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SUMMARY

We revisit the optimal weights for the weighted log-rank test for nonproportional hazards
data. It is noted that the optimal weight function can be derived by assuming a stable
distribution for an exponentiated omitting covariate from the proportional hazards model,
which induces the nonproportionality. A special case is the weight function for the popular
Harrington-Fleming’sGρ test statistic. However, in practice it is not straightforward for in-
vestigators to determine the optimal value of the tuning parameter ρ for the weight function
in the Gρ test statistic. We propose a maximum likelihood method to estimate the param-
eter from the observed data, noticing that the parameter ρ is inversely related to the index
parameter from the gamma distribution commonly assumed for the frailty model. The sim-
ulation results indicate that the test statistic with the estimated weight function from the
data are more powerful than the commonly used Harrington-Fleming test with ρ = 1. We
also propose a different weight function that possibly gives more power than existing ones
to detect middle difference. Three datasets from phase III clinical trials on breast cancer
are illustrated as real examples.
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1 Introduction
The most popular statistical test procedure to compare censored failure time distributions is the sim-
ple log-rank statistic (Savage, 1956; Mantel, 1966; Peto, 1972). It is well known, however, that
the log-rank test for equality of two failure time distributions is not optimal under nonproportional
hazards. The nonproportionality might be caused by omitting a balancing covariate from the pro-
portional hazards model (Lagakos and Schoenfeld, 1984; Morgan, 1986; Struthers and Kalbfleisch,
1986; Oakes and Jeong, 1998), or due to a diminishing treatment effect. In many practical examples
from medical research, the hazard rates converge between treatment groups as time progresses. For
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example, in a breast cancer study performed by the National Surgical Breast and Bowel Project (NS-
ABP), the effect of tamoxifen, a hormonal therapy, tends to diminish over time, as will be shown in
the real data example later.

In this paper, we revisit the optimal weight functions for the weighted log-rank test. We note
that the optimal weight function can be derived by assuming a stable distribution for an exponenti-
ated omitting covariate from the proportional hazards model, which induces the nonproportionality
(Oakes and Jeong, 1998). Assumption of a gamma distribution for the exponentiated omitting co-
variate gives the weight function for the popular Harrington-Fleming’sGρ test. In practice, however,
data analysts need to choose a value of ρ arbitrarily, after eyeballing the pattern of difference in haz-
ard or survival rates between groups. For example, the common choice of ρ to test early difference
among comparison groups is 1, which will be referred to as Peto-Peto-Prentice test throughout the
paper. We propose a maximum likelihood estimation method here to estimate ρ, which turns out to
provide higher power than the frequently used Peto-Peto-Prentice test. We also investigate a new
weight function derived by assuming an inverse Gaussian distribution for the omitting covariate
term, which is also shown to be more powerful than existing methods.

In Section 2, existing linear rank statistics for censored survival data are reviewed. In Section
3, the optimal weight functions, including a new one, for the weighted log-rank test statistic are
discussed. In Section 4, the maximum likelihood estimation of the tuning parameter for the weight
function is proposed. In Section 5, simulation studies are performed to compare the type I error
probabilities and powers of the weighted log-rank test statistic with various weight functions. In
Section 6, the proposed test statistic is applied to 3 real datasets from clinical trials on breast cancer.
In Section 7, we conclude with a brief remark.

2 Linear Rank Statistics–Review

The simple log-rank test statistic can be derived as a score function from the Cox’s proportional
hazards model (Cox, 1972). With one binary covariate xi = 0 or 1 for the ith subject, the Cox
model specifies

hi(t;xi) = eβxih0(t), (2.1)

where h0(t) is an arbitrary baseline hazard function. Notationally, suppose that survival data consist
of independent right censored samples from K = 2 populations, and t1 < t2 < . . . < tD < τ are
the distinct event times in the pooled sample. At time ti, we observe dij events in the jth sample
among Yij individuals at risk, j = 1, 2, i = 1, . . . , D, di =

