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SUMMARY

Depression studies frequently adopt two-stage designs to examine the efficacy of augment-
ing pharmacotherapy with psychotherapy. Initially subjects receive one of the several treat-
ments; if they respond, they continue the same treatment; however, if they fail to respond,
they move to the next stage and are randomized to other treatment options. Outcomes such
as 24-item Hamilton Rating Scale of Depression (HRSD24) scores are then collected re-
peatedly to monitor the progress of the subject. The goal is to assess the effect of treatment
regimes (consisting of initial treatment, initial response and the second stage treatment
combinations) on HRSD»4 profile. Statistical inference for assessing treatment regimes
using a summary outcome measure such as mean response has been well-studied in the
literature. Statistical methods for assessing the effect of treatment strategies on repeated
measures data focused mainly on estimating equations. In this article, we propose two
methods based on mixed models and multiple imputations to assess the effect of treatment
regimes on the longitudinal HRSD24 scores. Methods are compared through simulation
studies and through an application to a depression study. The simulation studies showed
that the estimates from both methods are approximately unbiased, and provide good cov-
erage rates for 95% confidence intervals.

Keywords and phrases: Adaptive Treatment Regimes, Longitudinal Data Analysis, Mixed
Models

1 Introduction

In biomedical studies, it is common to apply multiple treatments in sequence to improve patients’
quality of life. For example, the REVAMP (Research Evaluating the Value of Augmenting Medica-
tion with Psychotherapy) study (Trivedi et al., 2008) adopted a two-stage study design to assess the
efficacy of combining pharmacotherapy and psychotherapy for the chronically depressed subjects.
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Figure 1: REVAMP study design.

The study recruited a total of 808 subjects with chronic forms of major depression disorder (MDD)
between 2003 and 2006. The study design is illustrated in Figure 1.

At the initial stage, subjects received one of four treatments: Sertaline (SERT), Escitalopram
(EcCIT), Burpropion (BUP-SR), and Venlafaxine (VLF-XR). The treatment assignment at this stage
was done by REVAMP study physicians based on an algorithm which took into account the subject’s
treatment history. The treatment assignment was deterministic, for example, if a subject had never
failed two adequate trials of Selective Serotonin Reuptake Inhibitors (SSRIs) and had no history of
SERT failure in the past, this subject was assigned to the treatment with SERT. Each subject was fol-
lowed for at most 12 weeks during which a 24-item Hamilton Rating Scale of Depression (HRSDyy)
score was collected at two week interval. During the 6 to 12 follow-up visits, if a subject’s HRSDgoy4
score was reduced 60% or more from the study entry to a value less than 8, and the subject did not
meet the diagnostic and statistical manual of mental disorders 4** edition MDD criteria for two con-
secutive visits, the subject was considered to be a responder to the corresponding initial treatment. If
the HRSDa4 score was only reduced less than 30%, and the subject did not meet, for two consecutive
visits, the MDD criteria from the diagnostic and statistical manual of mental disorders (DSM-1V),
the subject was considered to be a non-responder. If the subject did not meet the criteria for either
a responder or a non-responder, then the subject was classified as a partial responder. At the sec-
ond stage, the responders to the initial treatment moved to the follow-up stage, during which they
continued to receive the same initial treatment for another 12 months with monthly follow-up visits.
The partial responders and non-responders were randomly assigned to one of the three treatment
options:(1) Medication change only (MC), (2) Medication change and cognitive behavioral analysis
system of psychotherapy (MC/CBASP), and (3) Medication change and supportive psychotherapy
(MC/SP). Details of the medication changes can be found in Trivedi ef al. (2008). The random-
ization rates for the three treatment options were 20%, 40%, and 40%, respectively. Similar to the
initial stage, subjects were followed for 12 weeks, and the HRSDy4 score was measured repeatedly
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at two week intervals.

The aims of the REVAMP study were to compare the efficacy of adding psychotherapy to a
medication change versus changing medication alone (in chronic depressives with partial response
or non-response to an initial antidepressant medication), and to test the efficacy of the CBASP as an
augmentation regime by comparing it to the SP. The study design allows twelve treatment regimes.
In general, a treatment regime consists of an initial treatment, and conditional on an intermediate
response, a second stage treatment. For the initial treatment X and the second stage treatment
Y, the policy X — Y can be defined as “Treat with initial treatment X, if respond continue the
same treatment, otherwise switch to second stage treatment Y. For example, consider subjects
treated with SERT at the initial stage. There are three possible treatment regimes these subjects
could follow: (1) Treat with SERT, if respond continue SERT, otherwise change or add medication,
(2) Treat with SERT, if respond continue SERT, otherwise treat with the CBASP, (3) Treat with
SERT, if respond continue SERT, otherwise treat with the SP. Nine other treatment regimes can be
constructed similarly with those who were treated with EcCIT, BUP-SR, and VLF-XR.

Standard methods for estimating treatment effect from longitudinal outcome data include gener-
alized estimating equations (Liang and Zeger, 1986; Zeger and Liang, 1986), generalized linear and
mixed models (Goldstein, 2003; Laird and Ware, 1982; Longford, 1993). The REVAMP study uses
the mixed models for estimating the treatment effect for the randomized treatment groups. In our
situation, the treatment regimes consist of sequences of treatments applied conditionally on inter-
mediate response. Besides, one subject can belong to more than one regime. For example, patients
responding to SERT belongs to three different regimes, namely, SERT-MC, SERT-MC/CBASP, and
SERT-MC/SP. Therefore, it is not as straightforward to estimate the effect of a regime or com-
pare different regimes using standard longitudinal data analysis techniques. Statistical inference on
treatment regimes using a summary outcome measure has been well-studied in the literature. Meth-
ods for survival outcomes were considered in Lunceford, Davidian, and Tsiatis (2002), Wahed and
Tsiatis (2004, 2006), Guo and Tsiatis (2005), Hernan and Robins (2006), and Lokhnygina and Hel-
terbrand (2007). Thall et al. (2007) adopts a Bayesian approach to model the time to failure and
compare two-stage adaptive treatment regimes. Statistical methods for assessing the effect of treat-
ment strategies on repeated measures data focused mainly on estimating equations. For example,
estimation of a mean response based on observational longitudinal data were proposed in Murphy,
Van Der Laan, and Robins (2001) and Murphy (2003). In this article, we propose two methods for
estimating treatment regime effects from longitudinal outcome data. We also investigate the use of
Wald tests in comparing several treatment regimes.

