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SUMMARY

A standardized maximum likelihood departure, a standardized score departure, the signed
likelihood root: these are familiar inference outputs from statistical packages, with the
signed likelihood root often viewed as the most reliable. A third-order adjusted signed
likelihood root called r∗ is available from likelihood theory, but the formulas and develop-
ment methods are not always easily implemented. We use a log-model Taylor expansion
to develop a simple second order adjustment to the signed likelihood root, an adjustment
that is easy to calculate and easy to explain, and easy to motivate. The theory is devel-
oped, simulations are recorded to indicate repetition accuracy, real data are analyzed, and
connections to alternatives are discussed.

Keywords and phrases: Exponential model, Likelihood asymptotics, Maximum likelihood
departure, Score departure, Second-order, Signed likelihood root, Taylor expansion, Third-
order.

1 Introduction
Exponential models are widely used in applications and widely used as building blocks for more
general statistical models; they also provide theoretical background for many results from modern
likelihood theory. An exponential model has the form

f(y; θ) = exp{s′(y)ϕ(θ)− k(θ)}h(y),

where here y has dimension n, and s(y) and ϕ(θ) have dimension p. Many familiar models such
as the Normal, the Poisson, the Binomial, the Gamma, the Exponential life and various generalized
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linear models have this form. With appropriate linear independence of the coordinates of s(y) and
of ϕ(θ), the model can be re-parameterized in terms of ϕ itself called the canonical parameter and
re-expressed using sufficiency in terms of s(y) called the canonical variable:

g(s;ϕ) = exp{s′ϕ− κ(ϕ)}g(s), (1.1)

where g(s) can be chosen as a density function. The exponential factor provides what is called an
exponential tilt of the “underlying” density g(s), and κ(ϕ) is the cumulant generating function or
log moment generating function of the density g(s):

m(t) = eκ(t) =

∫
exp(s′t)g(s)ds.

Example 1, The Exponential life model. The Exponential life model is a very simple example; it
can be written in the form:

f(x;ϕ) = ϕ exp(−xϕ) = exp[−x(ϕ− 1) + logϕ]e−x, (1.2)

with lifetime x and failure rate ϕ. We can see that ϕ = 0 is an excluded boundary point and that
the modified parameter ϕ − 1 set equal to the value 0 gives the simple exponential distribution
f(x) = e−x which has the moment generating function

m(t) = eκ(t) =

∫ ∞
0

exte−xdx = (1− t)−1 = exp(− log(1− t)), (1.3)

and cumulant generating function κ(t) =− log(1− t). The offset in the failure rate ϕ allows the new
ϕ− 1 = 0 to be an interior point and correspond to the basic e−x distribution.

The use of exponential models together with simple asymptotic analysis relative to increasing
sample data size n allows Normal approximations to be upgraded to the highly accurate exponential-
model or saddle-point approximations. For this a key result is a distribution function approximation
for the density g(s;ϕ): When the canonical variable is stochastically increasing in ϕ, the distribution
function G(s;ϕ) has the approximation

Ḡ(s;ϕ) = Φ(r − r−1 log
r

q
) = Φ(r∗)

where Φ is the standard Normal distribution function, and r and q are the signed likelihood root
(SLR) and the standardized maximum-likelihood departure for data s and parameter value ϕ, and
r∗ is the third order approximation;

r = r(ϕ; s) = sign(ϕ̂− ϕ)[2{l(ϕ̂; s)− l(ϕ; s)}]1/2

q = q(ϕ; s) = sign(ϕ̂− ϕ)(ϕ̂− ϕ)1/2ϕϕ ;

for this l(ϕ; s) = log g(s;ϕ) is the log density, and ϕ̂ = ϕ̂(s) is the parameter value that maximizes
l(ϕ; s). These departures are often available as output from computer packages provided the param-
eter is chosen as the canonical parameter ϕ; such output can also often include a score departure
z = lϕ(ϕ; s)

−1/2
ϕϕ .
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Example 1 continued. Consider the example with data x0 = 17 for the exponential life model
(2): The log-likelihood function l(ϕ;x) = −ϕx+ logϕ can be differentiated giving

lϕ(ϕ;x) = −x+
1

ϕ
,

and the the equation lϕ = 0 gives the maximum-likelihood value ϕ̂(x) = x−1. Differentiating
further gives

lϕϕ(ϕ;x) = − 1

ϕ2
, lϕϕϕ(ϕ;x) =

2

ϕ3
,

and thus gives the information ̂ϕϕ = ϕϕ(ϕ̂;x) = −lϕϕ(ϕ̂;x) = x2 from the second derivative
and gives a skewness coefficient γ = −lϕϕϕ/(−lϕϕ)3/2 = −(2/ϕ3)/(1/ϕ2)3/2 = −2 as the third
standardized derivative.