∑2
j=1 dij and Yi =

∑2
j=1 Yij are the

number of events and number of individuals at risk in the combined sample at time ti. After taking
the first derivative of the partial likelihood function (Cox, 1975) with respect to β under model (2.1)
and evaluating it at β = 0 gives the log-rank test statistic to test H0 : S1(t) = S2(t) for all t ≤ τ as

Z1(τ) =

D∑
i=1

(
di1 − Yi1

di
Yi

)
, (2.2)
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so that a general class of weighted log-rank tests takes the form of

Z
(W )
1 (τ) =

D∑
i=1

W (ti)
(
di1 − Yi1

di
Yi

)
. (2.3)

Harrington and Fleming (1982) proposed a general class of test statistics (Gρ test) against spe-
cific alternative hypotheses of nonproportional hazard rates by introducing a weight function to the
simple log-rank test statistic. The weight function for the Gρ test is given by

W (HF )(ti) = {Ŝpooled(ti−1)}ρ, (2.4)

where Ŝpooled(t) is the Kaplan-Meier product-limit estimator of the survival function based on the
pooled data. The simple log-rank test (Peto and Peto, 1972) is obtained when ρ = 0. A case
of ρ = 1 gives a modified version of the Wilcoxon test, i.e. the Peto-Peto-Prentice test. When
ρ > 0, the weight function gives more weights to early differences between the hazard rates. On the
contrary, when ρ < 0, it assigns more weights on late differences.

3 Optimal Weight Functions
Oakes and Jeong (1998) derived a new class of optimal weight functions for the weighted log-
rank test for nonproportional hazards data. They considered a case where a covariate that balances
the proportionality in the Cox model has been omitted, introducing nonproportionality. They have
derived various weight functions explicitly by assuming some parametric distributions for the expo-
nentiated term of the omitted covariate, adopting the frailty theory (Vaupel et al., 1979).

For the ith subject, the frailty model specifies

hi(t | xi, zi) = vie
βxih0(t), (3.1)

where h0(t) is an unknown baseline hazard function, xi is a binary covariate, for simplicity, and
vi = eνzi is a frailty. In general, the frailty may imply an unobservable genetic or environmental
heterogeneity in the population, so that a distribution needs to be assumed for vi. Note that the model
(3.1) satisfies the assumption of proportional hazards given xi and zi, implying that omitting the
second covariate zi, possibly continuous, might result in nonproportionality. By using the survival
function, the model (3.1) can be written as

Si(t;xi, zi) = exp(−Bviθi), (3.2)

where B = B(t) = − logS0(t), S0(t) being the baseline survival function, and θi = exp(βxi).
Now by assuming that the model (3.2) is the true model for the data at hand but the term vi was not
observed or omitted, we can write a marginal survival function

S(t;xi) = EV {exp(−BθiV )} = p(θiB), (3.3)

where p(·) is the Laplace transform for the distribution of the frailty V . Various distributions have
been proposed for V such as gamma, Inverse Gaussian, or positive stable (Hougaard, 1984, 1986).
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When the frailty variable V follows a gamma distribution with both mean and variance of κ, the
marginal survival function (3.3) reduces to

SG(t; θi) =

(
1

1 + θiB

)κ
, (3.4)

which gives the hazard ratio as

eβ(1 +B)

1 + eβB
.

Note that the hazard ratio between the two groups are not proportional, changing from eβ to 1 as
t→∞.

A popular form of the inverse Gaussian frailty distribution with the unit mean and variance of
(2φ)−1 is given by (Hougaard, 1984)

SIG(t; θi) = exp
[
2φ− 2

√
φ(φ+ θiB)

]
. (3.5)

In this case, the hazard ratio is

eβ

√
φ+B

φ+ eβB
.

Again the hazard ratio is not proportional, changing from eβ to
√
eβ as t→∞.

