets, and four out of five subsets are used to traindiassifiers. For giverl. subsets of
feature variable§Z:,...,Z.}, let Coy; = {Cevi(Z1),...,Cei(Z1)}, ¢ = 1,...,5 denote the
set of base classifiers for the remaining set which is not @sethe ith training. In this phase,
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we continue the forward selection procedure until all bdaesifiers are combined. At each step,
prediction accuracy is assessed for each of the five{€&ts, }>_,. Then, we take the average of the
prediction accuracies over five sets, akids decided by the number of combined base classifiers
in which the highest average prediction accuracy is achie®nce another internal 5-fold CV is
conducted to determine internal parameters of the SVM iegyia two-stage 5-fold CV is used for
SVM in this phase. To the best of our knowledge, the proposedstage CV is novel. Note that

a single-stage CV is utilized to decide the number of basssiflars using AdaBoost and random
forests as classification inducers.

3.2.2 Interactive feature space

Suppose that we have the same training déga «;)}"_, as described in Section 3.1.1, and testing
data{z;}!_,,,. Suppose each feature variable belongs to at least onedezategorym, and
X, = {xi7j}§’:1f’?:1 € R™"*Pm denotes a feature matrix for the categeny wherep,, is the
number of feature variables belonging to the categoyyn = 1,..., M andZﬁf:l pm = p. Good
examples of these categories would be the blocks of chemdésadriptors in chemical toxicity data
presented in this study, or gene ontology terms in gene sgjmne profiles (Ashburner et al., 2000).

First, we generate a univariate feature space consistingfefature categories & = {X,,}M_,
and a bivariate feature spate” = {X; = (Xp, Xow), mym’ = 1,...,M, m # m’, ¢ =
1,...,Q = (})}. We then construct the interactive feature spgace {X UX*}= {Z,};5" "9,
where Z; would be eitherX,, or X,, U X,,,-. By doing this, the interactive feature space allows
us to use the information of the feature categories both imalig and interactively. To the best of
our knowledge, this study is the first to use the interaciationship between feature categories to
construct base classifiers for decision committees.

3.2.3 IDC with different aggregation rules

Our proposed method can be summarized in two steps: firahgltive construction phase, each
base classifier is trained usitgy from the interactive feature spadg(Z;) andu(C(Z;)) denote the
base classifiers and the first-level outputs by using thedotize feature space, respectively. Next,
by using 5-fold CV as described in Section 3.2.1, the numbbase classifier&’ to be aggregated
is determined. Onc& is decided from the training set, the same forward selegiionedures are
repeated until we find{ base classifiers with the best performance. We call the abtieuision
committee system the Interactive Decision Committee (LO®@p proposed IDC method is new.
Figure 1 illustrates the basic framework for the IDC methdd.this flowchart, X,,,s denote
then x p,, matrix for feature categories:,, m = 1,..., M, andp,, is the number of variables
belonging to feature category. Z;s are elements of the interactive feature space?;se either
feature categony,,, or a pair of two feature categories,, U X,,,,, m # m’ as explained in 3.2.2.
Each base classififf(Z;) is trained using feature categafy in the training set. The total number
of base classifier&” to be combined for the final classifier is determined in thiagghby the use of
5-fold CV. Then, first-level predicted outputs can be oledifrom the base classifi€r(Z;)s for the
testindividuals. Finally, the final decisi@ris made by aggregatin§ base classifiers through using
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the aggregation rule. In practice, however, we do not hayeutsifor the new examples. Therefore,
we use first-level class predictions from the validation teefind the bestK’ base classifiers to

be combined. Then, the select&tbase classifiers are combined to predict class labels for new
examples.

We utilized voting and stacking to combine base classifiéis: the voting method (denoted
by IDC), the two aggregation ruleg; (C(z)) andF»(C(z)) described in Section 3.1.2 are utilized
to combine base classifiers after the system &izis determined by 5-fold CV. First, we use the
aggregation rule ofF; (C(x)) having(Cy(2)) = u(C(Zy)) = b(Z)) = sign(f(Z1)) € {-1,1}
in SVM, andu(Ci(Z)) = u(C(Z1)) = hy(Z;) € {—1,1} in AdaBoost and random forests as the
first-level output. The IDC method with this aggregatiorerid denoted by DC'x, . Second, we use
the aggregation rule aF»(C(z)) havingu(Ci(Z)) = u(C(Z))) = f(Z) € R! as the first-level
output, and the IDC method with this rule is denoted/lyC'~,. We applyF2(C(z)) for the base
classifiers obtained by SVM only. In voting, we set the thaddivaluec* = 0 for the final decision
rule. ThereforeF;(C(z)) is equivalent to the majority voting method, aifd(C(z)) yields the
same result as linear discriminant analysis (LDA) usthgs a new feature variable set.

For the IDC method with a stacked generalization (denotedDy stacking), two different
learning algorithms at stage-2 were adopted separatelydier ¢o learn a combining method:,
penalized logistic regression (Park and Hastie, 2008) ainige-hidden layer neural network (Rip-
ley, 2008). L, penalized logistic regressior.4-logit) was implemented through tHe package
stepPIr using BIC (Bayesian Information Criterion) as complexigrgmeters to compute the score
and selecting base classifiers through the forward steffaisgard select first, then backward dele-
tion follows) selection. A single-hidden layer neural netlv(NN) was implemented through tie
packagennet with one unit in the hidden layer (single layer), initial dom weights on [-0.1, 0.1],
a parameter of 0.0005 for weight decay, and a maximum itraif 300. IDC methods stacking
with L, penalized logistic regression and NN are denoted BY'1,r and I DC\y n, respectively.
Note that we do not have to decide on the system siz& &fr the IDC stacking method although
base classifiers are trained by the same IDC method. Therdtar different types of aggregation
methods are applied to combine base classifiers that anedraly the proposed IDC method.

