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SUMMARY

The Gaussian geostatistical model has been widely used in spatial data modeling. In spite
of its popularity, this model suffers from a severe implementation problemfor Bayesian
inference, for which a covariance matrix needs to be inverted at each iteration. This is
infeasible when the number of observations is large. In this paper, we propose a prediction-
oriented Bayesian site selection (BSS) approach to tackle this difficulty. By dividing the
observations into two sets, response variables and explanatory variables, the BSS approach
forms a regression model which relates the observations through a conditional likelihood
derived from the original Gaussian geostatistical model, and then reduces the dimension
of the data using a stochastic variable selection procedure. Our numerical results indicate
that the BSS approach can produce very good parameter estimates andprediction for large
spatial data, while significantly reducing the computational time required by conventional
Bayesian approaches.

Keywords and phrases:Bayesian Variable Selection, Geostatistics, Markov Chain Monte
Carlo, Spatial Data.

1 Introduction

Geostatisticsis a branch of spatial statistics which deals with the data obtained by sampling from a
spatially continuous process{X(s)}, s ∈ R

2, at a discrete set of locations{si, i = 1, . . . , n} in a
spatial region of interestA ⊂ R

2. Consider a Gaussian geostatistical model,

Y (si) = ν(si) +X(si) + εi, (1.1)

where{Y (si)} denotes the observations at locationss1, . . . , sn, {ν(si)} denotes the mean of{Y (si)},
{X(si)} denotes a spatial Gaussian process with mean zero, varianceσ2 and the correlation func-
tion Corr{X(si), X(sj)} = ρ(‖si − sj‖) with Euclidean distance‖ · ‖, andεi’s are independent
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Gaussian random errors with mean 0 and varianceτ2. The varianceτ2 is called the nugget variance
in the literature of spatial statistics. The correlation function can be chosen from some parametric
families, such as the Matérn, powered exponential or spherical (Cressie, 1993). Under model (1.1),
{Y (s1), . . . , Y (sn)} follows a multivariate Gaussian distribution,

{Y (s1), . . . , Y (sn)}
T ∼ N(ν,Σ), (1.2)

whereν = (ν(s1), . . . , ν(sn))
T , Σ = σ2R + τ2I, andI is then × n identity matrix andR is an

n × n correlation matrix with the(i, j)th element given byρ(‖si − sj‖). In this paper,R is called
the spatial correlation matrix of the locations{si, i = 1, . . . , n}. Relevant covariates can be easily
incorporated into the model by replacing the meanν(si) by

ν(si) = ξ0 +

p∑

j=1

ξjcj(si), (1.3)

wherecj(·) denotes thejth covariate,ξj denotes the corresponding regression coefficient, andξ0 is
the intercept.

A problem of general interest in spatial statistics is to predict unobserved values of{Y (spi )} at
a set of locationssp = {sp1, . . . , s

p
np
}. A core difficulty for this problem is at inverting then × n

covariance matrixΣ, which is involved in almost all standard statistical approaches to this problem,
such as Kriging (see e.g., Stein, 1999) and Bayesian modeling (Diggle et al., 1998). In Bayesian
modeling, the covariance matrix needs to be inverted once ateach iteration in order to evaluate
the posterior for the updated parameters. It is known that the computational complexity of matrix
inversion increases asO(n3). Whenn is large, this is infeasible due to the limit of the current
computational power.

A simple strategy to deal with this difficulty is dependence truncation; that is, setting the long-
range dependence amongY (si)’s to be zero. For example, the local Kriging method predictsthe
value ofY (spi ) based only on the observations lying in a neighborhood ofY (spi ), and the covariance
tapering method (see e.g., Furreret al., 2006 and Kaufmanet al., 2008) sets the correlations to be
zero for the pairs of observations with the distance exceeding a threshold value. Although these
methods work well for many problems, how to make use of full data information in prediction is
still a major concern to many researchers.

An alternative strategy to deal with the matrix inversion difficulty is to develop a new space
process which approximates the process{X(si)} in the fixed regionA ⊂ R

2 but with certain
advantages in computation. A popular idea is to approximatethe process{X(si)} by a lower di-
mensional space process{X̃(s)} with some smoothing techniques, such as kernel convolutions,
moving averages, low rank splines, basis functions, or continuous global surfaces; see e.g., Wikle
and Cressie (1999), Linet al. (2000), Billingset al. (2002), Kammann and Wand (2003), Paciorek
(2007), Banerjeeet al. (2008), Cressie and Johannesson (2008), Stein (2008) and Finley et al.
(2009). We note that for a large dataset, the dimension of theapproximation process{X̃(s)} can
still be very high to the current computational power, and this may hinder the applicability of these
methods. Another idea, which seems even more attractive in computation, is to approximate the
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process{X(si)} by a Markov process, for which the covariance matrix is sparse and thus manage-
able in computation even for a large dataset. Related work include Rue and Tjelmeland (2002), Rue
and Held (2005), Besag and Mondal (2005), Lindgrenet al. (2010), Park and Liang (2011), among
others. Working on the approximation processes resolves the issue of matrix inversion, but leaves us
little understanding to the underlying true Gaussian process. Recently, Rue et al. (2009) suggested
the integrated nested Laplace approximation (INLA) methodfor approximate Bayesian inference of
latent Gaussian models. Lindgrenet al. (2010) applied INLA to the Gaussian field by representing
it as a Gaussian Markov random field (GMRF) which incorporates a subclass of Matérn Covariance
functions through solving a stochastic partial differential equation (SPDE). However, as pointed out
in Lindgrenet al. (2010), this method involves costs of solving stochastic partial differential equa-
tions and for irregularly spaced data, it needs additional costs for triangulation of locations of the
observations.

