Journal of Statistical Research ISSN 0256 - 422 X
2013, Vol. 47, No. 1, pp. 11-30

A PREDICTION-ORIENTED BAYESIAN SITE SELECTION APPROACH
FOR LARGE SPATIAL DATA

JINCHEOL PARK
Mathematical Biosciences Institute (MBI), Department of Statistics,
The Ohio State University, Columbus, OH, USA
Email: park.1750@mbi.osu.edu

FAMING LIANG

Texas &AM University, College Station, TX, USA
Email: fliang@stat.tamu.edu

SUMMARY

The Gaussian geostatistical model has been widely used in spatial dagtimgoth spite
of its popularity, this model suffers from a severe implementation proliterBayesian
inference, for which a covariance matrix needs to be inverted at eaeliote This is
infeasible when the number of observations is large. In this paper,apege a prediction-
oriented Bayesian site selection (BSS) approach to tackle this difficulty.iBgirth the
observations into two sets, response variables and explanatory vayihigl®SS approach
forms a regression model which relates the observations throughdétiooal likelihood
derived from the original Gaussian geostatistical model, and thenesdhe dimension
of the data using a stochastic variable selection procedure. Our nuhtesuabs indicate
that the BSS approach can produce very good parameter estimateedindion for large
spatial data, while significantly reducing the computational time requirecbyentional
Bayesian approaches.

Keywords and phraseBayesian Variable Selection, Geostatistics, Markov Chain Monte
Carlo, Spatial Data.

1 Introduction

Geostatisticss a branch of spatial statistics which deals with the dataiobd by sampling from a
spatially continuous procegs{(s)}, s € R?, at a discrete set of locatiods;,i = 1,...,n} ina
spatial region of interest C R2. Consider a Gaussian geostatistical model,

Y(s;) =v(si) + X(s:) + &4, (1.2)

where{Y (s;)} denotes the observations atlocatiens . . , s,,, {v(s;)} denotes the mean ¢t (s;)},
{X (s;)} denotes a spatial Gaussian process with mean zero, vardrared the correlation func-
tion Corf{ X (s;), X(s;)} = p(|ls; — s4||) with Euclidean distancé - ||, ande;’s are independent
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Gaussian random errors with mean 0 and variarfc@he variance? is called the nugget variance
in the literature of spatial statistics. The correlationdtion can be chosen from some parametric
families, such as the Maitn, powered exponential or spherical (Cressie, 1993) etnmbdel (1.1),
{Y(s1),...,Y(sp)} follows a multivariate Gaussian distribution,

{(Y(s1),...,Y(s0)}" ~ N(v, %), (1.2)

wherev = (v(s1),...,v(s,))T, & = 0?R + 721, and[ is then x n identity matrix andR is an

n x n correlation matrix with théi, j)*" element given by (||s; — ;). In this paperR is called
the spatial correlation matrix of the locatiofis;,i = 1,...,n}. Relevant covariates can be easily
incorporated into the model by replacing the meés;) by

p
v(si) =&+ Y &ejlsi), (1.3)

Jj=1

wherec;(-) denotes thgt" covariate£; denotes the corresponding regression coefficient{guml
the intercept.

A problem of general interest in spatial statistics is todpreunobserved values ¢f"(s?)} at
a set of locations? = {s/,..., sgp}. A core difficulty for this problem is at inverting the x n
covariance matrix:, which is involved in almost all standard statistical agmices to this problem,
such as Kriging (see e.g., Stein, 1999) and Bayesian magdéliggle et al, 1998). In Bayesian
modeling, the covariance matrix needs to be inverted on@aeth iteration in order to evaluate
the posterior for the updated parameters. It is known thetctdmputational complexity of matrix
inversion increases a3(n®). Whenn is large, this is infeasible due to the limit of the current
computational power.

A simple strategy to deal with this difficulty is dependenaetation; that is, setting the long-
range dependence amol{s;)’s to be zero. For example, the local Kriging method predioés
value ofY (s’) based only on the observations lying in a neighborhodd@f’), and the covariance
tapering method (see e.g., Furegral, 2006 and Kaufmaet al, 2008) sets the correlations to be
zero for the pairs of observations with the distance excepdithreshold value. Although these
methods work well for many problems, how to make use of futhdaformation in prediction is
still a major concern to many researchers.