4 Evaluation measure and other methods

4.1 Prediction accuracy measurement

For the ToxRefDB data, we have fewer active compounds coedparinactive compounds, which
is imbalanced for all binary endpoints. Thus we chose to bk bensitivity and specificity to
reflect performance on the classification task followingakeh, Assareh et al. (2008). Regarding
an active (+1) as positive while an inactive (-1) as negateasitivity and specificity are calculated
as follows:

number of true positives
number of true positives number of false negativés

number of true negatives
number of true negatives number of false positives

Sensitivity

Specificity
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Figure 1: Flowchart of the IDC method witlf feature categoried’(Z;) andC(Z,;) denote the base
classifiers which are trained using feature Bgtor the training set and the testing set, respectively.

Therefore, sensitivity is the proportion of actual activenpounds that are correctly classified as
active compounds. Similarly, specificity is the proportaftthe true inactive compounds which are
correctly classified as inactive compounds. The averagerdfitivity and specificity was used as a
prediction accuracy measure to select base classifiersvirafd selection, to decide the number of
base classifiers, and to compare the performances on tisédickson task among different methods:

sensitivity+ specificity

Accuracy = 5

To compare improvement in prediction accuracy relative single large, unaggregated classifier,
relative percent improvement (RI) of the classification eldd was calculated as follows:

accuracy of model M- accuracy of a single large classifigr

- — 100.
accuracy of a single large classifier

RI(M) =

4.2 Classification methods

First, a single large, unaggregated classifier was used efegemnce model (Single). Although
random forests and tree-based AdaBoost are already decisiomittee methods rather than single
classifiers, what we really mean by denoting a “single ranflamest” or a “single AdaBoost” are
the usual random forests or AdaBoost without using the ID@hoet For a single classifier, we
combine the training set and validation set for training.d8yng this, we have a larger training set
for single classifiers compared to the IDC method and the I2€king method.
Second, we apply the proposed IDC method (i.e., determifiirand selecting the be#f base

classifiers by 5-fold CV and forward selection) to each dfessnducer (IDC). We find a training
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rule and the number of base classifiers to be combined us@graiming set and decide on the
bestK base classifiers based on the validation set. Instead af tlséntraining and validation sets

separately, one can do another cross-validation by conpitiie training and validation sets. In

our study, using the validation set (a data set that doesamttibute to training at all) seems to be
slightly better with respect to the performance on the testtean using another cross-validation on
the combined training and validation sets (for both tragramd finding the bedsk classifiers).

Last, we applied stacked generalization with penalized logistic regression and NN (IDC
stacking). IDC and IDC stacking are the same in the first stagethey combine base classifiers
differently.

The primary goal of this study was to compare the interaafiseision committee method to
single, unaggregated classification methods rather thdimdooptimal subsets of features or the
optimal classifier inducer. Therefore, comparison betwdiffarent classification inducers was not
done in this study.

5 Simulation study

We have empirically evaluated the proposed IDC and IDC #tgckethods compared to a single
classifier in three classification inducers: SVM, randonests, and tree-based AdaBoost algo-
rithms. Ten random sets of data were generated for the batasgification task, and we uséd%

of the data for training20% for validation and the remaining set for testing. Again, tamed
training and validation sets (80%) were used for training 8ingle classifier.

5.1 Simulation set-up

Four feature categorie¥ = {X;}?_, were randomly generated, and each catedgorgonsists of
three feature variablefs:;; }5_, from the standard multivariate normal distributidi (0, 7), where

I denotes 8 x 3 identity matrix. New variable¥ were generated by combining variables in four
feature categories differently so that the effect by unateror bivariate feature categories could
be added to the individual feature variables. Then, we sitadllogistic regression models under
six different scenarios. A binary outcome was obtained’by 1{U < py}, whereU is uniformly
distributed in(0, 1), andpy = exp(n)/(1 + exp(n)), wheren is computed by six different scenarios.
The sample size for each run was 300.

Simulation 1: Two new variablesZ = (z1, z2) were generated, whete = (211 + x12) + (221 +
o2 + l‘23), 29 = (x31 + 32 + 3733) + ($41 + X242 + 1‘43)- For |OgiStiC regressiom =
XB + Z~v, where8 = (81, 2,83, 81)T, 81 = (0.12,0.5,0.5)T, 3y = (0.15,0.18,0.7)7,
B3 = (0.11,0.8,0.8)7, B84, = (0.5,0.15,0.15)7, andy = (1.5,1.8)7.

Simulation 2: Three new variable€ = (z1, 22, 23) were generated, wherg = (z11 + x12) X
(w21 + @2 + 23), 22 = (11 + @12 + x13) X (231 + @32 + x33), Andzg = (231 + w32 +
x33) X (T41 + 242 + x43). For logistic regressiom = x12812 + Zv, wheres;, = 0.5 and
v =(1.5—-1.518)T.
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Simulation 3: No new variable for feature categories was derivees 211811 +223/323+x31 831+
1.2211 X 31, Whereﬁn =1.2, 523 = —1.8, 531 =1.2.

Simulation 4:  No new variable for feature categories was derivge: X 3, wheres; = (0.12,0.1,0.1)7,
By = (=0.12,-0.1,—0.1)T, B3 = (0.11,0.1,0.1)T, andBy = (—0.11, —0.1, —0.1)7.