In Section 2, we describe the notation, data structure, model, and assumptions. Section 3 de-
scribes the estimation procedures. Hypothesis testing for comparing the treatment regimes is de-
scribed in Section 4. The results from simulation studies are reported in Section 5, followed by an
application to the REVAMP study data in Section 6. The article is concluded with some discussions
in Section 7.
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Figure 2: Example of two-stage design.

2 Data Structure and Models

2.1 Setup

We start with a generalized version of the REVAMP study design, where responders to initial treat-
ments are also randomized to further treatments (possibly to maintain the response). In cases where
responders are not randomized further such as the REVAMP study, we can envision a single second
stage treatment for responders. Also, for simplicity, we assume that there are two treatment options
at each stage. We depict such a design in Figure 2. Let the two initial treatments be denoted by A
and Ao, and the two sets of second stage treatments by By and Bs for the responders, and Bj and
Bj, for the non-responders. Generalization to more than two treatments will be straightforward.

With this set-up, there are a total of eight treatment regimes, namely, AjBkBl’ s kol =1,2,
where A; By, Bj stands for “Treat with A; followed by By, if respond, by B, otherwise”. The goal is
to compare these eight regimes based on the rate of decline during stage two of the treatment. For
each individual ¢, we define the following counterfactual variables (Holland, 1986). For j,k,l =
1,2and m = 1,2,..., M, the variable R;(A;) defines the response status had the i*" individual
received initial treatment A;; Y;m(AjBk) denotes the outcome (e.g., HRSDy4 score) measured
at time t;,,, had the i*" individual received Bj following a response to the initial treatment A;;
similarly, Y., (4; Bl’ ) denotes the outcome measured at time ¢;,, had the ith individual received
Bj after becoming a non-responder to the initial treatment A;; V; denotes the vector of baseline
covariates such as age, sex, and variables collected during the initial stage of treatment such as time
to initial response and minimum HRSDyy4 score observed during the initial treatment phase.

In practice not all the variables defined above could be observed for each individual. For exam-
ple, if a patient actually receives A1, then we would not be able to observe R(A5) for that patient.
If a patient receives Aj, responds initially and then receives B, we will not be able to observe
the variables Y (A1 Bs),Y (A1 B}),Y (A1BS),Y(A2B1),Y (A2Bs), Y (A2BY), or Y (A B)). These
variables are also referred to as counterfactuals (Holland, 1986). However, we will use them to for-
mulate the estimand of interest. With these notation, we can now define the outcome under the
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regime A, By, B] as
Yim(A; BeBy) = Ri(A;)Yim (A3 Br) + {1 = Ri(4;)}Yim (4, By). 2.1

The goal is to estimate the effect of the treatment regime A, By Bj, j, k,! = 1,2 on the changes in
outcome Y during the second stage adjusting for other baseline and first-stage patient characteristics.

2.2 The model

We postulate the model
E [Yim(A;BiB))|Vis tim] = V' a(A; By B)) + B(A; Bi.B))tim (22)

to assess the effect of the treatment regime A ; By, B} on the changes in outcome Y over time adjusting
for baseline and initial stage covariate vector V;. However, as mentioned earlier, not all patients
were treated according to this regime. Therefore, the challenge would be to estimate the parameters
0(A;ByB]) = {a(A;BrB]), 3(A;ByBj)} for all j,k,l = 1,2 based on the observed data. Note
that the actual interest is in estimating and comparing the parameters 5(A;BBj),j,k,1 = 1,2,
while treating a(A; By Bj), j, k,! = 1,2 as nuisance. Also we note that in model (2.2) the effect
of baseline covariate on the response Y is allowed to vary across regimes and hence the notation
a(A;BiB)). If we denote by V* the vector of covariates formed by stacking the baseline and first
stage covariates, and time, i.e., V" = [ViT7 tim]T, model (2.2) could be simplified as

E [Yim(A;BiB)|V;*] = VT 0(A; B.B]). (2.3)

2.3 Observed data

The observed data from a two-stage design (described in Figure 3) can be characterized as a set of
n independent vectors

{Vi.Xji,Ri, RiZv;, (1 — Ri) Z3;, (tim, Yim),m=1,..,M;j =1,2;i =1, .n}

where n is the total number of subjects in the sample; V; is the baseline and initial stage character-
istics as defined previously; X ; is the initial treatment indicator, X;;=1 when the i'" subject was
randomized to A;, 0 otherwise; Z1; and Z7; are the second-stage treatment indicators for By and
B, respectively, i.e., Zy;=1 if the ithsubject received B1, and Z1,=0 otherwise. Similarly, Z:’u:l if
the ith subject received B}, 0 otherwise; Y;,, is the outcome observed at time t;,,, for the subject i,
m=1,2,...,M. Letus define Zo; = 1 — Zy; and Z}, = 1 — Z{, so that Z; and Z), respectively
represents the indicators for By and B respectively.

2.4 Assumptions

As a first step toward estimation of the regime-specific parameters, counterfactual quantities defined
in section 2.1 will be expressed in terms of observed data. We make the consistency assumption
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Figure 3: Structure of observed data in a typical two-stage design.