In addition to lower-dimensional process approximations,some authors proposed to approxi-
mate the likelihood function of{Y (si)} by a pseudo-likelihood that is more easily maximized, see
e.g., Vecchia (1988), Jones and Zhang (1997) and Steinet al. (2004). The underlying idea of
these methods is the high-order Markov process approximation. They work by partitioning the ob-
servations{Y (si)} into some subvectors which have a certain kind of Markov structure, and thus
the likelihood function can be approximated by the product of a series of lower-order conditional
densities. How to partition the data appropriately is a major concern of the methods in applications.

In this paper, we propose a Bayesian site selection (BSS) method which, while reducing the di-
mension of data, attempts to avoid the shortcomings of the dependence truncation, lower-dimensional
process approximation, and likelihood approximation methods. The BSS method first split the ob-
servations into two parts, the observations “near” the prediction sites (part I) and their remaining
(part II). [How to select the observations “near” prediction sites will be discussed in Section 2.2.]
Then, by treating the observations in part I as response variable and those in part II as explanatory
variables, BSS forms a regression model which relates all observations{Y (si)} through a condi-
tional likelihood derived from the original model (1.1). The dimension of the data can then be
reduced by applying a stochastic variable selection procedure to the regression model, which se-
lects only a subset of the part II data as explanatory variables. The selected explanatory variables
together with the response data thus form the basis of observations for inference of model (1.1) and
prediction of unobserved values. Compared to the dependence truncation methods, BSS is able to
catch the long range dependence through selection of appropriate explanatory variables. Compared
to the lower-dimensional process and likelihood approximation methods, BSS can provide us more
understanding to the underlying true Gaussian process, as it directly works on the original process
without any approximations involved.

The remainder of this paper is organized as follows. In Section 2, we introduce the BSS method,
describing how to form the regression model for a given dataset and discussing how the Metropolis-
within-Gibbs sampler can be applied to BSS for parameter estimation and selection of appropriate
explanatory variables. In Section 3, we study the performance of BSS using some simulation data.
In Section 4, we test the performance of BSS on two real data sets. In Section 4, we conclude the
paper with a brief discussion.
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2 Bayesian Site Selection

2.1 The Regression Model Formulation

Let D = {y(si)} denote the observations drawn from the model (1.1) at atn distinct locations
s = {s1, . . . , sn}, and letsp = {sp1, . . . , s

p
np
} denotenp distinct locations of interest for prediction.

Suppose thatD has been partitioned two sets,Dy = {y(si); si ∈ s
y, i = 1, . . . , n∗} andD−y =

D\Dy, wheresy = {sy1, . . . , s
y
n∗} is the set of locations of the observations contained inDy.

In addition, we assume thatDy has been selected to consist of all observations that are near the
prediction sitessp. How to selectDy will be discussed in Section 2.2.

Let Y (sy) = (Y (sy1), . . . , Y (syn∗))T denote the vector of observations contained inDy. Like-
wise, letZ(s−y) denote the vector of observations contained inD−y. Following from model (1.1),
the distribution ofY (sy) conditioned onZ(s−y) follows a multivariate normal distribution; that is,
a normal regression can then be formulated as

Y (sy) ∼ Z(s−y),

whereY (sy) works as the response variable andZ(s−y) works as the explanatory variable. Instead
of using allZ(s−y) as explanatory variables, we would select a subset ofZ(s−y) as the explanatory
variables forY (sy), as the variables inZ(s−y) can be highly correlated given the nature of spatial
model (1.1). With a little abuse of notations, we denote byZ = (Z(sz1), . . . Z(szm)) the set of
variables used as the explanatory variables ofY (sy), wherem = |Z| denotes the size of the set
Z. Let νy = E(Y (sy)), νz = E(Z), Σy = Var(Y (sy)), Σz = Var(Z), andΣyz = Σzy =

Cov(Y (sy), Z). Then the conditional distributionY (sy)|Z is given by

Y (sy)|Z ∼ N (νy|z,Σy|z) (2.1)

where

νy|z = νy +ΣyzΣ
−1
z (Z − νz) ,

Σy|z = Σy − ΣyzΣ
−1
z Σzy.

(2.2)

LetRy denote the spatial correlation matrix of the sites ofY (sy), letRz denote the spatial correlation
matrix of the sites ofZ, and letRyz denote the spatial correlation matrix of the sites ofY (sy) andZ.
Note thatRy, Rz andRyz are all submatrices ofR as defined in (1.2). Then the covariance matrices
in (2.2) can be expressed as

Σy = σ2(Ry + αI), Σz = σ2(Rz + αI), Σyz = σ2Ryz, Σyz = ΣT
zy,

whereα = τ2/σ2.
In the case that covariates present in model (1.1), we have

νy|z = νy +ΣyzΣ
−1
z (Z − νz) =

(
Cy −RyzR

−1
z Cz

)
ξ +RyzR

−1
z Z, (2.3)
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whereξ = (ξ0, ξ1, . . . , ξp)
T denotes the vector of regression coefficients as defined in (1.3), andCy

andCz are the design matrices for the covariates and given by

Cy =




1 csy
1
,1 · · · csy

1
,p

...
...