Simulation 5:  Two new variableZ = (21, z2) were generated, whetg = (z11 + x12) + (T12 +
Zoo + Ta3), 22 = (x31 + T32 + x33) + (a1 + Ta2 + x43). FOr logistic regressiony =
712B12 + Z7 + 5.0¢, whereB, = 0.5, v = (0.1,0.1)7, and random noise~ N(0, 1).

Simulation 6: Two new variableZ = (z1, z2) were generated, whetg = (z11 + x12) + (T12 +
Too + 1'23), Zo = (ZL'31 + 39 + .’L’33) + (SC41 —+ x40 + 143). For |OgiStiC regreSSiom =
r12B12 + Z7, whereBi, = 0.5,y = (0.1,0.1)7.

In Simulation 1, two new variables generated by bivariatedr combination have larger effects
compared to individual variables, so Simulation 1 would &eofable to the IDC methods. In Sim-

ulation 2, three new variables were derived by combininguigavariables belonging to different

feature categories non-linearly, and they have a gredestdhan the individual variables. In Sim-

ulation 3, three individual variables and one second-oirtteraction effect by individual variables

exist while no intended effect by feature categories existSimulation 4, variables in feature cat-
egory 1 and variables in feature category 2 have equal sffedtwith opposite signs. The same is
true for the variables in feature category 3 and featuregoayed. All variables have small positive

effects. In Simulation 5, one weak individual effect and tweak categorical effects exist while

a large random error effect exists. Simulation 6 is simitaStimulation 1 except that there is no
intended large noise effect.

5.2 Main results
5.2.1 Prediction accuracy

Figure 2 presents experimental results under six scenahiedirst focus on the prediction accura-
cies. In Simulation 1, both the IDC and the IDC stacking mdthoutperformed single classifiers,
especially for the IDC method regardless of classifier iedy&l: 80.75% for SVM; 57.02% for
random forests; 64.88% for AdaBoost). This is not a sunpgisesult since there are greater effects
by feature categories.

In Simulation 2, both the IDC and the IDC stacking method$grared similarly to the single
classifier except for the IDC with SVM (18.29%). This indieathat the IDC method might be able
to catch a non-linear bivariate structure among featuregoaies better than a single classifier, but
the performance can depend on the classification inducer.

In Simulation 3, both IDC and IDC staking outperformed singlassifiers regardless of clas-
sification inducers. IDC (42.53% for SVM; 28.49% for AdaBtqgzerformed slightly better than
IDC stacking (35.92% for SVM; 24.67% for AdaBoost) in SVM aAdaBoost, but the results are
comparable to random forests (28.06% for IDC; 28.07% for HKi&Zking).
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Figure 2:Average prediction accuracies over ten replications of a single clagkifigrand IDC with stacking
applied using three classifiers, SVM, Random forests, and AdaBwes),(are compared. For SVM, the best
result among three kernel functions and two aggregation rules asemesl. For each classifier inducer, the
first bar denotes the prediction accuracy of a single classifier (Singke)xecond bar is for the IDC method
(IDC), the third bar is for the IDC stacking with, logistic regression (IDE€r), and the last bar is for the IDC
stacking with NN (IDGy ).
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In Simulation 4, both IDC (7.89% for SVM; 8.23% for randomédsets) and IDC stacking (7.89%
for SVM; 9.7% for random forests) performed slightly bettean single classifiers in SVM and
random forests but similar to or slightly worse than sindéssifiers in AdaBoost (1.76% for IDC;
-0.98% for IDC stacking).

In Simulation 5, single classifiers performed slightly bethan IDC (-7.68% for random forests;
-9.06% for AdaBoost) and IDC stacking (-4.03% for randomefts; -6.79% for AdaBoost) in
random forests and AdaBoost, and slightly worse than orairta IDC (1.58%) and IDC stacking
(-0.59%) in SVM.

In Simulation 6, both IDC (16.57% for SVM; 1.81% for randonrdsets) and IDC stacking
(12.97% for SVM; 3.23% for random forests) performed sliglitetter than single classifiers in
SVM and random forests. In AdaBoost, IDC (4.98%) performigghly better than a single Ad-
aBoost, but slightly worse than IDC stacking (-1.20%).

Based on the empirical results from Simulation 5 and Sinutab, there appears to be more
degradation of performance for the IDC and IDC stacking m@shcompared to a single classifier,
as effects by random noise increases. Simulation 3 show#hidDC method can improve predic-
tion accuracy compared to a single classifier when no inttdéegorical information exists, but
a large interaction effect between feature variables lgghonto different feature categories exists.
Simulation 2 and Simulation 4 show the possibility that ID&nmot be able to capture non-linearly
associated feature category information or opposite &ffieetween categories well, but it still per-
forms well compared to single classifiers. Also, IDC and IR&king can show different behavior
depending on the classification inducers and data chaistatsr

5.2.2 Standard error estimates in prediction accuracy

In Simulation 1 and Simulation 3, the standard error estinaf the IDC method were smaller than
those from single classifiers (overall less than half of $teveates from single classifiers) except for
random forests in Simulation 1 (0.025 for single randomdts@s. 0.026 for IDC random forests).
The standard error estimates of the IDC stacking method sreedler than those from single clas-
sifiers, but larger than or similar to those from IDC overdH. Simulation 2, the standard error
estimates of the IDC method were slightly smaller than tHome single classifiers in SVM and
AdaBoost, but larger than in random forests (0.017 for gimgl 0.023 for IDC). In Simulations 4,
5, and 6, the standard error estimates of the IDC method weetar than those of single classifiers
in SVM, but smaller than or similar to the other two classifietucers.