(Ko, Hogan, and Mayer, 2003) that relates observed outcomes to the counterfactuals based on the
actual treatment received by the individuals, namely,

2
Ry =) X;iRi(4;), (2.4)
j=1

and

2 2 2
Yim =Y lxﬁ {Ri > ZkYim(A;jBr) + (1 - Ri) Y meij;)} (2.5)
j=1

k=1 =1

The consistency assumption implies that the potential outcome of a certain sequence of treatment
will remain unchanged regardless of the treatment assignment mechanism. In addition, for consis-
tent estimation of the treatment regime effects, we assume that actual treatments received at different
stages are independent of future counterfactuals, conditional on observed covariate history. Equiva-
lently,

Pr(X;: = 11Vi, Yo (A; Bi), Vi (A, B), 4, k1 = 1,2)
= Pr(X;; =1|V;),j = 1,2, (2.6)

Pr(Zy =11X;i, Ri = 1,V;, Y (A;Bi), Yim(A;By), k, 1 = 1,2)
= PT(Zki = llleaRZ = 1)%)7] = 1a2a (27)

and Pr(Zl/z = 1|in,Ri = 0,V;,Y;m(A]Bk),}/zm(A]Bl/),k',l = 1,2)
= Pr(Z; =1X;i,Ri =0,V;),j =1,2. (2.8)

This assumption is frequently referred to as “No unmeasured confounder” (Robins, 1997) as-
sumption. In the case of the REVAMP study design, (2.7) and (2.8) are automatically satisfied,
since the second stage treatment is assigned through randomization. In addition, due to random-
ization these latter probabilities do not depend on the covariates except for the response status.
Therefore, for simplicity, we will denote the probabilities in (2.7) and (2.8) by 74,5, and 74, B}
respectively.
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3 Estimation

As noted in the previous section, for fixed j, k, and [, the response for the regime A; By, B, namely,
Yim (A; By Bj) is not observed for all patients. Therefore, the estimation procedure would be carried
out via group-specific sub-models. Specifically, all the individuals in the sample could be identified
as belonging to one of the 8 subgroups, namely, A;By, A;B], j, k,! = 1,2, where the subgroup
A; By, refers to those who were treated with the sequence of treatments A; followed by By, and
similarly for A;B;. First we will express the regime-specific parameters in terms of the group-
specific parameters. We set the following sub-models for group-specific responses Y, (A, By) and
Yim (4, B)):

E [Yim (4, Bi) Vi, tim] = Vi" (A Bi) + B(A; Bi)tim, G.D
and
E [Yim(A;B)|V;, tim] = V¥ a(A;B]) + B(A; B))tim. (3.2)
Or, equivalently,
E [Yim (A;Be)[Vi'] = Vi 0(A; By, (3.3)
and
E [Yim(A; BV = Vi T0(A; B)), G4

where similar to the regime-specific notations for parameters, we have defined group-specific pa-
rameters 0(A; By) = {a(A; By), B(A;Bi)}" and 0(A,; B)) = {a(A; B]), B(A; B)Y", 3 k1 = 1,2.
We note that models (3.3) and (3.4) could be fitted by using the data from patients who were treated
using the respective sequences of treatments. Thus, if we can express the regime specific parameters
6(A; By Bj) in terms of group-specific parameters §(A;By,) and §(A;B), then we will be able to
estimate them with ease. From Equation (2.1), we can write,

EYim(A;BeB))|Vi'] = E [Ri(A;)Yim(A; By)|V;'] +
E[{1 = Ri(A))}Yim(A;B))|V/"]. (3.5

If we further assume that conditional on V;*, R;(A;) and Y;,,,(A; By), and R;(A;) and Y;,,,(A; B))
are statistically independent, then we obtain

E [Yim(A; BB V;"] = E[Ri(A;)|V;"] E [Yim (A; Bi) V']

3

+E[L— Ri(A)|V?) E Yo (4, B)|V7]. (3.6)

K2

Let E(R;(A;)|V;*) = m(A;) where m,.(A;) is the proportion of responders to the initial treatment
Aj,i.e., given the initial treatment assignment, probability of response does not depend on V;*. Then
(3.6) can be expressed as

E [Yim (A; BuB))|V;'] = m(Aj) E [Yim (A; Bi) | V/']
{1 = 1 (A} E [Yim (4; B V] - (3.7
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Under the model assumptions (3.1) and (3.2), equation (3.7) becomes
E [Yim(A; BiB)|V;*] = Vi [ (A;)0(A;By)
+H{1 —7,(4;)}0(A; B))]. (3.8)

By comparing (2.3) to (3.8), we can express the regime-specific parameter 6(A;BB]) as the
weighted average of treatment path specific parameters as follows

0(A; B By) = mr(A;)0(A; B) + {1 — m:(4;)}0(A; By). (3.9

Since the outcome is measured repeatedly over time for the same individual, to account for
the correlation within individuals, one might use generalized estimating equations to fit the group-
specific models or introduce random effects into these models (mixed models). Whatever way these
models are fitted, once the group-specific parameters (6(A4;By), 0(A;B;)) are estimated along with
the respective response rates, equation (3.9) could be used to obtain the regime-specific parameter
estimates from the group-specific parameter estimates. Specifically,

0(A;BiB]) = 7t,(A;)0(A; B) + {1 — 7,(A;)}0(A; By). (3.10)

For the purpose of our analysis we have used mixed models. We accommodate random effects
by adding the individual random component to the models (3.3) and (3.4). Let H 7T m(Aj By) and
HI'n;(A;B) be the random effect components for the subjects who follow a sequence of treatments
A;jBy and A; Bj, respectively, where H; is the vector of random effects, and 7;’s are random vectors
of parameters for each subject having mean 0. For example, if we choose the intercept and time
as random effects, then H; = [1,t;m|", 1;(A;Bx) = [mio(A4;Bx), ni (4;By)]*, and n;(A;B]) =
[mio(A;B]), nin (A;B])]T will represent the group-specific parameters for random intercepts and
slopes, respectively. In this case, the models (3.3) and (3.4) are modified slightly as follows

E [Yim (A;By)| Vi, ni(A;Br)] = Vi 0(A; By,) + H] 'ni(A; By), (3.11)

and
B [Yim (A; BV, mi (A3 B)] = Vi 0(A; By) + H['ni( A; By). (3.12)
We assume that 7);(A;By;) and 1;(A; Bj) are distributed as multivariate normal with common
mean 0 and variance-covariance matrices G(A;By) and G(A,Bj) respectively. In the following

sections, we discuss two specific methods for estimating the fixed parameters 3(A; B B)), j, k,l =
1,2.