For the data x0 = 17 we have ϕ̂0 = 1/17 = .0588 and ̂0ϕϕ = 172; the observed log-likelihood
function is plotted in Figure 1. The observed information is calculated as the negative second deriva-
tive of log-likelihood at the observed maximum-likelihood ϕ̂0, with respect to the canonical pa-
rameter ϕ; other estimates of information are possible but the just mentioned choice has various
advantages. From this we have:
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Figure 1: The observed log-likelihood function with data xo = 17 from the exponential life model
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r(ϕ;x0) = sign(ϕ̂0 − ϕ)[2{l(ϕ̂0;x0)− l(ϕ;x0)}]1/2 = [2(−1 + 17ϕ− log(17ϕ))]1/2

q(ϕ;x0) = sign(ϕ̂0 − ϕ)(ϕ̂0 − ϕ)̂1/2ϕϕ = (
1

17
− ϕ)17 = 1− 17ϕ

z(ϕ;x0) = lϕ(ϕ;x0)̂−1/2ϕϕ = (−17 +
1

ϕ
)

1

17
= −1 +

1

17ϕ
.

If the familiar Normal approximation is applied to these standardized departure measures we obtain
the following first order p-values for the data above:

Φ(r) = Φ[2{−1 + 17ϕ− log(17ϕ)}1/2] = Φ(1.372557) = 0.9150549

Φ(q) = Φ(1− 17ϕ) = Φ(0.83) = 0.7967306

Φ(z) = Φ(−1 +
1

17ϕ
) = Φ(4.882353) = 0.9999995,

where the right hand numerical values are for testing the Null hypothesis ϕ = 0.01. Also here, the
exact p-value is easily calculated

p(.01) =

∫ ∞
x0

0.01e−x(0.01)dx = exp(−0.01x0) = 0.8436648.

This is probability left of ϕ̂0 on the ϕ̂ scale and right of x0 on the x scale, a consequence of the
model being stochastically decreasing in ϕ.

In the next two sections we derive the simple skewness corrected r† = r + γ/6. Then for the
example we have r† = 1.3726 − 1/3 = 1.0392, where γ = −2 is the standardized third derivative
of the observed log-likelihood, as obtained above. The approximation Φ(r†) = .8506497 is much
closer to the exact p(.01) = .8437 than the first order p-values recorded earlier, thus indicating the
improved accuracy of r†.

2 The standardized scalar exponential model to second order

Consider the scalar exponential model (1) with canonical variable s, canonical parameter ϕ, and
dim s = dim ϕ = 1. We use asymptotics to examine the Taylor expansion of the log model

log g(s;ϕ) = sϕ− κ(ϕ) + log h(s)

in the neighbourhood of observed data s = s0 and the related maximum-likelihood value ϕ = ϕ̂0.
For this we assume that the log-model has asymptotic properties as some background data size
n becomes large. How can this background condition arise? The particular log-model can be a
conditional distribution given some condition that restricts data variability to the dimension of the
parameter, here p = 1. As such the log density will be a sum of components from an original sum
of n components and correspondingly would grow as O(n); the normalization will affect this but
the additive properties of the log-model are retained. In order to examine this asymptotically, we
first center and scale-standardized the parameter ϕ; for this we examine the parameter departure
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of ϕ from ϕ̂0 using the scaling ̂1/2ϕϕ indicated by the observed information, thus using the scale-
standardize parameter (ϕ - ϕ̂0)̂

1/2
ϕϕ . And then to avoid notation growth we temporarily designate

this as just ϕ, a simple data based rewrite of the original canonical parameter. The resulting observed
log-likelihood, then has the form

l(ϕ) = a− ϕ2/2− γϕ3/6n1/2 + O(n−1). (2.1)

The cubic term is of order O(n−1/2) as follows from ϕϕ and lϕ both being O(n). For some back-
ground on these expansions see Chakmak et al. (1998) and Fraser and Wong (2002). Also note that
γ/n1/2 is the third derivative of negative log-likelihood provided the parameter is scaled to have
second derivative at the maximum equal to −1.

Now consider the canonical variable in a similar manner, obtaining s− s0 as the departure, and
then rescaling to retain the form of the tilt term sϕ with coefficient equal to 1. It follows then that to
first order O(n−1/2) the log model has the form

log g(s;ϕ) = a− 1

2
(s− ϕ)2 + O(n−1/2).