Overall, the standard error estimates of the IDC methode areialler than or similar to those of
the IDC stacking methods as well as those of single classifihe standard error estimates of the
IDC stacking withl, penalized logistic regression were smaller than or sinbildhose of the IDC
stacking method with NN except for SVM (0.038 f6DCR; 0.02 for I DCy ) and AdaBoost
(0.021 forI DC'pg; 0.011 forI DCxy) in Simulation 6. The empirical results show that the IDC
method can perform better than single classifiers with lovaetation when large but relatively
simple bivariate feature categorical effects exist or gddnteraction effect of individual variables
belonging to two feature categories exists. The IDC metlfaits voting) performs better than or
compares favorably with the IDC stacking method in the aursetting.
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5.2.3 System size: The number of base classifiers to be comééh

For the IDC method, a small investigation was carried outeieiimine whether the system sike
differed by aggregation method or by classification indut&yA-type aggregation tends to select
a smaller number of base classifiers to be combined compaitbé tinweighted average (majority
voting) in SVM. Overall, three classification inducers havsimilar system siz&’, but AdaBoost
tends to have smaller number of base classifiers to be cothisim@pared to SVM and random
forests except for Simulation 6.

6 Example: toxicity data analysis

In this section, we describe the empirical results of apgythe IDC and the IDC stacking methods
as well as a single classifier to two toxicity data sets.

6.1 ToxRefDB data

Three classifier inducers were explored: SVM, random fereahd tree-based AdaBoost. For
stacked generalizatior,; penalized logistic regression with stepwise selection asdgle layer
NN were adopted. Ten replications were obtained randomlgath run, the data set was randomly
split into three sets, and we usé@ of the data for training20% for validation, and the remaining
set for testing. The average prediction accuracies of thegglications were compared. In SVM,
linear and radial basis functions were utilized withoutimiting any other parameters, considering
computational cost. The data analysis was conducted unelsaine set-up in the simulation studies
except for the polynomial kernel in SVM.

6.1.1 Prediction accuracy

Table 3 displays the average of the prediction accuraciepated by using the test set in ToxRefDB.
In SVM, the highest accuracies between linear and radias k@snel are presented. For the IDC
method, the best prediction accuracies betwe@t'x, andI DCx, are reported. In SVM, the pre-
diction accuracy of the IDC method achieved the highestiptied accuracies for 14 endpoints (Y1,
Y2, Y3, Y5, Y6, Y8, Y9, Y10, Y11, Y12, Y13, Y14, Y16, Y17), espilly for Y10 (RI: 7.24%),
Y13 (8.2%), and Y17 (7.26%). IDC stacking performed bestfwee endpoints (Y4 and Y18 for
IDC stacking withL,-logit and Y7 for IDC stacking with NN). In Y15, a single SVM laieved the
highest prediction accuracy.

With random forests, the IDC method achieved the highesligiion accuracies for 7 endpoints
(Y1, Y8, Y9, Y10, Y13, Y15, and Y17), especially for Y8 (RI:%%%), Y10 (16.36%) and Y15
(7.62%). IDC stacking performed better than the IDC methaglsvell as single classifiers for 7
endpoints (Y7, Y11, and Y14 for IDC stacking withy-logit and Y3, Y4, Y5, and Y12 for IDC
stacking with NN).

Using AdaBoost, the IDC method performed best for 8 endpdivii, Y5, Y8, Y9, Y10, Y12,
Y15, and Y17), especially for Y10 (RI: 9.88%). IDC stackingh@&ved the highest prediction
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Table 3: Averages (ACC) and standard error estimates (SEmjediction accuracies over ten replications for ToxRefOdda. For
SVM, the best results among three kernel functions are ptedéndicating which kernel function is the best [I=lin@ad r=radial basis
functions]. The best method for each classification indisararked inbold.

Endpoints SVM Random forests AdaBoost (tree)