3.1 Methods of Estimation

We propose two methods to estimate the effect of treatment regimes on the outcome over time. In the
first method, mixed model techniques are used to estimate 5(A;By) and 5(A;B;) in the first step
and then their weighted averages are used to derive the estimates for 3(A; By, B;). We refer to this
method as a two-step method. The second method uses multiple imputation approach to reconstruct
observations for subjects who did not follow the regime of interest. This method involves one extra
step of multiple imputation and hence will be referred to as three-step method. Both two-step and
three-step estimators are described below in details.



Assessing the Effect of Treatment Regimes on Longitudinal . .. 241

3.1.1 Two-step Method

Step 1: Estimation of treatment effects for observed treatment sequences. For each first stage
treatment A;, j = 1,2, we obtain the empirical response rates

A 2oy XjiRi

7r(A45) SX, ,j=1,2. (3.13)
Next we note that under the consistency and sequential randomization assumptions (2.4)-(2.8),
Yi(AjBk) =Y;when X;; = 1,R; = 1, and Zj; = 1 (and, similarly for other treatment sequences).
Therefore, for each of the eight observed sequences of treatments (A; By, A;B)), j,k,l = 1,2, we
estimate §(A;Bx), B(A;Bj), j,k,l = 1,2 in this step using data from subjects who received re-
spective treatment sequence. For example, for j = k£ = 1, by fitting the model (3.11) (with counter-
factual Y’s replaced with observed Y’s) to the data from subjects who followed the A; B; treatment
sequence, we obtain B (A1 B1). Any standard statistical procedure, such as PROC MIXED in SAS
(Littell et al., 1996) or the Ime function in R (Pinheiro and Bates, 1994) could be used for this
purpose. Note that the advantage of using such standard procedures is that the estimated variance-
covariance matrices for these parameter estimates are readily available from the outputs generated by
these routines. Also, model assumptions and structure of the appropriate covariance matrix G could
be thoroughly examined using these routines. The residual check for normality and the covariance
selection are described, for example, in Brown and Prescott (2006).

Step 2: Estimation of the overall treatment regime effects. The estimates for each treatment
regime effect 5(A; By B)) are constructed in this step. As described in (3.10), the regime-specific
parameter (3(A; By, B)) are estimated as the weighted average

B(A;ByB]) = . (A;)B(A; By) + {1 — #,(4;)}B(A; B)).

As long as the estimators 3(A; By,) and 3(A; Bj) are unbiased, the above estimator is approximately
unbiased for the true parameter 3(A;ByBj). Approximate variance of 3(A;BjBj) is derived as
follows

T (A1 = 7 (4))}

Var(B(A; BB} = Var(3(a;Bo) A (4]
V(3 ) (AT

(B, By) — (A By AL = T (4s)}

n;j

More detailed calculation can be found in Appendix A.

3.1.2 Three-step Method

Step 1: Estimation of treatment effect for each treatment sequence. For simplicity, consider the

regime A By B}. We first use Step 1 of the two-step method to obtain g (A1), 5(A1B1), 5(A1Bs),
B(A1By), and 5(A1By).
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Step 2: Multiple imputation. Since a subject is randomized to one of the second-stage treatments,
the subject’s outcome for the other second-stage treatment is unobserved. For example, if a subject
responds to A; and receives By, then this subject is not able to receive Bs at the same time. There-
fore, the outcome based on the B are unobserved for this subject. We will treat this as a missing-data
problem, and impute the outcomes as if the subject also received the other second-stage treatment at
the same time. Since a single imputation method generates smaller standard errors in general (Lit-
tle and Rubin, 2002), multiple imputation method is applied to reconstruct the potential outcome
data for these patients (who received A; Bs) based on their covariate history and the information
borrowed from subjects who received A; B;. First we estimate the fixed parameters §(A; B;) and
variance-covariance matrix G for the corresponding random effects by fitting the model (3.11) to
subjects who received A By sequence. Then for each individual receiving the sequence A; Bo, we
use I random draws from the random effect distribution and combine it with the parameter estimate
and covariate information of the A; By subjects to impute their potential outcomes Y (A;B;). At
the end of the imputation process, there will be I newly created datasets, containing the observed
outcomes for the A; B; subjects, and imputed outcomes for the A; Bs subjects.

Step 3: Estimation of the overall treatment regime effects. Because of the imputed potential
outcomes in Step 2, every subject is now consistent with every regime. Therefore, we can directly

estimate the overall treatment regime effects by fitting model (2.2) to these I datasets to obtain
B (A1B1B}), £ =1,2,...,1I, and the imputed estimator for 3(A; B, B}) is defined as

I
BIMP (A BB} = Z )(A BB
Z

Since we adapted the multiple imputations in Step 2, we need to account for both within and be-
tween subjects variabilities. Following the formula given in Little (Little, 2002), the variance of the
imputed estimator can be estimated by

Var {BIMP(AlBlB’ } ZV@T{ AlBlB’)}

I
I+1 ® N AIMP /

T (A1B,B A1B\B } . (34

o 212{5 1B = BMP(ABBY) . (B14)

The treatment effects for the other treatment sequences are estimated in a similar manner. The

variance of this estimator is expected to be larger than the variance of the two-step estimator as

multiple imputations introduces further variability into the model.