This is in agreement with the Central Limit Theorem result but comes directly from the large sample
form of the log density.

The inclusion of fractional powers such as n−1/2 can be purely formal, to indicate asymptotic
magnitude and should not be confused with an actual sample size in an example. Thus the second
derivative l

′′
(ϕ) at ϕ = 0 is 1 and the third derivative l

′′′
(ϕ) at ϕ = 0 is −γ/n1/2 with the n1/2

typically having a purely symbolic role to remind us of the asymptotic size; the standardized third
derivative is γ/

√
n.

Now for second order analysis corresponding to the case with γ 6= 0 as in (4), we first determine
the terms in s that are required so that log(g;ϕ) represents a density function that integrates to unity.
If we expand the parameter factor exp(−γϕ3/6n1/2) to second order we obtain 1− γϕ3/6n1/2. A
data term that integrates to give ϕ3 with the Normal (ϕ, 1) distribution is s3 − 3s; thus the factor
(1 + γs3/6n1/2 − 3sγ/6n1/2) compensates the factor 1− γϕ3/6n1/2 to order O(n−1). This gives
the second order density expression

g(s;ϕ) = (2π)−1/2 exp{−1

2
(s− ϕ)2 − γϕ3/6n1/2 + γs3/6n1/2}(1− γs/2n1/2) + O(n−1),

where we have chosen not to put the linear term in s in the exponent. This agrees with the Taylor
coefficient array (5) in Chakmak et al. (1998) which records results to third order; see also Fraser
and wong (2002).

We will next see that the exponent in the above expression is just −r2/2 to second order.

3 Corrected SLR: second order.
Consider the standardized version of the scalar exponential model as determined to second order.

We calculate the likelihood and score,

l(ϕ; s) = −1

2
(s− ϕ)2 − γϕ3/6n1/2, lϕ(ϕ; s) = (s− ϕ)− γϕ2/2n1/2,
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which lead to
ϕ̂ = ϕ̂(s) = s− γs2/2n1/2 + O(n−1).

We then have

l̂ = l(ϕ̂; s) = −1

2
(γs2/2n1/2)2 − γs3/6n1/2 = −γs3/6n1/2

l̂ − l =
1

2
(s− ϕ)2 − γ(s3 − ϕ3)/6n1/2 =

1

2
(s− ϕ)2 − γ(s− ϕ)(s2 + sϕ+ ϕ2)/6n1/2;

which is of course just r2/2. We then calculate the signed likelihood root,

r = s− ϕ− γ(s2 + sϕ+ ϕ2)/6n1/2.

We next find the second order distribution of the signed likelihood root r. From the definition
above we have to second-order

dr

ds
= 1− γ(2s+ ϕ)/6n1/2, ds = {1 + γ(2s+ ϕ)/6n1/2}dr.

Then substituting in the expression g(s;ϕ)ds we obtain to second order;

f(r;ϕ)dr =
1√
2π

e−r
2/2(1− γs/2n1/2)(1 + γ(2s+ ϕ)/6n1/2)dr

=
1√
2π

e−r
2/2(1− γ(s− ϕ)/6n1/2)dr

=
1√
2π

e−r
2/2(1− γr/6n1/2)dr

=
1√
2π

e−r
2/2−γr/6n1/2

dr

= φ(r + γ/6n1/2)dr,

where φ is the standard Normal density. It follows that

r† = r†(s;ϕ) = r + (γ/n1/2)/6

is standard Normal using the additive correction which is 1/6 of the scale-standardized third deriva-
tive γ/n1/2 of likelihood.

For the example at the end of Section 1 we now record simulations to compare the Normal
distribution accuracy of r and r†.

Example 1 Continues. Consider the extreme case of a single observation, y0 from the Exponen-
tial life model example in Section 1. The quantities for r and r† are given as

r = sign(1/y0 − ϕ)
√

2[− log(ϕy0) + ϕy0 − 1], r† = r + γ/6 = r − 1/3,

where γ = −lϕϕϕ(ϕ̂, y0)/[−lϕϕ(ϕ̂, y0)]3/2 is the third scale-standardized derivative of the negative
log-likelihood. Based on the calculations in Section 1, we have γ = −2 for this case.
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To examine the Normal approximations for r and r†, we simulated 10,000 repetitions of the of
size 1 sample from the Exponential life model with rate ϕ = 1 and compared the sample distribution
function values with the Normal (0,1) distribution function values. For the 10,000 samples, we
obtain the P − P plot in Figure 2 (a); we also record the simulations for the less extreme case with
sample size n = 3 plotted as Figure 2 (b). The diagonal line corresponds to the standard uniform
distribution; The solid and dotted lines are the p-value for r and r† respectively. Note that the P −P
plot of r† closely approximates the diagonal line and thus r† closely follows the standard Normal
distribution.
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Figure 2: The P − P plot, for the simulation of r and r† from the Exponential 1; (a) n = 1, (b)
n = 3, with N = 10, 000