Y1  ACC 0.509" 0.518¢ 0.530 0.500" 0.528"  0.489 0.480 0.498 0.515 0502 0.524 0.499 0.511
SEE 0.009 0.022 0.026 0.000 0.020 0.011 0.019 0.008 0.022 150.00.014 0.015 0.019
Y2 ACC 0.505" 0538  0.508" 0.499" 0.517"  0.498 0.482 0.487 0.488 0.515 0.492 0.544 0.561
SEE 0.020 0.029 0.021 0.016 0.021 0.023 0.019 0.020 0.023 220.00.023 0.017 0.028
Y3 ACC 0.4947 0.515 0.491* 0.507" 0.497"  0.471 0.504 0.515 0.520 0.474 0.485 0.507 0.488
SEE 0.003 0.029 0.031 0.007 0.015 0.011 0.019 0.020 0.018 180.00.017 0.028 0.023
Y4  ACC 0.509" 0.488!  0.524" 0.528 0.502'  0.510 0.515 0.515 0.530 0.500 0.486 0.511 0.526
SEE 0.016 0.013 0.022 0.026 0.029 0.017 0.014 0.020 0.026 130.00.028 0.017 0.026
Y5 ACC  0.496" 0.522 0.520¢ 0.502" 0.502"  0.491 0.498 0.499 0.520 0.481 0.509 0.487 0.490
SEE 0.002 0.026 0.026 0.003 0.010 0.010 0.016 0.012 0.020 110.00.019 0.012 0.022
Y6 ACC 0.501" 0.525  0.500" 0.500" 0.489"  0.515 0.507 0.499 0.469 0.515 0.505 0.507 0.509
SEE 0.003 0.026 0.027 0.000 0.006 0.010 0.024 0.005 0.016 100.00.021 0.015 0.021
Y7 ACC 0.487"  0.518" 0.498! 0.525" 0.547  0.499 0.489 0.504 0.498 0503 0.481  0.509 0.476
SEE 0.009 0.022 0.025 0.012 0.018 0.018 0.019 0.023 0.019 150.00.021 0.020 0.023
Y8 ACC 0.500"  0.506" 0.523 0.511" 0.519"  0.502 0.552 0.501 0.518 0.505 0.528 0.496 0.490
SEE 0.000 0.022 0.023 0.008 0.009 0.009 0.022 0.015 0.020 100.00.021 0.011 0.019
Y9 ACC 0.495" 0.528 0.510¢ 0.507" 0.518"  0.493 0.495 0.492 0.484  0.492 0.503 0.487 0.496
SEE 0.002 0.034 0.023 0.014 0.023 0.013 0.023 0.008 0.015 150.00.016 0.016 0.020
Y10 ACC 0.497"  0.5157 0.533 0.496! 0.500"  0.489 0.569 0.502 0.539  0.496 0.545 0.536 0.530
SEE 0.018 0.011 0.026 0.027 0.036 0.022 0.016 0.019 0.022 220.00.014 0.021 0.020
Y1l ACC 0.505" 0.512 0.506¢ 0.498" 0.493"  0.491 0.494 0.513 0508 0.484 0.486  0.505 0.490
SEE 0.005 0.011 0.019 0.003 0.004 0.011 0.018 0.016 0.018 100.00.023 0.013 0.019
Y12 ACC 0.502" 0512  0.496" 0.503" 0.501"  0.493 0.512 0.485 0.519 0.485 0.513 0.510 0.479
SEE 0.006 0.017 0.022 0.014 0.018 0.022 0.021 0.015 0.026 190.00.020 0.022 0.021
Y13 ACC 0.500"  0.504" 0.541 0.497" 0.503"  0.491 0.508 0.504 0.506  0.491 0.507 0.517  0.539
SEE 0.000 0.031 0.030 0.003 0.005 0.007 0.004 0.007 0.023 100.00.019 0.021 0.020
Y14 ACC 0.500" 0.508 0.503! 0.5001 0.499¢  0.494 0.483 0.499 0.495 0.484 0.491 0.494 0.495
SEE 0.005 0.008 0.022 0.016 0.001 0.011 0.017 0.014 0.011 060.00.016 0.010 0.015
Y15 ACC 0534 0.524!  0.511" 0.517 0.497" 0512 0.551 0.492 0513 0.512 0.535 0.526 0.528
SEE 0.021 0.025 0.025 0.021 0.027 0.031 0.023 0.026 0.015 210.00.020 0.017 0.016
Y16 ACC 0.504" 0.513  0.480" 0.504" 0.511" 0522 0.503 0.500 0.489 0515 0.472 0.510 0.518
SEE 0.004 0.010 0.031 0.003 0.008 0.019 0.018 0.010 0.017 110.00.014 0.019 0.018
Y17 ACC 0.496" 0.532 0.514! 0.515" 0.517"  0.495 0.520 0.510 0513 0.501 0.528 0.498 0.460
SEE 0.012 0.019 0.017 0.015 0.017 0.022 0.021 0.022 0.021 170.00.020 0.024 0.029
Y18 ACC 0.506" 0.495 0.484! 0.508 0.500  0.509 0.498 0.508 0.490 0.503 0.488 0.485  0.509

SEE 0.006 0.013 0.021 0.024 0.026  0.014 0.024 0.015 0.018 130.00.027 0.015 0.022
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Table 4: Averages (AVG) and standard error estimates (SEHE)eonumber of base classifiers to
be combined which is determined by 5-fold CV over ten repidces for ToxRefDB and Rat LE)
data. For SVM, the best results among linear and radial hastgion kernels are presented.

Data Endpoints SVM Random forests AdaBoost (tree)

IDCr, IDCr,
AVG SEE AVG SEE AVG SEE AVG SEE

ToxRefDB Y1 94 0933 145 2377 2.8 0.442 2.6 0.427
Y2 9.7 1.075 144 2212 5 0.683 4.6 0.306
Y3 8.3 0.367 13.2 1.569 3.2 0.533 2.8 0.327
Y4 3.2 0.800 17.7 2556 3.4 0.521 4.8 0.533
Y5 6.2 0533 132 1.919 2 0.000 2.6 0.427
Y6 7.7 1.096 18.7 2.246 2.4 0.267 2.4 0.267
Y7 3 0333 118 2215 4.9 0.482 5.6 1.327
Y8 93 1033 176 1.500 1.9 0.100 2 0.000
Y9 7.3 0.667 99 1581 2.2 0.200 2.2 0.200
Y10 111 1.169 19.2 2.764 5.2 0.533 8 0.667
Y11 14 0.163 13.7 1.627 2.4 0.267 2 0.000
Y12 9.2 0964 146 1.675 3.2 0.533 4.4 0.581
Y13 10.1 2163 18.3 3.461 2 0.000 2 0.000
Y14 11 0.100 16.6 3.557 2 0.000 2 0.000
Y15 58 1.052 139 1.748 5.2 0.442 6.8 0.854
Y16 16 0.163 17 2.186 2.2 0.200 2.4 0.267
Y17 28 0442 148 1.692 4 0.422 6.2 0.757
Y18 2 0.000 15.7 1.862 2.8 0.327 2.8 0.327

Rat LDsg 3.72 0549 8.56 1.036 - - - -




176 Kang et al.

Table 5: Averages (AVG) and standard error estimates (SE)eostandard deviation in the total
number of base classifiers within 5-fold CV in IDC applying i8Vor ToxRefDB data.