An alternative strategy to deal with the matrix inversioffidilty is to develop a new space
process which approximates the procéss(s;)} in the fixed regionA c R? but with certain
advantages in computation. A popular idea is to approxirtteeprocesg X (s;)} by a lower di-
mensional space proce$X (s)} with some smoothing techniques, such as kernel convokition
moving averages, low rank splines, basis functions, oricoaus global surfaces; see e.g., Wikle
and Cressie (1999), Liat al. (2000), Billingset al. (2002), Kammann and Wand (2003), Paciorek
(2007), Banerjeeet al. (2008), Cressie and Johannesson (2008), Stein (2008) auhely et al.
(2009). We note that for a large dataset, the dimension oéfipeoximation procestX (s)} can
still be very high to the current computational power, arid thay hinder the applicability of these
methods. Another idea, which seems even more attractiverimpatation, is to approximate the
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process{ X (s;)} by a Markov process, for which the covariance matrix is sparsd thus manage-
able in computation even for a large dataset. Related watlkdie Rue and Tjelmeland (2002), Rue
and Held (2005), Besag and Mondal (2005), Lindgeeal. (2010), Park and Liang (2011), among
others. Working on the approximation processes resoleisiue of matrix inversion, but leaves us
little understanding to the underlying true Gaussian pgec®ecently, Rue et al. (2009) suggested
the integrated nested Laplace approximation (INLA) mettaoépproximate Bayesian inference of
latent Gaussian models. Lindgrenal. (2010) applied INLA to the Gaussian field by representing
it as a Gaussian Markov random field (GMRF) which incorparatsubclass of Matn Covariance
functions through solving a stochastic partial differeh¢iquation (SPDE). However, as pointed out
in Lindgrenet al. (2010), this method involves costs of solving stochastitigadifferential equa-
tions and for irregularly spaced data, it needs additionatxfor triangulation of locations of the
observations.

In addition to lower-dimensional process approximatiswne authors proposed to approxi-
mate the likelihood function ofY (s;)} by a pseudo-likelihood that is more easily maximized, see
e.g., Vecchia (1988), Jones and Zhang (1997) and ®teal. (2004). The underlying idea of
these methods is the high-order Markov process approxamaiihey work by partitioning the ob-
servations{Y (s;)} into some subvectors which have a certain kind of Markovcsting, and thus
the likelihood function can be approximated by the produd series of lower-order conditional
densities. How to partition the data appropriately is a megmcern of the methods in applications.

In this paper, we propose a Bayesian site selection (BSS)adethich, while reducing the di-
mension of data, attempts to avoid the shortcomings of thert#ence truncation, lower-dimensional
process approximation, and likelihood approximation mdth The BSS method first split the ob-
servations into two parts, the observations “near” the iptiexh sites (part I) and their remaining
(part 11). [How to select the observations “near” prediatisites will be discussed in Section 2.2.]
Then, by treating the observations in part | as responsahblarand those in part Il as explanatory
variables, BSS forms a regression model which relates akmations{Y (s;)} through a condi-
tional likelihood derived from the original model (1.1). &Rlimension of the data can then be
reduced by applying a stochastic variable selection praeetb the regression model, which se-
lects only a subset of the part Il data as explanatory vagablhe selected explanatory variables
together with the response data thus form the basis of odseng for inference of model (1.1) and
prediction of unobserved values. Compared to the deperdemacation methods, BSS is able to
catch the long range dependence through selection of apgi®pxplanatory variables. Compared
to the lower-dimensional process and likelihood approxiomamethods, BSS can provide us more
understanding to the underlying true Gaussian processdagdctly works on the original process
without any approximations involved.

The remainder of this paper is organized as follows. In $a@i we introduce the BSS method,
describing how to form the regression model for a given ddtaisd discussing how the Metropolis-
within-Gibbs sampler can be applied to BSS for parametémasion and selection of appropriate
explanatory variables. In Section 3, we study the perfowear BSS using some simulation data.
In Section 4, we test the performance of BSS on two real dasa e Section 4, we conclude the
paper with a brief discussion.



14 Park & Liang

2 Bayesian Site Selection

2.1 The Regression Model Formulation

Let D = {y(s;)} denote the observations drawn from the model (1.1) at distinct locations

s={s1,...,8,},and lets? = {s, ..., st} denoten,, distinct locations of interest for prediction.
Suppose thaD has been partitioned two se®,, = {y(s;);s; € s¥,i =1,...,n*} andD_, =
D\D,, wheres? = {sY,...,s”.} is the set of locations of the observations containedin

In addition, we assume thd?, has been selected to consist of all observations that aretimea
prediction sites”. How to selectD,, will be discussed in Section 2.2.