1 csy
n∗

,1 · · · csy
n∗

,p


 , Cz =




1 csz
1
,1 · · · csz

1
,p

...
...

1 cszm,1 · · · cszm,p


 ,

wherecsy
i
,j andcsz

i
,j denote the observed values of thejth covariate at the locationssyi andszi ,

respectively.
For the purpose of illustration, we consider the exponential correlation function

ρ(‖si − sj‖) = exp {−‖si − sj‖/φ} , (2.4)

whereφ > 0 is the correlation length parameter. Then the model (2.1)-(2.3) can be parameterized
by θ =

(
θ1, θ2, σ

2, ξ
)
= (log (φ) , log (α) , σ2, ξ), where, for ease of sampling,φ andα has been

reparameterized by their logarithms. To make Bayesian inference for the model (2.1)-(2.3), we
specify the following priors forξ, σ2 andφ:

π(ξ|σ2) ∝ ǫ1+p
ξ σ−(1+p) exp

(
−ǫ2ξ ξT ξ/(2σ2)

)
, π(σ2) ∝ IG(ǫ, ǫ), π(φ) ∝ IG(ǫ, ǫ), (2.5)

where bothǫξ andǫ are small positive constants, and IG(·, ·) denotes an inverse Gamma distribution.
For simplicity, the two hyperparameters of the prior inverse Gamma distribution are restricted to be
the same in this paper. Whenǫ ≤ 2, IG(ǫ, ǫ) leads to a vague prior, whose variance is infinite.

Since it is generally true that the nugget varianceτ2 is smaller than the varianceσ2, we set a
uniform prior forα = τ2/σ2 on the interval[0, 1]; that is,

π(α) = 1, α ∈ [0, 1]. (2.6)

With a little abuse of notations, we denote the model (2.1) byZ and impose a truncated Poisson
prior distribution on the space of models; that is,

π(Z) ∝
λm

m!
e−λ, m ∈ {0, 1, . . . , n− n∗}, (2.7)

wherem = |Z| denotes the number of sites included inZ andλ is a hyperparameter to be specified
by the user. The rationale behind this prior can be explainedas follows: To minimize the loss of data
information caused by site selection,Z should be selected uniformly from the observation region
of {Y (si)} and thus, following the standard theory of Poisson process,the number of selected sites
can be modeled as a Poisson random variable. To enhance this selection pattern, the prior (2.7) is
used. Alternatively, one can specify a prior distribution that incorporates the spatial information of
Z, but this will complicate the simulation of the posterior distribution.

Combining (2.2)–(2.3) and (2.5)–(2.7), we have the posterior of θ given by

f(θ|Y (sy), Z) ∝
∣∣Σy|z

∣∣−1/2 1

σ1+p
exp

{
−

1

2σ2
BT (Ry|z + ǫ−2

ξ AAT )−1B

}
π(θ1, θ2, σ

2)

× exp

{
−

1

2σ2
(ξ − Λ−1E)TΛ(ξ − Λ−1E)T

}
,

(2.8)
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whereA = Cy − RyzR
−1
z Cz, B = Y (sy)− RyzR

−1
z z, E = (Aξ − B)TΣ−1

y|z, Ry|z = σ−2(Σy −

ΣyzΣ
−1
z Σzy denotes the conditional correlation matrix ofY (sy) givenZ, andΛ = ATR−1

y|zA+ ǫ2ξI

is ann∗ × n∗ matrix. It is worth pointing out that bothΣy|z andRy|z + ǫ−2
ξ AAT are alson∗ × n∗

matrix. Thus, BSS reduces the problem of invertingn × n matrices to that of invertingn∗ × n∗

matrices. How to determine the value ofn∗ will be discussed in Section 2.2.

Integrating outξ andσ2 from (2.8), we have

f(θ1, θ2|Y (sy), Z) ∝
∣∣Ry|z

∣∣−1/2
|Λ|

−1/2 Γ
(
n
2 + ǫ

)
π(θ1, θ2)

{
BT (Ry|z + ǫ−2

ξ AAT )−1B/2 + ǫ
}n

2
+ǫ

. (2.9)

Following the standard theory of Bayesian model averaging,the predictive posterior distribution
of Y (sp) can be written as

f(Y (sp)|Y (sy), D−y) =
∑

Z⊂D−y

∫
f(Y (sp)|Y (sy), Z,θ)f(θ|Y (sy), Z)π(Z)dθ, (2.10)

whereZ denotes any subset ofD−y and also a particular model defined in (2.1)–(2.3). This implies
that the expectation ofY (sp) conditioned on the full observationsD is given by

E[Y (sp)|Y (sy), D−y] =
∑

Z⊂D−y

∫
E[Y (sp)|Y (sy), Z,θ]f(θ|Y (sy), Z)π(Z)dθ. (2.11)

Let (θ(1), Z(1)), . . . , (θ(N), Z(N)) denote a sequence of samples drawn from the joint posterior
of (θ, Z), which is proportional tof(θ|Y (sy), Z)π(Z). ThenY (sp) can be predicted by

Ŷ (sp) =
1

N

N∑

i=1

E[Y (sp)|Y (sy), Z(i),θ(i)], (2.12)

whereE[Y (sp)|Y (sy), Z(i),θ(i)] is the conditional mean ofY (sp) givenY (sy), the selected set of
explanatory variablesZ(i), and the parameter valuesθ(i). That is,