Endpoints IDCy, IDCrp,

Linear RBF Linear RBF

AVG SEE AYG SEE AYG SEE AVG SEE

Y1 330 049 180 1.27 10.03 1.28 1205 1.63
Y2 399 040 108 0.17 994 137 951 1.26
Y3 397 08 093 030 6.77 086 1131 1.20
Y4 502 047 151 050 1132 162 11.30 1.82
Y5 415 031 036 014 907 138 1199 121
Y6 3.14 029 030 0.08 868 164 11.14 1.37
Y7 422 062 125 0.14 783 106 10.28 1.06
Y8 385 056 009 0.06 1013 144 988 211
Y9 397 038 048 0.07 987 165 9.80 1.25

Y10 406 0.76 287 044 109 111 998 1.28
Y11 571 056 051 026 914 139 1123 1.77
Y12 511 059 047 0.13 1094 1.04 1069 1.25
Y13 507 106 0.28 0.13 1094 156 10.16 1.03
Y14 3.75 058 0.04 0.04 10.73 145 1322 1.66
Y15 332 036 314 072 764 110 11.05 115
Y16 294 029 051 030 1062 161 939 1.22
Y17 299 036 187 049 947 134 1017 1.26
Y18 363 044 073 0.09 801 0.79 1247 1.27
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accuracies for 9 endpoints (Y3, Y7, Y11 for IDC stacking witk-logit and Y2, Y4, Y13, Y14,
Y16, and Y18 for IDC stacking with NN). A single AdaBoost tngerformed best for Y6.

The empirical results show that the IDC method was the besicerfor 10 endpoints: Y1
(IDCx, applying SVM with linear kernel), YSIDCx, applying SVM with linear kernel), Y6
(IDCx, applying SVM with RBF kernel), Y8 (IDC applying random fotels Y9 ({ DCx, apply-
ing SVM with RBF kernel), Y10 (IDC applying random forest$}.3 (I DCx, applying SVM with
RBF kernel), Y14 {DCx, applying SVM with linear kernel), Y15 (IDC applying randomrésts),
and Y17 ( DCx, applying SVM with linear kernel). IDC stacking was the besithod for 6 end-
points: Y2 (IDC stacking withL, penalized logistic applying AdaBoost tree), Y3, Y4 (IDCcitimg
with NN applying random forests), Y7 (IDC stacking with NNpyging SVM with linear kernel),
Y11 (IDC stacking withL, penalized logistic applying random forests), and Y12 (ID&cking
with NN applying random forests). Both IDC and IDC stackingthods failed to improve predic-
tion accuracies compared to a single classifier for Y16 arl dhd single random forests achieved
the best performance in the current experimental settingrdll, the classification performance was
not very good, and the IDC or the IDC stacking methods are ey better than a single clas-
sifier. The experimental results, however, show that the hEEhod and the IDC stacking method
perform as well or better than single classifiers for the migjof endpoints in the ToxRefDB data,
especially applying the SVM method which is kernel based,l@se classifiers are not trained by a
decision committee method.

6.1.2 System size: The number of base classifiers to be comééh

Table 4 provides the mean and standard error estimates ofithber of base classifiers to be aggre-
gated by the IDC method over ten replications in ToxRefDBicllivas decided by two-stage 5-fold
CV. Applying SVM, I DC'x, tends to have more base classifiers (on average, acrossealtipdints,
15.27 base classifiers) than the unweighted avefdy@r, (on average, 6.07) with greater varia-
tion, especially for the radial basis kernel (on averagms18 endpoints, standard error estimates
were 0.702 and 2.153 farDCx, andIDC'r,, respectively). However, the number of base clas-
sifiers was still less than half of all base classifiers fof@lir models. The IDC method applying
random forests and AdaBoost tree tend to combine a smallfebeuof base classifiers compared
to the IDC method applying SVM (on average, across 18 enttpddnl6 and 3.68 base classifiers
for random forests and AdaBoost tree, respectively) widls eariation (on average, standard error
estimates were 0.331 and 0.404 for random forests and AdaBee, respectively).

Since the number of base classifiers for the final classifier dedermined by 5-fold CV, we
explored variation in the total number of base classifiethiwi5-fold CV. This investigation was
limited to the SVM classifier. Table 5 provides the average standard error estimates of the stan-
dard deviation of the number of base classifiers within 8-V over ten replications in ToxRefDB.
The standard deviation was computed by using the fifth patiefraining set which was not used
for training. The smaller variation within CV was observetiem the unweighted average aggre-
gation ruleF; was applied (average standard deviation was 4.00 and ltGhddinear and the
radial basis kernels, respectively) compared to the LD#etgtiggregation rulé, (average standard
deviation was 9.56 and 10.87 for the linear and the radiash@&snels, respectively). In this study,
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Table 6: Best-performing kernel functions and C valuescteteby 5-fold CV using pre-training set
for Rat LDs data [Linear=linear and RBF=radial basis functions].