LetY(s¥) = (Y (sY),...,Y(s%.))T denote the vector of observations containedip Like-
wise, letZ(s~¥) denote the vector of observations containedin,. Following from model (1.1),
the distribution ofY'(s¥) conditioned onZ(s~¥) follows a multivariate normal distribution; that is,

a normal regression can then be formulated as
Y(s¥) ~ Z(s™Y),

whereY (s¥) works as the response variable afi@g—¥) works as the explanatory variable. Instead
of using allZ(s~¥) as explanatory variables, we would select a subsgt{ef¥) as the explanatory
variables forY (s¥), as the variables i¥ (s~¥) can be highly correlated given the nature of spatial
model (1.1). With a little abuse of notations, we denoteby= (Z(s%),... Z(sz,)) the set of
variables used as the explanatory variable3” V), wherem = |Z| denotes the size of the set
Z. Letyv, = E(Y(sY)), v, = E(Z), £, = Var(Y(s¥)), ¥, = Var(Z), and%,, = X,, =
Cov(Y (s¥), Z). Then the conditional distributioki (s¥)|Z is given by

Y(Sy)‘Z ~ N (Vy|272y\z) (21)

where

yle = vy + 5501 (Z — 1),
Sy =Sy — 52T,

v,
2.2)

Let R, denote the spatial correlation matrix of the site¥'¢$?), let R, denote the spatial correlation
matrix of the sites of, and letR,,, denote the spatial correlation matrix of the site'¢§?) andZ.
Note thatR,, R, andR, . are all submatrices ot as defined in (1.2). Then the covariance matrices
in (2.2) can be expressed as
Sy =0*(Ry+al), ¥.=0*R.+al), ,.=0’R,., %,.=3%I,
wherea = 72 /02.
In the case that covariates present in model (1.1), we have

vy, = vy + 5.5, (Z —v.) = (Cy — Ry.R;'C.) €+ Ry.R. ' Z, (2.3)
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where¢ = (&, &1, ... ,gp)T denotes the vector of regression coefficients as defined3j @ndC,
andC, are the design matrices for the covariates and given by

1 Csilsl T Cs/ilrp 1 Cs .1 e Csf,p

1°
C’y: , O =
Loew 10 Cv p Locsza o0 Cozp

wherec,s ; ande,: ; denote the observed values of tfté covariate at the locations’ and s?,
respectively.
For the purpose of illustration, we consider the exponéatierelation function

pllsi = 55l) = exp {=[|si — 55|/}, (2.4)

where¢ > 0 is the correlation length parameter. Then the model (2133}(can be parameterized
by 6 = (61,02,0%,&) = (log (¢),log (@) , 02, &), where, for ease of sampling,anda has been
reparameterized by their logarithms. To make Bayesiarrénfee for the model (2.1)-(2.3), we
specify the following priors fo€, o2 and¢:

m(€|o?) e?‘pa_(l“’) exp (—eg €7¢/(20%)), w(0®) xx IG(e,€), m(p) x IG(e,€), (2.5)

where both, ande are small positive constants, and I1G) denotes an inverse Gamma distribution.
For simplicity, the two hyperparameters of the prior inee@amma distribution are restricted to be
the same in this paper. Wherx 2, IG(c, ¢) leads to a vague prior, whose variance is infinite.

Since it is generally true that the nugget variaméds smaller than the varianaee?, we set a
uniform prior fora = 72 /02 on the interval0, 1]; that is,

m(a) =1, a€]l0,1]. (2.6)
With a little abuse of notations, we denote the model (2.1¥bsnd impose a truncated Poisson
prior distribution on the space of models; that is,

ATTL B
e,
m!

m(Z) m € {0,1,...,n—n*}, (2.7)

wherem = |Z| denotes the number of sites includeddrand \ is a hyperparameter to be specified
by the user. The rationale behind this prior can be expla@isddllows: To minimize the loss of data
information caused by site selectiofd,should be selected uniformly from the observation region
of {Y'(s;)} and thus, following the standard theory of Poisson prodhesaumber of selected sites
can be modeled as a Poisson random variable. To enhancelditian pattern, the prior (2.7) is
used. Alternatively, one can specify a prior distributibattincorporates the spatial information of
Z, but this will complicate the simulation of the posteriostdibution.