Oakes and Jeong (1998) showed that under the null hypothesis of H0 : β = 0, the optimal
weight function W (t) in the weighted log-rank test (2.3) converges to

w(t) = 1 +
Bp′′(B)

p′(B)
− Bp′(B)

p(B)
. (3.6)

Under the gamma frailty assumption, the equation (3.6) gives

wG(t) =
1

1 +B
=

[(
1

1 +B

)κ]1/κ
= SG(t)

ρ, (3.7)

where ρ = 1/κ, and SG(t) = SG(t; θi)|θi=1 from (3.4). As noted in Oakes and Jeong (1998), this
implies that the optimal weight function derived under the assumption that the exponentiated omit-
ting covariate follows a gamma distribution is equivalent to one for the Harrington and Fleming’s
Gρ test statistic. Note that wG(t) tends to 1 as κ → ∞, which leads to the simple log-rank test.
Similarly, under the inverse Gaussian frailty assumption, the optimal weight function can be derived
as

wIG(t) = 1− B

2(φ+B)
=

1

2
+

2φ2

{2φ− logSIG(t)}2
, (3.8)

where SIG(t) = SIG(t; θi)|θi=1 from (3.5).
Hougaard (1984) showed that, relative to the gamma distribution, under the inverse Gaussian

frailty model the surviving population becomes more homogeneous with time. This might imply
that the weighted log-rank test with the new weight function in (3.8) could be more powerful when
a group effect fades away over time, two groups being homogeneous.
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4 Estimation of a Tuning Parameter for the Weight Function

Even though the Gρ family is rich, encompassing a variety of weighting schemes, in practice it is
not easy for investigators to determine which value for the tuning parameter ρ should be used, so
that conveniently the test statistic such as Peto-Peto-Prentice test has been often adopted, fixing the
parameter value as 1, to infer early difference in survival data. However, the equation (3.7) suggests
that the pattern of nonproportionality caused by an omitted covariate information following a gamma
distribution can be explained by the weight function from the Gρ family, in which case ρ = 1/κ.
Hence the tuning parameter ρ can be estimated from the model given in (3.4), assuming a parametric
form for the baseline cumulative hazard function B. For the ith subject, let δi = 1 if an event
occurred at time Ti and δi = 0 if an observation was censored at time Ti. Then for n observations
under right censoring, the likelihood function is

L(θ) =

n∏
i=1

hG(Ti; θi)
δiSG(Ti; θi)

where SG(t; θi) is the marginal survival function (3.4) and hG(t; θi) = − d
dt log(SG(t; θi)).

Specifically, let us assume an exponential distribution with mean λ for the baseline hazard func-
tion and a gamma frailty distribution with both mean and variance of κ. Then the likelihood function
is given by

L(κ, β, λ) =

n∏
i=1

(
λκeβxi

1 + λtieβxi

)δi (
1

1 + λtieβxi

)κ
, (4.1)

which can be maximized using an optimization procedure. Applying the invariance property of the
maximum likelihood estimator (MLE), the estimate of κ, κ̂, can be used to estimate ρ in the gamma
frailty weight function (3.7). Similar steps can be applied to estimate the parameter φ for the inverse
Gaussian frailty function in (3.5).

5 A Simulation Study

In this section, first we compare the type I error probabilities and powers of the weighted log-
rank test statistic using different weight functions when (3.4) is the true model. We will consider
three weight functions; simple log-rank (W (t) = 1), Fleming-Harrington with ρ = 1 (W (t) =

Ŝpooled(ti−1)) and the gamma frailty weight function (W (t) = Ŝpooled(ti−1)
ρ̂), where ρ̂ is the

maximum likelihood estimate of ρ.
In the simulation study, we assume an exponential baseline hazard with mean 2. The covariate