Ŷ (sp) =
1

N

N∑

i=1

{
ν
(i)
s
p +Σy(sp),wi

Σ−1
wi

(Wi − νwi
)
}
, (2.13)

whereν(i)
s
p denotes the mean ofY (sp) for the sample(θ(i), Zi), Wi = (Y (sy), Z(i)) is the joint

vector formed byY (sy) andZ(i), Σy(sp),wi
is the covariance matrix ofY (sp) andWi, Σwi

is the

covariance matrix ofWi, andνwi
denotes the mean ofWi. Note that all the termsν(i)

s
p , Σy(sp),wi

andΣwi
in (2.13) depend on the sample(θ(i), Zi), and that the covariatesc1(sp), . . . , cp(sp) are

assumed to be available at the prediction sitess
p. How to draw samples from the joint posterior of

(θ, Z) will be discussed in Section 2.3.
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2.2 Prediction-Oriented Response Variable Selection

In this section, we consider a prediction-oriented selection scheme forY (sy) with an expectation
that{Y (sy)} plays surrogates for{Y (sp)}. The scheme consists of the following steps:

1. Let s = {s1, . . . , sn} denote the full set of observation sites, and lets
p = {sp1, . . . , s

p
np
}

denote the set of prediction sites, wherenp is the total number of prediction sites.

For i = 1, . . . np, do the following sub-steps to identify the first tier of the nearest points to
s
p:

(a) Draw a sitespi from the setsp at random and without replacement.

(b) Identify the nearest neighbor ofspi by setting

sy1,i = arg min
s∈s\{sy

1,1,...,s
y

1,i−1
}
‖s− spi ‖.

Setsy1 = {sy1,1, . . . , s
y
1,np
}.

2. Sets← s\sy1 and repeat the substeps in step 1 to identify the second tier of the nearest points
to s

p. Denote the second tier neighboring set bys
y
2.

· · · · · ·

k. Sets← s\syk−1 and repeat the substeps in step 1 to identify thek-th tier of the nearest points
to s

p. Denote thek-th tier neighboring set bysyk.

The procedure outputssy = ∪kj=1s
y
j as the set of response variables andD−y = {s1, . . . , sn}

\sy as the set of explanatory variables. In practice, the value of k, which determines the size ofsy

(n∗ = knp), can be determined through an examination of the fitting to{Y (sy)} or its subset. For
example, we can choose the value ofn∗ such that the mean squared fitting errors (MSFE) for the first
tier neighboring sites are minimized among a few values ofn∗ under consideration. Our numerical
results indicate that MSFE can provide a good guideline for selection ofn∗. In our experience, when
k ≥ 3, BSS often works very well providedn ≥ n∗.

As shown in (2.8), BSS has reduced the problem of invertingn× n matrices to that of inverting
n∗ × n∗ matrices. Whennp is large, we suggest to dividesp into several small subsets and then run
BSS for each of them separately. For example, the subsets canbe constructed by drawing fromsp

through a sampling-without-replacement procedure. This helps us to keepn∗ in a reasonable range,
and thus alleviate the heavy burden of computation caused bythe cubic law of matrix inversion.
In addition, the computation for different subsets can be done in parallel, which will significantly
shorten our waiting time for the prediction results. Letn′

p denote the size of a subset of prediction
sites. For the choice ofn′

p, we suggest to keep the relationshipn ≥ 3n′
p hold, while keepingn∗ in a

reasonable range. In our experience, such a choice ofn′
p often leads to good prediction results.

In practice, we can encounter a situation that there are no observations near some prediction
sites. Since the prediction-oriented selection scheme is to select the observations nearest to the
prediction sites, it still works under this situation. However, like any other approaches, BSS may
produce prediction of high variability under this situation.
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2.3 A Metropolis-within-Gibbs Sampling scheme

In this section, we consider a Metropolis-within-Gibbs sampler (Müller, 1991) for drawing samples
from the posterior

f(θ1, θ2, Z|Y (sy)) ∝ f(θ1, θ2|Y (sy), Z)π(Z),

whereZ indexes a subset model andf(θ1, θ2|Y (sy), Z) is given in (2.9).
Let (θ(t)1 , θ

(t)
2 , Z(t)) denote the sample generated at iterationt of the Markov chain. Letm =

|Z(t)| denote the number of sites included inZ(t). To updateZ(t), we consider three types of moves,
“birth”, “death” and “exchange” with the respective proposal probabilities denoted byqm,m+1,
qm,m−1 andqm,m. In this paper, we set

qmmin,mmin
= (1/3), qmmin,mmin+1 = (2/3),

qmmax,mmax
= (1/3), qmmax,mmax−1 = (2/3),

qi,i+1 = qi−1,i = qi,i = (1/3), for mmin + 1 ≤ i ≤ mmax − 1 ,

wheremmin = 0 andmmax = n − n∗. One iteration of the Metropolis-within-Gibbs sampler
consists of the following steps:

• Drawθ
(t+1)
1 from the conditional distributionf(θ1|θ

(t)
2 , Y (sy), Z) using the Metropolis algo-

rithm with a random walk Gaussian proposal. The variance of this proposal is denoted byσ2
θ1

and will be given in the context of numerical studies.