Combining (2.2)—(2.3) and (2.5)—(2.7), we have the posteri 6 given by

-1/2 1 1 _ _
fFOlY(sY),Z) |2, ] / s exp{—wBT(Ryz—FegQAAT) 13}71'(91,02,02)

. (2.8)
X exp {—202(5 —ATE)TA(E - A—lE)T} ,
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whereA = Cy — R,.R;'C., B=Y(s") — Ry.R;'2, E = (A = B)'S, |, R,|. = 0 *(%, -
3,.%;13,, denotes the conditional correlation matrixiofs) givenZ, andA = ATR 1A + e%]
is ann* x n* matrix. Itis worth pointing out that bot,. andR,,|. + ¢, *AAT are alsm x n*
matrix. Thus, BSS reduces the problem of invertinge n» matrices to that of inverting* x n*
matrices. How to determine the valuesof will be discussed in Section 2.2.

Integrating oug andc? from (2.8), we have

L (2 +¢€)m(61,06)
{BT(RW + e ZAAT)1B/2 + 6}5+6

1/2

F(01,020Y (sY), Z) o | Ry |7 [A]7Y2 (2.9)

Following the standard theory of Bayesian model averaghggpredictive posterior distribution
of Y'(sP) can be written as

FY(sP)Y(s”), = > /f (s")Y(s"), Z,0)f(6]Y(s"), Z)x(2)d6,  (2.10)

ZCcD_,

whereZ denotes any subset &f_,, and also a particular model defined in (2.1)—(2.3). This ie%pl
that the expectation df (s”) conditioned on the full observatiors is given by

EY ()Y (), D)= Y /E Y ()Y (s¥), Z,61F (O]Y (s¥), Z)x(2)d6.  (2.11)
zcD_,
Let (8, zM), ..., (8V), Z(")) denote a sequence of samples drawn from the joint posterior

of (0, Z), which is proportional tof (6|Y (s¥), Z)n(Z). ThenY (sP) can be predicted by
1 N
NZ Y(sP)|Y (s¥), 2%, 0], (2.12)

whereE[Y (sP)|Y (s¥), Z(), 0] is the conditional mean df (s”) givenY (s¥), the selected set of
explanatory variableg (¥, and the parameter valug$§’. That is,

ﬁ:{ v + Sy Zut (Wi —le)}, (2.13)

wherev? denotes the mean af (s?) for the samplg8®, Z;), W; = (Y(s¥), Z(") is the joint
vector formed byY' (s¥) andZ, £, ) ., is the covariance matrix df (s?) andW;, £, is the
covariance matrix of¥;, andv,,, denotes the mean &¥;. Note that all the termsrs(f;), y(sP)wi
and¥,,, in (2.13) depend on the sampl@¥), Z;), and that the covariates (s”), ..., c,(s?) are
assumed to be available at the prediction sitesHow to draw samples from the joint posterior of
(68, Z) will be discussed in Section 2.3.
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2.2 Prediction-Oriented Response Variable Selection

In this section, we consider a prediction-oriented sedecticheme fol’(s¥) with an expectation
that{Y (s¥)} plays surrogates fofY (s?)}. The scheme consists of the following steps:

1. Lets = {s1,...,s,} denote the full set of observation sites, andslet= {sf,...,sh }
denote the set of prediction sites, whergis the total number of prediction sites.

Fori = 1,...n,, do the following sub-steps to identify the first tier of theanest points to
sP:

(a) Draw a sites” from the set? at random and without replacement.
(b) Identify the nearest neighbor eff by setting

sy, =arg min |s — s

ot 565\{51{,17"'75}1/,/1—1 ¢
Sets{ = {5171, o slmp}.

2. Sets « s\s! and repeat the substeps in step 1 to identify the secondftiee mearest points
to s?. Denote the second tier neighboring sesby

k. Sets «+— s\s}_, and repeat the substeps in step 1 to identifytik tier of the nearest points
to s”. Denote the:-th tier neighboring set by?.

The procedure outputs’ = U?leg as the set of response variables dnd, = {s1,...,s,}
\s¥ as the set of explanatory variables. In practice, the valug which determines the size of
(n* = kny), can be determined through an examination of the fittinf¥t¢s¥) } or its subset. For
example, we can choose the valuewdfsuch that the mean squared fitting errors (MSFE) for the first
tier neighboring sites are minimized among a few values*afinder consideration. Our numerical
results indicate that MSFE can provide a good guidelinedtadiion ofn*. In our experience, when
k > 3, BSS often works very well provided > n*.