Category Kernel Cvalue| Category Kernel Cvalue| Category Kernel Cvalue

(1) RBF 21 (1,8) RBF 25 (4,5) Linear 271
@) RBF 27 (1,9) RBF 21 (4,6) RBF 21
©) RBF 25 (2,3) RBF 21 %)) RBF 25
) RBF 21 (2,4) RBF 27 (4,8) RBF 210
(5) RBF 21 (2,5) RBF 27 (4,9) RBF 21
(6) RBF 21 (2,6) RBF 910 (5,6) RBF 21
@) RBF 21 2,7) RBF 27 (5,7) RBF 25
(8) RBF 27 (2,8) RBF 27 (5.8) Linear 275
9) RBF 21 (2,9) RBF 27 (5,9) RBF 21
(1,2) RBF 210 (3,4) RBF 21 6,7) RBF 27
(1,3) RBF 21 (3,5) RBF 21 (6,8) Linear 275
(1,4) RBF 21 (3,6) RBF 21 (6,9) RBF 21
(1,5) RBF 210 (3.7) RBF 25 (7.8) RBF 910
(1,6) RBF 25 (3,8) RBF 210 (7,9) RBF 27
1,7) RBF 27 (3,9) RBF 21 (8,9) RBF 25

Note: Numbers in parentheses indicate feature categarifesiews:

1. OD-constitutional descriptors  2: 2D-topological dgstors 3: 2D-walk and path counts

4: 2D-connectivity indices 5: 2D-autocorrelations 6: 2ipenvalue-based indices
7: 1D-functional group counts 8: 2D-atom-centered fragimen9: 2D-molecular properties

5-fold CV was selected considering the small sample sizecamputational cost.

6.2 Rat LD, data

Since we have a large sample size for Ra} Data, we considered the best parameter configura-
tions as suggested by a referee, focusing on the SVM. Hiestata set was randomly split into two
sets 20% : 80%) and the20% portion (pre-training) was used to find the best-perforntngfig-
uration. Considering the possibility of different dataustures for each feature category, the best-
performing configuration for each feature category wasstigated in the IDC and the IDC stacking
methods. Being able to apply a heterogeneous parametap det-different feature categories is
an additional advantage of the IDC method. Linear and rdadiais functions were investigated by
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Table 7: Averages (ACC) and standard error estimates (SE#gdiction accuracies over ten repli-
cations for Rat L}, data.

Method ACC SEE

Single SVM (best-performing set-up) 0.763 0.006
Bootstrap SVM combined by; (best-performing set-up) 0.764 0.005
Bootstrap SVM combined by, (best-performing set-up) 0.599 0.047

Stacked Bootstrap SVM (best-performing set-up) combined® 0.740 0.005
Stacked Bootstrap SVM (best-performing set-up) combineN 0.736 0.006

IDC £, (best-performing set-up for each feature category) 0.844092
IDC £, (best-performing set-up for each feature category) 0.848 0.005
IDC ., r (best-performing set-up for each feature category) 0.84200%
IDC v (best-performing set-up for each feature category) 0.837008

nested 5-fold cross-validation over C valu@s®,271,2!,25 27 210). The hyperparameter in
the radial basis function was determined by default (“awttdci)) which utilizes the heuristic ap-
proach to calculating a goad value. The single SVM classifier performed best with the akdi
basis functions and C value ®f. The best-performing kernel function and C value for eacttuie
category are given in Table 6. Once the best parameter seasletermined, the remaining data
set was randomly split into three sef)% for training, 25% for validation, and25% for testing.
Ten replications were obtained by random splitting and tleeage prediction accuracies of the ten
replications were compared.

We compared the IDC and IDC stacking methods with the bags$/M and the stacked boot-
strap SVM methods. Suppose andny, denote sample size for the training and validation data sets
respectively. For bootstrap SVM, we drew 100 random sangfles- + ny with replacement from
the combined training and validation set. For each bogistample, a base SVM classifier was built
with the best-performing parameter set-up obtained fosthgle SVM. To combine 100 bootstrap
base classifierst; andF, were applied. For stacked bootstrap SVM, we drew 100 randonpkes
of np with replacement from the training data set and built 10@hbdassifiers such as bootstrap
SVM. Again, L, penalized logistic regression with stepwise selectionasihgle layer NN were
utilized to learn the aggregation rule from the validatieh 8y comparing the IDC methods with
the bootstrap SVM methods where diversity among base firssivas obtained by bootstrap re-
sampling, we can see the effect of using the interactiveiogiship between feature categories with
the forward selection procedure in the decision committethod.

Table 7 summarizes the analysis results for the Rajldata. The IDC method with the best-
performing set-up for each feature category achieved markprovement in the average prediction
accuracies (RI: 11.14%) with similar standard error esmavith the single SVM built in the best-
performing set-up. We observed that both the IDC and the a€king methods outperformed the
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Table 8: Top 50 chemicals predicted to be toxic by the best fi&hod with SVM for Rat LR
data. P(toxicity) denotes the average probability of toxicity over ten reglims.