values of x’s were generated from a Bernoulli distribution with mean 0.5. Event times conditional on
x’s were generated from (3.4) using the probability integral transformation. Censoring times were
generated independently from a uniform 0 to c distribution, where c is chosen to achieve the desired
censoring proportion. Simulations were performed for a sample size of n = 300 and censoring
proportions of 0%, 30% and 60%. The true values were 0.1, 0.25, 0.5, 1 for κ and 0, 0.5 and 0.75
for β.
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One thousand samples were drawn from each configuration of β, κ, and the censoring pro-
portion. For each sample, a test for the null hypothesis of no difference between the two failure
distributions was conducted using each of the three weighted log-rank tests described above. Then
the proportion of statistically significant cases at the significance level of 0.05, was obtained for
each test. The maximum likelihood estimate of κ was also calculated for each sample, using R’s
constrOptim function. This function maximizes the likelihood function using an adaptive barrier
algorithm with linear inequality constraints on the parameters. In this case κ and λ were constrained
to be greater than or equal to 0, but β was not.

Table 1 summarizes the true values and the mean of the maximum likelihood estimates of κ, and
the mean square errors of the estimates for various censoring proportions when β = 0.75. The result
indicates that the estimates are very close to their true values on average except the unit exponential
frailty case, i.e. when κ = 1, with heavy censoring.

Table 2 summarizes type I error probabilities (β = 0) and powers (β = 0.75) for the three
weighted log-rank tests for various values of κ and different censoring proportions; (1) weight func-
tion from the gamma frailty model with ρ̂ = 1/κ̂ (Gamma Frailty), (2) simple log-rank test, and (3)
Fleming-Harrington’s Gρ test with ρ fixed as 1. All three tests give reasonable type I error probabil-
ities. In terms of powers, the simple log-rank test produced the lowest powers, as expected, and the
Gρ statistic with κ̂ provided the highest powers. As the true values of κ get closer to 1, the results
from the tests with gamma frailty weighting function and the Gρ weighting function with ρ = 1

converges.
The simulation was repeated for β = 0.5, and both results are graphically presented in Figure

1, which indicates that the efficiency of the Gρ test with the estimated weight function is higher for
data with lower censoring proportion and small/middle values of κ.

The similar simulation was performed assuming an inverse Gaussian frailty distribution in (3.3),
and the results are summarized in Table 3, where the tuning parameter is φ for the inverse Gaussian
weighting function. In this case, the test with the estimated inverse Gaussian weight function per-
forms slightly better in case of no/moderate censoring, and the results are compatible with the fixed
Gρ test and simple log-rank test as the censoring proportion increases, due to the heavy censoring
effect at the tail.

For a fair comparison, we have also performed power analysis for the Gρ test statistic when
the true distribution was misspecified as the inverse Gaussian distribution. Table 4 compares the
estimated Gρ test statistic, simple log-rank test statistic, and Fleming-Harrington test with ρ = 1.
The results indicate that the estimated Gρ test and log-rank test tends to perform slightly better than
the fixed Gρ test with ρ = 1.

6 Real Data Examples

In this section, three real datasets from phase III clinical trials on breast cancer, performed by Na-
tional Surgical Breast and Bowel Project (NSABP), are illustrated to compare the three types of
weighted log-rank statistics.

The first dataset is from a study (B-13) that assessed sequential Methotrexate→ 5-Fluorouracil
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Figure 1: Power comparisons between simple log-rank test statistic, Gρ test with the estimated
weight function (Gamma Frailty), and Gρ test with fixed ρ = 1 (Fleming-Harrington, ρ = 1);
censoring proportion= 0%, 30%, and 60%; κ=0.1, 0.25, 0.50, and 1.0; β = 0.5 and 0.75.