As shown in (2.8), BSS has reduced the problem of invertingrn. matrices to that of inverting
n* x n* matrices. Whem,, is large, we suggest to divid€ into several small subsets and then run
BSS for each of them separately. For example, the subsetseceonstructed by drawing fros®
through a sampling-without-replacement procedure. Téigdus to keep* in a reasonable range,
and thus alleviate the heavy burden of computation causafiébgubic law of matrix inversion.

In addition, the computation for different subsets can beedia parallel, which will significantly
shorten our waiting time for the prediction results. bgtdenote the size of a subset of prediction
sites. For the choice of;,, we suggest to keep the relationship> 3n;, hold, while keeping:* in a
reasonable range. In our experience, such a choig often leads to good prediction results.

In practice, we can encounter a situation that there are sereations near some prediction
sites. Since the prediction-oriented selection scheme &elect the observations nearest to the
prediction sites, it still works under this situation. Hoxge like any other approaches, BSS may
produce prediction of high variability under this situatio
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2.3 A Metropolis-within-Gibbs Sampling scheme

In this section, we consider a Metropolis-within-Gibbs géen (Muller, 1991) for drawing samples
from the posterior
f(el’ 927 Z|Y(Sy)) X f(el’ 92|Y(Sy)a Z)ﬂ-(Z)’

whereZ indexes a subset model affith,, 62|Y (s¥), Z) is given in (2.9).

Let (HY), th), Z®) denote the sample generated at iteratiaf the Markov chain. Lein =
Z®)| denote the number of sites included4ff). To updateZ®), we consider three types of moves,
“birth”, “death” and “exchange” with the respective propbgrobabilities denoted by, 1.
Gm,m—1 andgp, . In this paper, we set

Ammin, Mmin — (1/3)7 dMmmin,Mmin+1 = (2/3)a
(1/3)7 qmmaxymmaxfl = (2/3)’
Giit1 = Gie1, = Gii = (1/3),  for mmin +1 <i < mpax — 1,

Ammax;Mmax

wheremy;, = 0 andmy,.x = n — n*. One iteration of the Metropolis-within-Gibbs sampler
consists of the following steps:

. Draw9§t+1) from the conditional distributiorf (6, \9;”, Y (sY), Z) using the Metropolis algo-
rithm with a random walk Gaussian proposal. The variancaisfgroposal is denoted Ml
and will be given in the context of numerical studies.

o Draw 05" from the conditional distributiory (62]6\' "), Y (s¥), Z) using the Metropolis
algorithm with a random walk Gaussian proposal. The vagarithis proposal is denoted by
o3, and will be given in the context of numerical studies.

e Draw Z(+1),

— (Birth) Randomly select* out of D_,\Z® and setZ* = Z() U 2*. SetZ(t+1) = 7~
with probability

win ] SO0V (80), 297(2) 0t = m g
7f(9§t+1)’9;t+1)|y(sy)’Z(t))ﬂ-(Z(t)) m+1  Gmmi1
Otherwise, sef (‘+1) = Z(*),

— (Death) Randomly select* out of Z(*) and setZ* = Z(®)\z*. Acceptz, , with
probability

win L FOTY 0 VY (), 2)m(2) M meim |
O 08V Y (sv), Z20)m(20) =0t = mA L G

Otherwise, sef (t+1) = 7 ()
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— (ExchanggRandomly select* out of D_,\Z®) andz out of Z(). SetZ* = Z(®) U
{z*}\{z}} by exchanging* andz}. Acceptz}, with probability

e ey (sv), 27
CFEOFD 00V (sv), 20)

Otherwise, seZ *+1) = Z(®),
Given a MCMC samplé'” 65", Z®), ¢® ando® can drawn from the following distributions:
£D ~ N (ATTEATY), 020~ IG (n/2 + 6, BT (Ry. + ¢ 2AAT) ' B/2 + e) :

which can be simply derived from (2.8) with, W, A, B andR,. as previously defined. Given the
sampleg6\"”, 68", Z()) and(¢(®), 02®)), the prediction of Y (s?)} can then be simply done as in
(2.13).

3 Simulation Studies

In this section, we assess the performance of BSS using imalaied examples along with some
comparisons with the standard Bayesian method. For thdai@tuexamples, we have the following

common settings. In both data generation and posteriorlations, the spatial correlation function

is as defined in (2.4). In posterior simulations, we set theehyarameters; = 0.01 ande = 1.