• Draw θ
(t+1)
2 from the conditional distributionf(θ2|θ

(t+1)
1 , Y (sy), Z) using the Metropolis

algorithm with a random walk Gaussian proposal. The variance of this proposal is denoted by
σ2
θ2

and will be given in the context of numerical studies.

• DrawZ(t+1).

– (Birth) Randomly selectz∗ out ofD−y\Z
(t) and setZ∗ = Z(t) ∪ z∗. SetZ(t+1) = Z∗

with probability

min

{
1,

f(θ
(t+1)
1 , θ

(t+1)
2 |Y (sy), Z∗)π(Z∗)

f(θ
(t+1)
1 , θ

(t+1)
2 |Y (sy), Z(t))π(Z(t))

n− n∗ −m

m+ 1

qm+1,m

qm,m+1

}
.

Otherwise, setZ(t+1) = Z(t).

– (Death) Randomly selectz∗ out of Z(t) and setZ∗ = Z(t)\z⋆. Acceptz⋆m−1 with
probability

min

{
1,

f(θ
(t+1)
1 , θ

(t+1)
2 |Y (sy), Z∗)π(Z∗)

f(θ
(t+1)
1 , θ

(t+1)
2 |Y (sy), Z(t))π(Z(t))

m

n− n∗ −m+ 1

qm−1,m

qm,m−1

}
.

Otherwise, setZ(t+1) = Z(t).
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– (Exchange) Randomly selectz⋆ out ofD−y\Z
(t) andz⋆u out ofZ(t). SetZ∗ = Z(t) ∪

{z∗}\{z⋆u} by exchangingz⋆ andz⋆u. Acceptz⋆m with probability

min

{
1,

f(θ
(t+1)
1 , θ

(t+1)
2 |Y (sy), Z∗)

f(θ
(t+1)
1 , θ

(t+1)
2 |Y (sy), Z(t))

}

Otherwise, setZ(t+1) = Z(t).

Given a MCMC sample(θ(t)1 , θ
(t)
2 , Z(t)), ξ(t) andσ2(t) can drawn from the following distributions:

ξ(t) ∼ N
(
Λ−1E,Λ−1

)
, σ2(t) ∼ IG

(
n/2 + ǫ, BT (Ry|z + ǫ−2

ξ AAT )−1B/2 + ǫ
)
,

which can be simply derived from (2.8) withΛ, W , A, B andRy|z as previously defined. Given the

samples(θ(t)1 , θ
(t)
2 , Z(t)) and(ξ(t), σ2(t)), the prediction of{Y (sp)} can then be simply done as in

(2.13).

3 Simulation Studies

In this section, we assess the performance of BSS using two simulated examples along with some
comparisons with the standard Bayesian method. For the simulated examples, we have the following
common settings. In both data generation and posterior simulations, the spatial correlation function
is as defined in (2.4). In posterior simulations, we set the hyperparametersǫξ = 0.01 andǫ = 1.
As previously explained, this leads to vague priors forξ, σ2 andφ. For each dataset, BSS was run
once with 10,000 iterations, where the first 5,000 iterations were discarded for the burn-in process
and the remaining iterations were thinned by a factor of 5 to get 1000 samples.

3.1 An Illustrative Example

We simulated 30 independent data sets from the Gaussian geostatistical model (1.1). Each data set
contains 1,100 observations with the sites uniformly distributed over the region[0, 100] × [0, 100].
The data sets were generated using the function grf() in geoR(Ribeiro and Diggle, 2001) with the
parameters(ξ0, ξ1, φ, σ2, τ2) = (0.5, 1, 25, 1, 0.25) and the covariates generated fromN(0, 1). For
each data set, a subset of size 1,000 was randomly selected and used for model training, and the
remaining 100 samples were used for prediction.

BSS was first applied to this example with the hyperparameterλ = 2 and three different choices
of n∗ = 200, 300 and 500. In simulations, we setσ2

θ1
= 0.3 andσ2

θ2
= 0.5, which have been

calibrated such that the Markov chain can mix well in each run. The resulting parameter estimates
and mean squared prediction errors (MSPE) for the prediction set were summarized in Table 1. The
numerical results indicate that asn∗ increases, BSS produces better prediction. It is also interesting
to point out that asn∗ increases,m tends to decrease when the same value ofλ is used. This is
reasonable, as the response variables can explain each other in the regression model we formulated.
It is known that for the model (1.1), when the correlation function is exponential or Matérn, the
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parametersφ and σ2 are non-estimable due to the existence of equivalent probability measures
(Stein, 2004). However, in this case, the ratioφ/σ2 is still estimable as shown in Zhang (2004). For
this reason, we report in Table 1 the estimate of the ratioσ2/φ, instead of the respective estimates
of σ2 andφ. Our numerical results indicate that BSS produced accurateestimates ofφ/σ2 for this
example. As a possible tool for determiningn∗, we also reported in Table 1 the mean squared
fitting errors (MSFEt1 ) for the tier 1 neighboring observations. Apparently, MSFEt1 provides a
good ordering for MSPE.

Table 1: Comparison of BSS and BFD method for the illustrative example. The estimates were
calculated by averaging over the results from 30 different datasets and the number in the parentheses
denotes the standard deviation of the estimate. The CPU times were recorded for a single run of the
algorithm on a desktop of Dual Core 3.0 GHz. BFD: Bayesian method for the full data; MSPE:
mean squared prediction error; MSFEt1 : mean squared fitting error for tier 1 neighbors.m̄: average
value ofm obtained in simulations. Proportion: calculated in(n∗ + m̄)/n× 100%.