4 Hypothesis Testing

Finding the best treatment regime in the two-stage randomized designs is equivalent to simulta-
neously testing whether one treatment regime is significantly superior to the others. Specifically,
testing the following null hypothesis is our primary interest:

H() . B(AlBlBi) = B(AlBlBé) = ﬁ(AlBgBi) = ﬂ(AlBQB;)
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Since this null hypothesis is equivalent to testing three pair-wise comparisons between (A, By Bj)
and 8(A1B1B)), f(A1B1B}) and B(A1 B2B}), and 3(A; B1 B}) and 3( A1 B3 BY), the null hypoth-
esis can also be expressed as

Hy: AT =0, 4.1)
where
A BB
ﬂ(AlBlBQ L
= | BB g Aty
A, By B
BB 5) o o 4
B(A1B2B3)
The test statistics is constructed as the Wald statistic
2 = BTA{ATCov(B)AY 1 AT B, 4.2)

where /3 is the vector of parameter estimates corresponding to $ and Cov(B) is the estimated
variance-covariance matrix of B In the previous section, we had derived the formula for the vari-
ance of 3 (A;ByBj), which can be estimated by substituting unbiased estimates of the appropri-
ate quantities. The covariance between 3(A; By B}) and 3(A1ByB}), as well as 3(A; B B)) and
B(Al B B)) are set to zero since these treatment regimes are independent as they do not share any
common second stage treatments. To obtain the covariances between other regime-specific coeffi-
cients, we use a method similar to the multivariate delta method (Oehlert, 1992) based on the Taylor
series expansion of the estimator itself. The parameter 5(A;B;B;) is treated as the function of
the three unknown parameters (i.e. m.(4;), 8(A;Bx), and 5(A;B))), so that using Taylors series
expansion, we obtain

BUA BLBY) = 7 (ADBA;BY) + {1 — 72 (A7)} B(A;B)
~ B(A;BpB)) + {B(A;Bx) — B(A; B)) H# (A;) — mr(A;)}
+{B(A; B) — B(A; Bi) Y (4;) + {B(A; B]) — B(A;B)H1 — mr(4))}.
Then, the covariance between 3(A; By B}) and 3(A, By B}) is approximated by
cov[B(A1B1BY), B(A1B1BY)]
[{B(ALB1B}) — B(A1B1B})H{B(A1B1BY) — B(A1B1BS)}]

[{B(A1B1) — B(A1B)) HB(A1B1) — B(A1By) HAr (A1) — mr (A1)}
{B(A1B1) — B(A1B)) H{B(A1B1) — B(A1BS) }Var (7, (Ar))
— (B(A1By) — B BYHB(A By) — (4, By)y | AL = e (A

ni

B
E

Q

More detailed calculation is in Appendix B. The covariance then can be estimated by replacing the
parameters with the corresponding estimates.

Under the null hypothesis, the Wald statistic (4.2) is compared to the critical values of a x3 dis-
tribution. Other linear combinations of regime-specific treatment effects may be tested in a similar
manner.
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5 Simulation Study

In order to examine the properties of the proposed estimators, we have conducted several simulation
studies. We generated data by simulating a two-stage randomized study as shown in Figure 2.
The number of follow-up visits during the second stage was set to four. For simplicity, we only
generated data for the subjects with treatment Ay, and therefore, we will have only four treatment
regimes, namely, Ay By B, A1 B1 B}, A1 ByBj, and A; B> B},

For individual 7, the response status I?; is generated from a Bernoulli distribution with mean 7,
= 0.5. Given the response status, the second-stage treatment indicators Zy; and Z;, were generated
respectively for responders and non-responders from Bernoulli distributions with w4, g, = 0.5 and
7, B, =0.5. The covariate, age, is randomly drawn from a normal distribution with mean 30, with
standard deviation of 5. The initial stage outcome 3(!) depends on R; and it was generated from a
normal distribution with a mean of 20 for the responders and 30 for the non-responders. The variance
was set to 2 for both responders and non-responders. For the repeatedly measured outcomes for the
subjects receiving A; Bj,, we generated the data from the following model

Yim (A4;Br) = {noi + Bo(A;Br)} + {n1i + 1(A;Bk) Him + o1 (A4;Bi)age;
+ (A By + €im, G.1)

where (10i,m1:)7 ~ N(0,G(A;By)), €im ~ N(0,02), and independently of 7o; and 7;,. We set
G(A,;By) as

G(AJBk) — go P 0001
P/ 0001 01

Similarly, the true outcome for the sequence of treatments A; B; was generated using
Yim(A;By) = {no; + Bo(A;Bp)} + {nf; + Br(A; Bi) Yim + 01 (A; By)age;
+ an (A By + €, (5.2)

where (n);, 17};,)T ~ N(0,G(A;B})), and €, ~ N(0,0.?). For our simulations, we set G(A; By,
= G(A;B;) and 02 = 5.2, Thus our models have intercept and time as both fixed and random effects.

In simulation scenario 1, we assumed that there were clear treatment differences among four
treatment sequences, while in simulation scenario 2, there was no treatment differences. In scenario
1, we choose ﬁ()(AlBl) = Bo(AlBQ) = 20, BI(AIBI) = —2.5, 61(A1B2) = —0.]., ﬁ()(AlBi) =
ﬂ()(AlBé) = 30, Bl(AlBi) = —2.0 and Bl(AlBé) = —0.5, leading to ﬁ(AlBlBi) = —2.25,
B(A1B1B}) = —1.50, 8(A1B2B]) = —1.05, and 3(A;B2Bj) = —0.30. In scenario 2, we
changed the parameters to Sy(A1B1) = Bo(A1B2) = 20, Bo(A1B]) = Bo(A1B5) = 30, and
B1(A1B1) = B1(A1Bs) = B1(A1B]) = B1(A1B)) = 0, leading to no treatment effect for all
regimes. The parameters for the variance-covariance matrix G were set to o9 = 0.35, o7 = 0.25,
and p = 0.001. For the variance of ¢;,,,, o2 was set to 2. The sequence-specific age effects were set
to a1 (A1B1) =0.1, a1 (A1 Bs) = 0.2, a1 (A1 By) = 0.15, and o (A1 BS) = 0.25. Finally, we chose
the effect of initial stage outcome as aa (A1 B1) = as(A41B1) =-0.2, and as (A1 By) = as (A1 BS) =
-0.25.
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Since it is unrealistic to assume that everyone completes the study, in addition to creating two
different scenarios for the treatment regime effect, the proposed methods were tested in two different
missing data situations: (1) no missing data, and (2) missing at random (MAR). For its simplicity,
we selected a monotone missing pattern for the MAR situation. Selecting the monotone missing
pattern means that we assume that once a subject misses a visit, all subsequent visits are missed as
well. We generated 30% and 60% missing data. The rate of missing data depended on the treatment
sequences; therefore, when 30% of data are missing, 2.5% among the subjects with treatment se-
quences A1 B; or Ay Bs, 10% among the subjects with A; B}, and 15% among the A; B} subjects
have some missing data. The percentages were doubled for the 60% missing situation. Among those
who had missing data, 50% of them were missing Y;4, and the other 50% have missing Y;3 and Y4.
For the MAR situation, 500 Monte-Carlo datasets were generated with two different sample sizes of
500 and 1000 and for the complete data situation, 500 datasets were generated with sample sizes of
200 and 500.