(M→F) in breast cancer patients with negative axillary lymph nodes and negative estrogen recep-
tors. The main results have been published and updated previously (Fisher et al., 1989b, 1996b,
2004). In the analysis presented here included were total 731 eligible patients with follow-up in-
formation (369 in placebo group; 362 in the M→F group). The second dataset comes from the
NSABP B-14 study, where patients with primary breast cancer, negative axillary nodes, and estro-
gen receptor positive tumors were randomized to receive either tamoxifen (a hormonal therapy) or
placebo following surgery. The trial itself is described in details in the literature (Fisher et al., 1989a,
1996a). Only total 68 eligible patients with tumor size greater than 5cm (30 from placebo group;
38 from tamoxifen group) were used in this analysis. The third dataset comes from NSABP B-19
protocol, where the similar patient population (node-negative and ER-negative) has been studied
as in B-13 to compare the M→F regimen with the conventional Cyclophosphamide, Methotrexate,
and 5-Fluorouracil (CMF) regimen. A cohort of 1,074 eligible patients have been included from
B-19 study. The mean time on study ranges from about 17 years to 21 years. In these studies, the
endpoints of interest were disease-free survival (DFS) and overall survival (OS). The DFS endpoint
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includes breast cancer recurrences, other primary cancers, and deaths as first events, and the OS
endpoint includes any deaths. The censoring proportions for B-13, B-14, and B-19 data were 68%,
47%, and 76%, respectively.

Figure 2 shows the smoothed hazard plots between comparison groups of the OS endpoint (B-
13, and B-19) and the DFS endpoint (B-14). The early difference is more noticeable in the B-14
data, but the hazard rates converge over time in all three datasets. P-values from the simple log-rank
test were 0.0204, 0.411, and 0.011 for B-13, B-14, and B-19 data, respectively. P-values from the
Gρ test with ρ = 1 were 0.019, 0.269, and 0.0097. P-values from the Gρ test with the estimates
ρ̂ = 4.93, 3.22, and 2.71 were 0.0235, 0.170, and 0.0077, indicating that the Gρ test with the
weight function estimated by the maximum likelihood provides more efficient results for B-14 and
B-19 data. For B-13 data, the results were compatible between the Peto-Peto-Prentice test and the
estimated Gρ test. This phenomenon was also observed in the simulation results presented in Figure
1; the efficiency of the test based on the maximum likelihood estimation of the tuning parameter
tends to be higher for data with lower censoring proportion and large/middle value of ρ = 1/κ.
The test with the estimated inverse Gaussian weighting function gives p-values of 0.022, 0.385, and
0.0091, respectively, indicating that it performs as well as the previous twoGρ statistics for the B-13
and B-19 data, but not for B-14 data. Note that the inverse Gaussian weight function assigns more
weights for the middle difference, compared to the gamma weight function.
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Figure 2: Smoothed hazard rates between treatment groups (NSABP B-13, B-14, and B-19 data).
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7 A Concluding Remark

In this paper, we considered a new weighting function for the weighted log-rank test and estimation
of the tuning parameter for the weight function, when the hazard rates converge as time progresses.
The pattern of weighting under the Harrington-Fleming’s Gρ statistic can be captured by the op-
timal weight function derived from the gamma frailty model, indicating a connection between the
parameter ρ and the parameter from the assumed gamma frailty. Therefore the tuning parameter
could be estimated from the marginal distribution induced under the gamma frailty model. The
simulation results and the real data examples indicate that the maximum likelihood estimates of the
tuning parameter for the weight function and the estimated Gρ test performs better than one with
an arbitrarily fixed value, such as the Peto-Peto-Prentice test. In our simulation and real data exam-
ples, however, we assumed an exponential distribution for the baseline hazard distribution for the
maximum likelihood estimation. Even though the exponential distribution would capture the overall
pattern of hazard rate reasonably well on average, a nonparametric approach would allow for more
flexibility in practice, which is under investigation.
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Table 1: True values and maximum likelihood estimates with mean square errors (MSE) of κ; cen-
soring proportion=0%, 30%, and 60%; β = 0.75.

Censoring Rate κ κ̂ MSE(κ̂)

0% 0.10 0.100 0.00004

0.25 0.252 0.00033

0.50 0.507 0.00229

1.00 1.020 0.01483

30% 0.10 0.100 0.00006

0.25 0.252 0.00063

0.50 0.510 0.00508

1.00 1.044 0.05044

60% 0.10 0.101 0.00015

0.25 0.261 0.00239

0.50 0.538 0.02839

1.00 1.295 0.98234
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Table 2: Empirical type I error probabilities (β = 0) and powers (β = 0.75) from simple log-rank
test statistic, Gρ test with the estimated gamma frailty weight function (Gamma Frailty), andGρ test
with fixed ρ = 1 (Fleming-Harrington, ρ = 1); censoring proportion= 0%, 30%, and 60%; κ=0.1,
0.25, 0.50, and 1.0.