BSS(n∗, λ)
True

(200, 2) (300, 2) (500, 2)
BFD

m̄ — 37(0.21) 34(0.23) 28.9(0.19) —

Proportion — 23.7% 33.4% 52.9% 100%

ξ0 0.5 0.54(0.09) 0.52(0.09) 0.56(0.09) 0.42(0.00)

ξ1 1.0 0.97(0.01) 0.99(0.02) 1.00(0.00) 0.99(0.06)

φ/σ2 25 26.58(2.22) 25.67(1.94) 24.83(1.38) 23.85(0.93)

τ2 0.25 0.23(0.01) 0.24(0.01) 0.24 (0.01) 0.25(0.01)

MSPE — 0.413(0.01) 0.398(0.01) 0.384(0.01) 0.381(0.01)

MSFEt1 — 0.449(0.01) 0.416(0.01) 0.395(0.01) —

CPU(h) — 0.5 1.5 7.3 47.8

For comparison, we also applied the standard Bayesian approach to this example. This approach
works on the full dataset. Letting the parameters be subjectto the priors (2.5) and (2.6), and inte-
grating outξ andσ2, we get the posterior

f(θ1, θ2|D) ∝ |R+ αI|−
1

2 |Λ̃|−
1

2

Γ(n2 + ǫ)

{yT (R+ αI + ǫ−2
ξ CCT )−1y/2 + ǫ}

n
2
+ǫ

π(θ1, θ2), (3.1)

whereR is the correlation matrix as defined in (1.2),Λ̃ = CT (R+αI)−1C + ǫ2ξI, y is ann-vector
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which consists of all observations inD, and

C =




1 cs1,1 · · · cs1,p
...

...

1 csn,1 · · · csn,p


 ,

is the design matrix of covariates. The Metropolis-within-Gibbs sampler is also applied to simulate
from the posterior (3.1), but with only two parametersθ1 andθ2 updated at each iteration. The
algorithm was also run once for each dataset. Each run consisted of 10,000 iterations, where the first
5000 iterations were discarded for the burn-in process and 1000 samples were collected from the
remaining iterations at equally-spaced time points. The resulting parameter estimates and the MSPE
were reported in Table 1 in the column of BFD (Bayesian methodfor Full Data). The simulation is
very time consuming, as it needs to invert ann× n matrix at each iteration.

The comparison indicates that although BSS costs much less CPU times than BFD, it can pro-
duce parameter estimates and prediction which both are as good as those produced by BFD. We note
that the parameter estimates resultant from BSS may be biased due to the selection ofY (sy) and
inclusion of explanatory variables. For this example, thisbias is ignorable because the prediction
sites are randomly selected from the full dataset and the number of explanatory variables included
in each model is relatively small. How to use BSS for parameter estimation will be discussed in the
Discussion section.

To understand why BSS works so well in both prediction and estimation, we conduct the follow-
ing experiment to test if BSS can catch the long range dependence of the data. The experiment was
done in the following procedure:

• For each sample inD−y find its minimum distance tosy; that is, set

d(s) = min
sy
i
∈s

y
‖s− syi ‖,

for each sites ∈ D−y.

• Divide the samples inD−y into 10 groups according tod(s). Group 1 contains the one-tenth
samples with the smallest values ofd(s), . . ., and Group 10 contains one-tenth samples with
the largest values ofd(s).

• Run BSS withn∗ = 500 andλ = 2 for one dataset.

• Count the sampling frequency of the explanatory variablesZ from each group.

Figure 1 shows the relative sampling frequency of the explanatory variablesZ from each group.
All 10 groups have more or less same relative frequencies andthe highest is obtained for group 1.
This indicates that BSS is indeed able to catch the long rangedependence of the data. Therefore, it
is understandable why BSS performs like BFD in estimation and prediction even with only a subset
of the data being used. It is also reasonable that group 1 has the highest relative frequency, as the
samples in group 1 have higher correlations with the response samples than those in other groups.
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Figure 1: Sampling frequency of the explanatory variablesZ drawn by BSS for one dataset with
n∗ = 500 andλ = 2.

To assess the sensitivity of BSS to the choice ofλ, we tried different values ofλ = 1, 2, 3,
5, and 10 for the casen∗ = 200. The results were summarized in Table 2. The results indicate
that asλ increases, the number of explanatory variables included inthe model tends to increase,
the resulting regression model tends to be overfitted (the estimate ofτ2 tends to decrease slightly)
and the contribution of covariates to the regression model tends to decrease (the estimate ofξ1 tends
to decrease). This experiment suggests that a small value ofλ may be used, which will lead to a
parsimony regression model in general.

In summary, the numerical results of this example suggests us to choose a reasonably large
value ofn∗ within the limit of our computer power, as a large value ofn∗ can generally work
better in both parameter estimation and prediction. However, an excessively large value ofn∗ is
not necessary, especially when one aims at prediction, as the prediction accuracy depends mainly
on the neighbors of the prediction site. In practice, the value ofn∗ can be determined according
to the value of MSFEt1 . Whenn∗ is reasonably large, say, the tier 3 neighboring points havebeen
included in the response, a small value ofλ, say, 1 or 2, may be used.