For each simulated dataset, 3(A; B Bj), j, k,1 = 1,2 and their standard errors were estimated
using the methods described in Section 3. Results are presented using Monte Carlo means, standard
errors, and coverage probabilities of 95% CIs. The simulation results are summarized in Tables 1 to
4.

Table 1 shows the results of scenario 1 when there was no missing data. For all sample sizes,
the estimates from both two-step and three-step methods were very close to the true values with
negligible biases (0.00-0.04). The variance estimators for two-stage method were consistent as
seen by the agreement between the average estimated standard error and the MCSE. However, the
variance estimator for the three-step method was larger than the MCSE perhaps due to the multiple
imputations. For the two-step method, the coverage rate ranged between 90.2% and 95.6% while
the range for the three-step method was between 91.0% and 96.0%. The results of scenario 2 when
there is no missing data are reported in Table 2. Again the estimates were approximately unbiased,
and the coverage rates for the two methods were similar. For both methods, increase in sample size
from 200 to 500 did not affect the properties of the estimators.

Tables 3 and 4 report the results of scenario 1 and 2 when the data are missing at random. The
estimates were unbiased even when 60% of the data had at least one missing assessment. Compared
to the two-step method, the three-step method had slightly larger bias, probably due to the additional
variability introduced through multiple imputation. The coverage rates were similar between the
two- and three-step methods.

6 Application to REVAMP Data

The proposed methods were applied to a dataset from the REVAMP study, that motivated this re-
search. In the REVAMP study (see section 1 for details), the initial treatment was not randomly
assigned. We compare the treatment regimes that shares the same initial treatment. This will allow
us, for example, to answer the question of which treatment regime results in the greatest reduction of
depression scores over time, given the subject received SERT as an initial treatment. The REVAMP
study provides four initial treatment options. However since the number of subjects who received
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Table 1: Simulation result for two- and three-step methods with no missing data. Monte Carlo
mean, Monte Carlo standard error, standard error, and coverage rate (based on 95% C.1.) for all
treatment regimes when the treatment regimes differ.

Two-step Method Three-step Method

SampleTreatment True | MC Mean SE Coverage | MC Mean SE Coverage
Size | Regime [Param,| (MCSE) Rate(%) (MCSE) Rate(%)

200 | A, BB |-2.25| -2.24(0.099) | 0.096 | 93.0 | -2.28(0.099) | 0.097 | 934
AB1B,|-150 | -1.50(0.119) | 0.102 | 904 | -1.54(0.120) | 0.135 |  96.0
A1B>B!|-1.05| -1.05(0.119) | 0.101 | 912 | -1.09(0.119) | 0.108 | 91.0
A1B2B}[-0.30 | -0.30(0.095) | 0.096 | 956 | -0.34(0.096) | 0.094 | 92.4

500 |A1B;1B;|-2.25] -2.25(0.062) | 0.060 95.2 -2.26(0.062) | 0.059 94.0
A1 BB |-1.50 | -1.50(0.078) | 0.064 90.2 -1.51(0.078) | 0.079 95.6
A1B2B}|-1.05| -1.05(0.073) | 0.064 91.6 -1.06(0.073) | 0.065 91.6
A1 BB |-0.30 | -0.30(0.062) | 0.060 94.6 -0.32(0.062) | 0.057 92.2

Table 2: Simulation result for two- and three-step methods with no missing data. Monte Carlo
mean, Monte Carlo standard error, standard error, and coverage rate (based on 95% C.1.) for all
treatment regimes when there were no effects of treatment regime.

Two-step Method Three-step Method
Sample | Treatment | MC Mean | MCSE | Coverage | MC Mean | MCSE | Coverage
Size Regime (SE) Rate(%) (SE) Rate(%)

200 A1ByB{ | 0.00(0.095) | 0.096 95.0 -0.05(0.095) | 0.095 92.0
A1 By Bf | -0.01(0.095) | 0.096 95.2 -0.05(0.096) | 0.098 92.6
A1B>B] | 0.00(0.095) | 0.095 94.4 -0.04(0.094) | 0.091 91.2
A1B;BY | -0.01(0.094) | 0.095 95.0 -0.05(0.093) | 0.094 92.8

500 A1B1B] | 0.00(0.063) | 0.060 94.8 -0.01(0.063) | 0.057 92.6
A1 BB | 0.01(0.058) | 0.060 96.4 -0.01(0.058) | 0.060 95.6
A1B>B{ | 0.00(0.063) | 0.060 93.8 -0.01(0.063) | 0.055 90.2
A1Bo B | 0.00(0.059) | 0.060 96.6 -0.01(0.059) | 0.057 94.4
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BUP-SR and VLF-XR were small, we focus on estimating the effect of treatment regimes for those
who received SERT only. A total of 618 subjects received SERT, and there were three possible
regimes for the subjects with SERT: (1) Treat with SERT and if responded, continue to treat with
SERT, otherwise change or add medication (SERT-SERT-MC; n=186), (2) Treat with SERT and if
responded, continue to treat with SERT, otherwise treat with the CBASP (SERT-SERT-MC/CBASP;
n=250), and (3) Treat with SERT and if responded, continue to treat with SERT, otherwise treat with
the SP (SERT-SERT-MC/SP; n=259).