Censoring κ Gamma Simple Fleming-Harrington,

Rate Frailty Log-Rank ρ = 1

β = 0 0% 0.10 0.038 0.057 0.053

0.25 0.044 0.057 0.058

0.50 0.050 0.051 0.045

1.00 0.048 0.048 0.048

30% 0.10 0.056 0.043 0.044

0.25 0.052 0.062 0.061

0.50 0.043 0.041 0.045

1.00 0.058 0.064 0.059

60% 0.10 0.051 0.039 0.039

0.25 0.050 0.063 0.063

0.50 0.068 0.066 0.064

1.00 0.052 0.047 0.051

β = 0.75 0% 0.10 0.241 0.087 0.145

0.25 0.581 0.272 0.477

0.50 0.824 0.597 0.793

1.00 0.973 0.903 0.971

30% 0.10 0.278 0.092 0.129

0.25 0.576 0.331 0.460

0.50 0.780 0.678 0.778

1.00 0.938 0.921 0.937

60% 0.10 0.271 0.136 0.167

0.25 0.563 0.426 0.488

0.50 0.751 0.712 0.744

1.00 0.909 0.902 0.907
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Table 3: Empirical type I error probabilities (β = 0) and powers (β = 0.5) from simple log-rank
test statistic, weighted linear rank test with the estimated inverse Gaussian frailty weight function
(Inverse Gaussian Frailty), and Gρ test with fixed ρ = 1 (Fleming-Harrington, ρ = 1); censoring
proportion= 0%, 30%, and 60%; κ=0.1, 0.25, 0.50, and 1.0.

Censoring φ Inverse Gaussian Simple Fleming-Harrington,

Rate Frailty Log-Rank ρ = 1

β = 0 0% 0.10 0.055 0.055 0.055

0.25 0.042 0.040 0.034

0.50 0.051 0.047 0.049

1.00 0.048 0.049 0.055

30% 0.10 0.049 0.045 0.049

0.25 0.047 0.050 0.052

0.50 0.058 0.053 0.056

1.00 0.049 0.053 0.056

60% 0.10 0.054 0.049 0.058

0.25 0.059 0.050 0.059

0.50 0.050 0.045 0.051

1.00 0.047 0.043 0.048

β = 0.5 0% 0.10 0.726 0.715 0.659

0.25 0.798 0.797 0.748

0.50 0.868 0.861 0.831

1.00 0.924 0.918 0.881

30% 0.10 0.590 0.572 0.568

0.25 0.715 0.696 0.703

0.50 0.752 0.755 0.742

1.00 0.848 0.842 0.821

60% 0.10 0.435 0.435 0.434

0.25 0.522 0.516 0.520

0.50 0.609 0.600 0.611

1.00 0.682 0.686 0.667



232 Xu, Christian & Jeong

Table 4: Empirical power assuming a gamma frailty distribution when the true distribution is an
inverse Gaussian frailty distribution; n = 300 and β = 0.75.

Censoring Rate φ Gamma Frailty Simple Log-Rank Fleming-Harrington, ρ = 1

0% 0.10 0.649 0.695 0.641

0.25 0.768 0.794 0.733

0.50 0.868 0.864 0.833

1.00 0.933 0.932 0.888

30% 0.10 0.556 0.582 0.566

0.25 0.710 0.710 0.693

0.50 0.805 0.791 0.784

1.00 0.858 0.839 0.835

60% 0.10 0.427 0.429 0.433

0.25 0.522 0.518 0.524

0.50 0.620 0.621 0.616

1.00 0.678 0.674 0.671