3.2 A Large Data Example

To assess the performance of BSS for large spatial data, we simulated 30 independent datasets from
the model (1.1) with the same parameters as for the last example. Each dataset contains 20,100
samples, where 100 randomly selected samples were used for prediction and the remaining 20,000
samples were used for model building.

BSS was applied to this example withσ2
θ1

= σ2
θ2

= 0.3, λ = 1, andn∗ = 300, 500 and 700.
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Table 2: Sensitivity analysis of BSS for the value ofλ. Refer to Table 1 for the notation.

BSS(n∗, λ)

(200, 1) (200, 2) (200, 3) (200, 5) (200, 10)

m̄ 26.5(0.17) 37(0.21) 45.8(0.27) 58(0.34) 82 (0.43)

Proportion 22.7% 23.7% 24.6% 25.8% 28.2%

ξ0 0.52(0.08) 0.54(0.09) 0.53(0.09) 0.52(0.09) 0.50 (0.09)

ξ1 0.98(0.01) 0.97(0.01) 0.96(0.01) 0.95(0.01) 0.94 (0.01)

φ/σ2 26.06(2.16) 26.58(2.22) 25.11(2.39) 25.67(2.28) 24.52 (2.41)

τ2 0.25(0.01) 0.23(0.01) 0.24(0.01) 0.23(0.01) 0.22 (0.10)

MSPE 0.414(0.01) 0.413(0.01) 0.414(0.01) 0.414(0.01) 0.415(0.01)

The results were summarized in Table 3. The performance of BSS for this example is similar to that
of the last example. It produced very reasonable parameter estimates and MSPE values. For this
example, we also calculated MSFEt1 . The results indicate again that MSFEt1 is highly correlated
with MSPE and can be used as a tool for choosing appropriate settings for BSS. It is worth pointing
out that for this example, even with only less than 5% (on average) of samples being used at each
iteration, BSS still performs reasonably well in both parameter estimation and prediction. BSS can
have many applications. Recently, it has been applied to Gaussian process regression by the authors.

4 Real Data Study

4.1 Precipitation Anomaly Data

To demonstrate the performance ofBSSfor real problems, we considered a precipitation dataset from
the National Climatic Data Center (NCDC) for the years 1895 to 1997. This data has been studied by
many authors including Johnset al. (2003), Furreret al. (2006), and Kaufmanet al. (2008), among
others. In this study, following Kaufmanet al. (2008), we use the precipitation anomalies of 1962,
which are available athttp://www.image.ucar.edu/Data/precip_tapering/. This
dataset consists of 7,352 samples (sites) and, as mentionedby Kaufmanet al. (2008), there is no
noticeable evidence for nonstationarity.

For this example, we randomly choose a subset of 250 out of 7,352 samples for model testing,
and use the remaining samples for model building. We tried different values ofn∗ = 250, 500 and
750. Since our results reported in the previous section indicate that BSS is not sensitive to the value
of λ, we setλ = 1 for this example. For each value ofn∗, BSS was run 5 times independently
with σ2

θ1
= σ2

θ2
= 0.3. Each run consisted of 10,000 iterations, with the first 5,000 iterations being

discarded for the burn-in process and 1000 samples being collected from remaining 5,000 iterations
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Table 3: Performance of BSS for the large data example. Referto Table 1 for the notation.

BSS(n∗, λ)

(300, 1) (500, 1) (700, 1)

m̄ 136(0.68) 134(0.98) 133(0.78)

Proportion 2.18% 3.17% 4.17%

ξ0 0.665(0.100) 0.687(0.098) 0.705(0.096)

ξ1 0.967(0.010) 0.985(0.006) 0.990(0.004)

φ/σ2 23.05(1.86) 22.96(1.52) 23.39(1.58)

τ2 0.228(0.007) 0.232(0.006) 0.237(0.004)

MSPE 0.345(0.00) 0.326(0.00) 0.316(0.00)

MSEt1 0.343(0.00) 0.320(0.00) 0.305(0.00)

Time(hr) 2.6 11.0 21.9

at equally spaced time points. The results were summarized in Table 4.
Table 4 shows an interesting pattern: The estimate ofφ/σ2 tends to decrease asn∗ increases.

This is reasonable. Whenn∗ = 250, Dy consists of only the tier 1 sites, which are far from each
other. To establish the dependence among these sites, a large value ofφ/σ2 is needed. Whenn∗

increases, the estimate ofφ/σ2 will converge to its true value. However, as long asn∗ is reasonably
large, say,n∗ ≥ 3np, BSS will perform very well in prediction. The reason is thatthe sparsity of
neighboring information can be partially compensated by the updated parameter estimates. Table 4
shows that BSS produced similar prediction results withn∗ = 500 andn∗ = 750 in terms of MSPE.
Based on this observation, we conclude that BSS is a useful approach for prediction.

To show that BSS can produce reasonable parameter estimatesfor model (1.1), we compare the
predicted anomalies on a regular grid of500 × 400 with the unit grid size (longitude× latitude)
0.065 × 0.12, where the anomalies were predicted using the covariance tapering method (Furreret
al., 2006) with the BSS estimates given in Table 4. In this study,we tapered the estimated covariance
matrices by a spherical family with a range of 50 miles. The results were shown in Figure 2. The
BSS prediction matches with observations very well, even for the case withn∗ = 250. This indicates
that the estimates produced by BSS are reasonable for this data. It needs to emphasize that BSS uses
only a small proportion of the data at its each iteration.