Figure 4 shows trajectories of first- and second-stage outcomes for six selected subjects. The
vertical lines indicate the end of the initial stage. Subjects 1 and 2 show a trend of outcomes for the
responders. Since the outcome was measured by HRSD»,, lower scores indicate that subjects are
recovering from the MDD. For Subject 1, the initial treatment was effective so that the HRSDyy4 score
was reduced significantly by the second visit, and the subject continued with the same treatment at
the follow-up stage. For subject 2, the initial treatment also worked well, and this subject decided
not to stay in the study for the follow-up stage. The outcome trend for the partial-responders is
illustrated by Subjects 3 and 4. For these subjects, the initial treatment was not as effective as the
first two subjects. They moved to the second-stage and continued to be treated with one of the
second-stage treatments. Subjects 5 and 6 are non-responders. Their scores over time remained
high, and at the end of the initial stage, they were randomized to one of the second stage treatments.

We analyzed the HRSDy4 scores in the second stage using the methods described in previous
sections. Since we assume that each subject join the study with varying medication history, and the
effect of the same treatment may vary across subjects, we selected to fit random coefficient models
with random intercept and slope. For the two-step method, in Step 1, we fit the models as in (3.11)
and (3.12). We decided to include the baseline age and the HRSDo,4 score at the end of initial
stage (y(l)) as covariates so that ViTz[li7 Age;, ygl)], tim 1 the week (treated continuous), at which
mt" measurement is taken, and H. lT =[1;, t;m] is the design matrix for random intercept and slope.

Specifically, a model for those who received MC as a second-stage treatment is as follows

Yim(MC) = a1 (MC) + as(MC) Age; + as(MC)y? + B (MC)tin,
+mi(MC) + 12 (MC)tiy, + €im- 6.1)

Similar models were used for the other second-stage treatments MC/CBASP and MC/SP. In
Step 2, as in (3.10), three overall effects for the three treatment regimes S(SERT-SERT-MC),
B(SERT-SERT-MC/CBASP), and 3(SERT-SERT-MC/SP) were estimated. We also used the three-
step methods to estimate theses parameters. For both methods, we have tested if there were any
differences in treatment effects among treatment regimes within each initial treatment. We used a
Wald Chi-square test with 2 degree of freedom. The results of the data analysis are summarized in
Table 5.

Among the SERT regimes, both methods showed that the SERT-SERT-MC/CBASP regime
seems to be the most effective, followed by the SERT-SERT-MC/SP and the SERT-SERT-MC
regimes. However, the Wald Chi-square test showed that the three regimes were not significantly
different from each other.
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Table 3: Simulation result for two- and three-step methods with 30% and 60% MAR
data. Monte Carlo mean, Monte Carlo standard error, standard error, and coverage rate (based on

95% C.1.) for all treatment regimes when the treatment regimes differ.

Two-step Method Three-step Method
SampleMissingTreatmentf True | MC Mean | MC [(Coveragee MC Mean | MC (Coverage
Size | Rate | Regime [Param. (SE) SE |Rate(%) (SE) SE |Rate(%)
500 | 30% |AiB;Bj|-2.2512.25(0.069) [0.066 | 94.0 [2.27(0.069) 0.070 | 93.4
A1B;Bj|-1.50 -1.50(0.084) 0.071 | 90.6 [-1.50(0.084) [0.094 | 96.4
A1ByBj|-1.05 -1.05(0.078) 0.070 | 91.0 [1.08(0.079) [0.076 | 94.0
A1 B2 B} | -0.30 [-0.30(0.069) 0.068 | 96.0 [-0.32(0.069) [0.074 | 96.8
60% |A1B1Bj|-2.25}2.25(0.069) 0.071 | 954 |-2.28(0.070) [0.086 | 97.0
A1 B1B}|-1.50 [-1.50(0.088) 0.078 | 91.0 1.56(0.089) [0.119 | 96.4
A1ByBj|-1.05 -1.05(0.087) 0.078 | 91.4 [-1.10(0.089) [0.098 | 93.0
A1 By B} | -0.30 [-0.30(0.083) 0.079 | 93.0 [-0.34(0.084) [0.108 | 98.0
1000 | 30% |A1B1Bj|-2.252.25(0.047) 0.046 | 95.2 [-2.25(0.043) [0.041 | 92.6
A1 B1B}|-1.50 |-1.50(0.055) 0.050 | 92.4 [-1.50(0.053) [0.055 | 96.8
A1ByBj | -1.05 -1.05(0.056) 0.049 | 91.6 [-1.05(0.053) [0.045 | 90.4
A1 BB, |-0.30 [-0.30(0.047) 0.048 | 94.6 [-0.30(0.044) [0.040 | 91.6
60% |AyByBj|-2.252.25(0.054) 0.053 | 95.6 [-2.25(0.043) [0.041 | 92.6
A1 By B}|-1.50 [-1.50(0.064) 0.055 | 91.6 [-1.50(0.053) [0.055 | 96.8
A1ByBj|-1.05 -1.05(0.062) 0.055 | 92.2 [-1.05(0.053) [0.045 | 90.4
A1By B} | -0.30 -0.30(0.053) 0.053 | 93.2 -0.30(0.044) [0.040 | 91.6
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Table 4: Simulation result for two- and three-step methods with 30% and 60% MAR
data. Monte Carlo mean, Monte Carlo standard error, standard error, and coverage rate (based on
95% C.1.) for all treatment regimes when there were no effects of treatment regime.