Rank SOURCENAME_SID P(toxicity)

Rank SOURCENAME_SID P(toxicity)

© 00 N o o0~ WDN B

N NN RN NDNRR R B B B B B R
O B W N P O © 0 N O 00 W N R O

89426971
89427032
89427009
88909960
89427134
89427236
89427178
89427463
89427247
89457090
33399007
89457103
89427350

3309771
89427430
86811463
42576023
85977497
55391349
35944833
90293508
64050562
92065833
35972500
22224926

0.84
0.83
0.83
0.82
0.82
0.82
0.79
0.78
0.78
0.77
0.77
0.76
0.76
0.76
0.75
0.75
0.75
0.75
0.74
0.74
0.74
0.74
0.74
0.73
0.73

32527552
90220147
89427485
21270031
32358080
28548085
21327311
91893640
5954905
123252993
54504700
16499755
39184593
66215278
40693047
3696239
52549174
50765894
73561963
74124019
40596698
35317794
18877899
66232288
50497

0.732
0.728
0.727
0.723
0.722
0.714
0.713
0.708
0.707
0.697
0.695
0.694
0.692
0.691
0.689
0.686
0.686
0.686
0.682
0.681
0.680
0.680
0.680
0.677
0.676




The Interactive Decision Committee for Chemical . .. 181

bootstrap SVM and the stacked bootstrap SVM methods. Thidtrdemonstrates that the decision
committee method can improve the classification performdncconsidering the interactive rela-
tionship between feature categories. Averages and sthedeor estimates of the number of base
classifiers to be combined over ten replications are givemable 4. Aggregation rulé; com-
bined a smaller number of base classifiers with less vandtian the LDA-type aggregation rule
F» which is similar to the results in the ToxRefDB data set. Agfer out by a referee, presenting
risk scores would be more informative for prioritizing cooymds for further experimental assays.
Table 8 provides chemical compound ID in Ratjglata and the average probability of toxicity of
the top 50 chemicals predicted BYCx, as an example.

In summary, we observed that the IDC and IDC stacking metlsadsimprove prediction ac-
curacy by considering interactive effects among categafdeature variables in both data sets. It
is interesting to note that both the IDC and IDC stacking roéhfailed to improve classification
performance for a few endpoints. As Shipp and Kuncheva (R@6fd, the decision committee
method can perform worse than a single classifier due to digpeny among base classifiers. Wang
et al. (2009) also argued that the performance of the decionmittee method depends on the
data characteristics and showed through empirical expatisrthat the decision committee methods
are not always better than a single classifier applying SVMe B the complicated aggregation
mechanism of the decision committee methods, it is not alsiehy the IDC methods or the IDC
stacking methods performed worse than single classifies few endpoints. However, simulation
studies in the previous section already showed that the IB@od can perform similar to a single
classifier in some cases. Also, it is not surprising thatcsiele base classifiers through forward se-
lection with 5-fold CV works better than stacked generdiain many endpoints as shown in this
data example. It is possible that we can improve the claatidic performance of the IDC stacking
method by finding a more sophisticated, optimized learniggriadhm to learn an aggregation rule,
as suggested by Wolpert (1992).

7 Discussion

In this article, we proposed an interactive decision cortamiinethod that relies on different pairs of
existing categories of feature variables as well as marf#adure categories and two-stage (SVM)
or single stage (random forests and AdaBoost) 5-fold cvasidation with forward selection. The
IDC method was applied to two sets of chemical toxicity datexRefDB and Rat L[, consisting
of binary endpoints and a set of feature variables from temital descriptor blocks. For simple
comparison purposes, a stacked generalization with theiBtbod as well as a single unaggregated
classifier were applied to the same data set. The basic idkacanputation of the IDC method is
very simple, but the IDC method and the stacked generalizd)C method can improve prediction
accuracies compared to a single classifier in the chemigality data sets applying SVM, random
forests, and AdaBoost. Although the basic idea of the IDChoddoes not depend on the type of
classifier inducer, the numerical examples show that thiapeance and the selection of the base
classifiers can differ by learning algorithms.

Our method is in the early stages of development, and thermany possible ways to improve
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it. First, the current IDC method can be extended to resglwnlticlass classification problems
(Hsu and Lin, 2002) or to predict continuous outcomes (BuatéGabrys, 2010). Second, it would
be helpful to determine whether the improvement achievethbylDC method in this paper can
be observed in other types of data, such as gene expressmmitla gene categories. Liu et al.
(2004) showed that a combinational feature selection witker@semble neural network based on
individual genes improved a classification task. Since veected for all second order interaction
terms between feature categories, the current IDC methaddwae inefficient for a large num-
ber of categories. Gene pathways are numerous, so we woetlanmore efficient way to select
second order interaction terms between gene pathways. Véaduré categories can be defined
in multiple ways, the best choice of feature categories isf@n problem. When we have a data
set with multivariate binary outcomes which might be assted with each other like ToxRefDB,
applying the multivariate IDC method could be interestibtpwever, it is not clear how to imple-
ment multivariate modeling in the decision committee systand we leave the study of the IDC
method for multivariate outcomes for future research. Qare @onsider higher order interactive
relationships between feature categories for increadireggity, although we only considered sec-
ond order interactive feature spaces in this article. Astedi out by a referee, adding higher order
interactive relationships should be carefully invesgghin terms of overall performance since the
additional benefit by adding higher order interactive fefethips may be little relative to computa-
tional cost. Finally, it would also be interesting to intatgr bootstrap resampling techniques with the
IDC method in order to increase diversity, thus potentiatthieving better prediction performance
similar to Assareh et al. (2008) and Stefanowski (2005).

Like other decision committee methods, the IDC method giewiittle insight into the decision-
making process, and thus limited interpretation of the Itestould be made (Dietterich, 1997).
Despite this limitation, our work in this paper demonstdateat the proposed method improves
classification performance compared to a single, unagtgegdassifier. This study suggests that
the proposed IDC method with two-stage or single-stagdd@¥ could be useful for classification
problems when high-dimensional feature variables areggdlinto feature categories. Also, the
proposed method could be very useful in improving the QSA#Rsification models, providing a
useful tool for predicting hazards of chemicals, and ptirig compounds for experimental assays.
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