4 Some further examples

With the scalar exponential model f(y; θ) = exp{s′(y)ϕ(θ)−k(θ)}h(y), we have various familiar
examples. In each of these the skewness is proportional to n−1/2 so it suffices to do the calculation
for the n = 1, and then adjust accordingly for other n values. We also record simulations but do
these just for n = 1 case. With larger values of n the discrepancies fall off quickly as indicated by
the example in the preceding section.
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Example 2. The Gamma(α0, β) model. The gamma model is widely used in application to
describe variables that take positive values. The Gamma(α0, β) model is

f(y;α0, β) =
βα0 y

α0−1

Γ(α0)
exp (−βy)

with
l(α0, β; y) = α0s1 − βs2 + α0 log β − log Γ(α0),

where s1 = log(y), s2 = y; The signed likelihood root for a sample of n is

r = sign(ϕ̂− ϕ)
√

2nα0 log (ϕ̂/ϕ)− 2S2(ϕ̂− ϕ)

where ϕ = β, S2 =
∑
i yi and ϕ̂ = nα0/S2

Taking second and third derivatives of the log-likelihood with respect to β we obtain

γ = −2α
−1/2
0

Consider N = 10, 000 simulations. With n = 1, α = α0 = 1, we have plots for Figure 3 (a) for
testing the hypothesis H0 : β = 2. We see that γ makes a substantial correction.

Examples 3. The Gamma(α, β0) model. This model has a fixed scale parameter β = β0 and
varying shape parameter α; the model is

f(y;α, β0) =
βα0 y

α−1

Γ(α)
exp (−β0y)

with
l(α, β0; y) = αs1 − β0s2 + α log β0 − log Γ(α)

where s1 and s2 are as in the preceding example. We use derivatives of the log gamma function; the
first derivative D(x) is called the digamma function, and higher derivatives are readily available:

D(x) =
d

dx
log Γ(x); D(i)(x) =

di

dxi
log Γ(x).

The skewness γ is then just
γ = D(2)(α)/{D(1)(α)}3/2.

We evaluate the null distribution of r, r† using N = 10, 000 simulations with n = 1, β = β0 = 2

giving the P − P plots in Figure 3 (b) for testing the hypothesis H0 : α = 1. We see that the
skewness γ makes a substantial improvement.

Examples 4. The Inverse Gaussian Model with fixed mean. This Inverse Gaussian model has the
following form

f(y;µ, λ) =
√
λ/2πy3 exp{−λ(y − µ)2/2µ2y}.
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Figure 3: For these models we have simulations with N = 10, 000 to compare r, r†. For the n = 1
case: (a) Gamma model parameter with α = α0 = 1, testing H0 : β = 2; (b) Gamma model
parameter given β = β0 = 2, testing H0 : α = 1; (c) Inverse Gaussian model given µ = µ0 = 1,
testing H0 : λ = 1

We examine this model with µ = µ0 fixed and test the scale parameter λ with hypothesis H0 : ϕ =

λ. This gives

l(ϕ; y1, . . . , yn) =
n

2
logϕ− ϕ

n∑
i=1

(yi − µ0)2

2µ2
0yi

,

and the skewness is γ = −23/2 for n = 1, giving the corrected

r† = r − 21/2/3n1/2.

The normality of the null distribution of r, r† was evaluated with N = 10, 000 simulations using
the extreme n = 1; the P − P plots recorded in Figure 3 (c) With µ = µ0 = 1, and testing
H0 : ϕ = λ = 1, we see that γ makes a substantial improvement.

5 Discussion

We have examined the scalar exponential model expressed in terms of its canonical parameter. By
taking second and third derivatives of the log-likelihood with respect to the canonical parameter we
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obtain a standardized third derivative of log-likelihood. Subtracting one sixth of this from the signed
likelihood root (SLR) gives a remarkably accurate corrected SLR; substituting in the Normal(0,1)
then gives highly accurate p-value, we plan to extend this to the scalar interest parameter in higher
dimensional exponential models.
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