Two-step Method Three-step Method

SampleMissingTreatment MC Mean MC [(Coverage MC Mean MC (Coverage
Size | Rate | Regime (SE) SE |Rate(%) (SE) SE |Rate(%)
500 | 30% |AiB;B;| 0.00(0.067) | 0.065 | 95.0 | -0.02(0.068) | 0.068 | 93.8
A1B;1Bj| 0.01(0.065) | 0.067 | 97.0 | -0.01(0.066) | 0.075 | 974

A1B2 B} | 0.00(0.070) | 0.067 | 92.8 | -0.02(0.070) | 0.069 | 924

A1 By BY| 0.0000.065) | 0.068 | 95.8 | -0.02(0.066) | 0.076 | 96.4

60% |A,ByBj| 0.01(0.072) | 0.071 94.6 | -0.02(0.072) | 0.083 | 97.6
A1 B B}| 0.01(0.074) | 0.075 | 95.8 | -0.01(0.075) | 0.098 | 98.8

A1ByBj| 0.00(0.079) | 0.075 | 95.0 | -0.03(0.079) | 0.094 | 97.6

A1 By BS| 0.0000.077) | 0.079 | 952 | -0.03(0.077) | 0.111 | 99.4

1000 | 30% |A;B;Bj| 0.00(0.046) | 0.046 | 95.2 0.00(0.047) | 0.046 | 94.8
A1 B1B}| 0.00(0.048) | 0.047 | 94.8 0.00(0.048) | 0.052 | 96.8

A1ByBj| 0.00(0.047) | 0.047 | 952 0.00(0.047) | 0.046 | 94.6

A1 By B| 0.00(0.050) | 0.048 | 93.6 0.00(0.050) | 0.051 | 95.0

60% | A,ByBj| 0.00(0.050) | 0.050 | 95.2 0.00(0.047) | 0.046 | 94.8
A1 By B}| 0.00(0.053) | 0.053 | 94.8 0.00(0.048) | 0.052 | 96.8

A1ByBj| 0.00(0.053) | 0.053 | 94.6 0.00(0.047) | 0.046 | 94.6

A1B. B | 0.00(0.056) | 0.056 | 95.8 0.00(0.050) | 0.051 | 95.0
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Figure 4: Outcome trend for responders, partial-responders, and non-responders. The vertical lines
indicate the end of the initial stage.

Table 5: REVAMP data analysis result.

Initial Trt | Method Regime Btime(SE) | Test Statistic | P-value
SERT Two-step SERT-SERT-MC -0.409 (0.11) 0.172 0.9172
SERT-SERT-MC/CBASP | -0.435 (0.08)

SERT-SERT-MC/SP -0.389 (0.08)

Three-step | SERT-SERT-MC -0.359 (0.09) 1.043 0.593

SERT-SERT-MC/CBASP | -0.478 (0.09)
SERT-SERT-MC/SP -0.449 (0.08)
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7 Discussion

We proposed two methods (we referred them as two- and three-step methods) to estimate the ef-
fect of treatment regimes from a sequentially randomized two stage trial when data are collected
longitudinally. These methods took two different approaches. The two-step method adapted mixed
model techniques to estimate the observed treatment sequence effects, and those estimates were
combined to obtain the overall treatment regime effect by taking their weighted averages. For the
three-step method, a multiple imputation method was used to impute outcomes for those who were
not consistent with the regime of interest due to randomization. After the imputation process, the
treatment regime effect was directly estimated by fitting a mixed model for each treatment regime.
Both methods are simple to apply since standard statistical packages can be used to implement them.
Simulation results showed that the estimates provide good coverage rates for 95% confidence inter-
vals. However, mixed models are sensitive to normality assumption (Brown and Prescott, 2006) as
well as a missing data (Little, 2002). To account for the former, one can accommodate GEE-type
procedures in the methods described here. We investigated the issue of missing data patterns in our
simulations to show that the methods proposed work well when the missing is at random. The issue
of missing not at random in this situation remains a topic for our future research.

A Variance Estimation of Treatment Effect
Approximate variance of ﬁ(Aj By, By) is derived as follows

Var{B(A; BuB))} = EIVar{B(A; BB}l (A)}] + Var[E{B(A; BB (A7)},
where

E[Var{B(A; B B))|#.(4;)}] = E[Var(#,(A;)B(A;Br) + {1 — #,(4;)}B(A; B)) | (4)))]
= Elit.(4;)*Var(B(A;By) |7, (4;))
+ {1 = #:(4))}*Var(B(A; B))|7,(4;))]
= Var(B(A; By))E(#:(4;)%) + Var(B(A; B) E({1 — #,(4;)}?)
= Var(B(A;By))[Var (it (4;)) + (E(7,(4;)))%]
+ Var(B(A;B)[Var(1 — #n(4;) + (E(1 — 7,(4;)))?]

= Var(3(a, ) AT D) oy

T (A;)(1 = 7 (45))

+ Var(B(A;B)] +mr(4;)°]
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where n; = Y | X;, and

Var|E(B(A; By B;)|7r(4;))]

Thus,

Var{B(A;ByB))} = Var(3(A;By))

Varl B (A)B(A;B) + {1 — 7 (A)}A(A; B[R (4,)]
Varlig (45)8(A;B4) + {1 7,(4,)}8(A; B)

{B(A;Br) = B(A; B)Y*Var(#,(4;))

18(4,3,) - (4, By AN =T A)

U

T (A1 = 7 (45)}

U

+me(47)%]

War(p(a;B)) (A= mA)E |y

+{B(4;Br) — ﬁ(AjBl’)}ﬂ"'(Aj){lnf ™ (45)}

B Covariance Estimation Between Two Treatment Effects

Using Taylors series expansion, we obtain

cov[B(A1B1B)), B(A1B1B3)]

= E[{B(A1B1B}) — B(A1B1 B})H{B(A1B1By) — B(A1B1 B})}]

~ E[{(8(A1B1) — B(A1 By H# (A1) — m (A1)}
+H{B(A1B1) = B(ALB) Y (A1) + {B(A1B}) = B(ALB)HL — e (A1)}),
{(B(A1B1) = B(A1BY) (A1) =m0 (A1)} + {B(A1B1) — B(A1B1) Y (A1)
+{B(A1B}) — B(A1By)H1 — m.(A1)})]

= E[{B(A1B1) — B(A1B))H{B(A1B1) — B(A1By) {7 (Ar) — mp (A1)}

= E[{B(A1B1) — B(A1B)) HB(A1B1) — B(A1By) {7, (A1) — mp (A1)}

= {B(A1B1) - B(A1B)) H{B(A1B1) — B(A1By) }Var (7, (A1)

= {B(A1B1) — (A1 B)) H{B(A1B1) — B(A1By)}
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