4.2 Gold Mine Data

The Gold mine data, available athttp://www.kriging.com/datasets/, is constructed
based on a Wits type gold mine. The samples are chipped from the face of the reef in a working
section of the mine (stope). As the face advances, new chip samples are taken. Values within a stope
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Table 4: BSS results for the anomalies of 1962. The estimateswere calculated by averaging over
the results of 5 independent runs, with their standard errors given in the parenthesis. The CPU times
were recorded for a single run on a Desktop of Dual Core 3.0 GHz. Proportion was calculated in
(n∗ + m̄)/n× 100%.

BSS(n∗, λ)

(250, 1) (500, 1) (750, 1)

m̄ 89(0.65) 90(0.59) 89(0.67)

Proportion 4.61% 8.03% 11.41%

ξ0 -0.046(0.013) -0.076(0.005) -0.08(0.00)

φ/σ2 206.16(11.10) 196.59(1.10) 172.76(1.93)

τ2 0.096(0.011) 0.123(0.001) 0.112(0.001)

MSPE 0.320(0.003) 0.272(0.001) 0.272(0.000)

Time(hr) 1.3 7.8 24.8

are traditionally estimated using the sample values from the face. The data set was used in Clark
and Harper (2000). To ensure the data normality holds for model (1.1), we work on the logarithm of
the observations.

The data set consists of 21,577 observations. We randomly select 250 observations for model
testing and use the remaining observations for model building. BSS was run for 5 times indepen-
dently withσ2

θ1
= 0.2 andσ2

θ2
= 0.3. Each run consists of 10,000 iterations, where the first 5,000

iterations were discarded for the burn-in and 1,000 sampleswere collected from the remaining iter-
ations at equally-spaced time points. The numerical results were summarized in Table 5.

Table 5 shows a similar pattern to Table 4: Asn∗ increases, the estimate ofφ/σ2 tends to de-
crease. Figure 3 shows the images of the observations and prediction surfaces. It indicates again that
BSS can produce reasonable parameter estimates for model (1.1), even with only a small proportion
(less than 5%) of the data being used at each iteration.

5 Discussion

In this paper, we have proposed a prediction-oriented BSS approach for dealing with the large
matrix inverse problem encountered in geostatistics. The BSS approach works by performing a re-
gression analysis based on the prediction request, with thedata dimension being reduced through a
stochastic variable selection procedure. Like other dimension reduction approaches, such as those
proposed by Banerjeeet al. (2008), Cressie and Johannesson (2008), Finleyet al. (2009) and Stein
(2008), BSS tries to make use of all data available. In BSS, this is done through Bayesian model
averaging. By averaging over the outputs of the models builtwith different sets of explanatory vari-
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Figure 2: Images of observed and predicted anomalies of 1962on a regular grid of size500× 400.
(a) Observed anomalies; (b) prediction surface forn∗ = 250; (c) prediction surface forn∗ = 500;
(d) prediction surface forn∗ = 750.

ables, BSS can essentially incorporate all data information into the resulting parameter estimates and
future value prediction. Our simulated examples show that with an appropriate choice of response
variables and an appropriate choice ofλ, BSS can produce parameter estimates and prediction which
both are nearly as good as those produced by the Bayesian method with the full data, although BSS
uses only a small proportion of the data at each iteration. For a really large data set, say, the number
of observations is over 20,000, our numerical results (of the 2nd simulated example and the 2nd real
example) indicate that BSS can produce very reasonable parameter estimates and predictions with
only less than 5% of the data used at each iteration.

As previously mentioned, the parameter estimates producedby BSS can be biased due to the
choice of the response variables and inclusion of explanatory variables. For example, when the
response variables are not uniformly selected from the set of observations and the number of ex-
planatory variables included in the regression is too large, the resulting parameter estimates may be
biased. To address this issue, we propose an ensemble BSS approach, which works in a style of
bootstrap sampling as follows:
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Figure 3: Images of observations and predicted surfaces on aregular grid of size300× 200 for the
goldmine data. The prediction surfaces were produced by local Kriging for which each grid point is
predicted based on the nearest 100 points. (a) Images of observations; (b) prediction surface by the
BSS estimate withn∗ = 500; and (c) prediction surface by the BSS estimate withn∗ = 750.
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Table 5: BSS results for the gold mine data. The estimates were calculated by averaging over the
results of 5 independent runs, with their standard errors given in the parenthesis. The CPU times
were recorded for a single run on a Desktop of Dual Core 3.0 GHz. Proportion was calculated in
(n∗ + m̄)/n× 100%.

BSS(n∗, λ)

(500, 1) (750, 1)

m̄ 151(0.76) 152(1.38)

Proportion 3.02% 4.18%

ξ0 3.76(0.003) 3.77(0.002)

φ/σ2 99.45(1.08) 71.21(1.19)

τ2 0.098(0.001) 0.058(0.001)

MSPE 0.154(0.000) 0.139(0.000)

Time(hr) 9.4 28.0

• Select multiple response sets, with each being drawn randomly from the set of observations.

• Run BSS for each response set.

• Average the parameter estimates resultant from each response set.

In this case, the hyperparameterλ may be set to a small number or even zero, as one aims
at parameter estimation instead of prediction. Following from the standard theory of bootstrap
(Efron and Tibshirani, 1993), the parameter estimates resultant from the ensemble BSS approach is
unbiased.
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