As previously explained, this leads to vague priors&ps? and¢. For each dataset, BSS was run
once with 10,000 iterations, where the first 5,000 iteratioere discarded for the burn-in process
and the remaining iterations were thinned by a factor of Setol@00 samples.

3.1 An lllustrative Example

We simulated 30 independent data sets from the Gaussiataistical model (1.1). Each data set
contains 1,100 observations with the sites uniformly disted over the regiof, 100] x [0, 100].
The data sets were generated using the function grf() in Rabeiro and Diggle, 2001) with the
parameterséo, &1, ¢, 02, 72) = (0.5, 1, 25,1,0.25) and the covariates generated fravt0, 1). For
each data set, a subset of size 1,000 was randomly seledeagsad for model training, and the
remaining 100 samples were used for prediction.

BSS was first applied to this example with the hyperparameter2 and three different choices
of n* = 200, 300 and 500. In simulations, we se} = 0.3 andoj, = 0.5, which have been
calibrated such that the Markov chain can mix well in each fLime resulting parameter estimates
and mean squared prediction errors (MSPE) for the predisix were summarized in Table 1. The
numerical results indicate that a% increases, BSS produces better prediction. It is alsodstiey
to point out that as* increasesm tends to decrease when the same valug & used. This is
reasonable, as the response variables can explain eactirothe regression model we formulated.
It is known that for the model (1.1), when the correlationdtion is exponential or M&in, the
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parametersp and o2 are non-estimable due to the existence of equivalent piligaimeasures
(Stein, 2004). However, in this case, the ratja? is still estimable as shown in Zhang (2004). For
this reason, we report in Table 1 the estimate of the ratitp, instead of the respective estimates
of 2 and¢. Our numerical results indicate that BSS produced accesitmates of»/o? for this
example. As a possible tool for determining, we also reported in Table 1 the mean squared
fitting errors (MSFE,) for the tier 1 neighboring observations. Apparently, MgFgrovides a
good ordering for MSPE.

Table 1: Comparison of BSS and BFD method for the illusteatixample. The estimates were
calculated by averaging over the results from 30 differataslets and the number in the parentheses
denotes the standard deviation of the estimate. The CP4 tiveee recorded for a single run of the
algorithm on a desktop of Dual Core 3.0 GHz. BFDay®sian method for theull data; MSPE:
mean squared prediction error; MSEEmean squared fitting error for tier 1 neighbofs. average
value ofm obtained in simulations. Proportion: calculatediiri + m)/n x 100%.

BSSQ*, \)
Te " 000,2)  (300,2)  (500,2) BFD
m — 37(0.21) 34(0.23) 28.9(0.19) —
Proportion| — 23.7% 33.4% 52.9% 100%

&o 0.5 0.54(0.09) 0.52(0.09) 0.56(0.09) 0.42(0.00)
& 1.0 0.97(0.01) 0.99(0.02) 1.00(0.00) 0.99(0.06)
o/a? 25 26.58(2.22) 25.67(1.94) 24.83(1.38) 23.85(0.93)
72 0.25 0.23(0.01) 0.24(0.01) 0.24(0.01) 0.25(0.01)
MSPE — 0.413(0.01) 0.398(0.01) 0.384(0.01) 0.381(0.01)
MSFE, — 0.449(0.01) 0.416(0.01) 0.395(0.01) —
CPU(h) — 0.5 15 7.3 47.8

For comparison, we also applied the standard Bayesian appto this example. This approach
works on the full dataset. Letting the parameters be suljeitte priors (2.5) and (2.6), and inte-
grating out¢ ando?, we get the posterior

£(61,65|D) o |R + al|"%|A|7%

(5 +e)

(01702)7

(YT (R+al +¢,°CCT) Ty /2 + eyite

(3.1)

whereR is the correlation matrix as defined in (1.2)= CT(R + ol)~1C + egl, y is ann-vector
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which consists of all observations in, and

L ocon -0 Csip

I cso1 o0 Csnp

is the design matrix of covariates. The Metropolis-witkBibbs sampler is also applied to simulate
from the posterior (3.1), but with only two parametéisand , updated at each iteration. The
algorithm was also run once for each dataset. Each run ¢edi610,000 iterations, where the first
5000 iterations were discarded for the burn-in process & samples were collected from the
remaining iterations at equally-spaced time points. Thkalting parameter estimates and the MSPE
were reported in Table 1 in the column of BFD (Bayesian mefoodrull Data). The simulation is
very time consuming, as it needs to invertrax n matrix at each iteration.

The comparison indicates that although BSS costs much [Bkktitnes than BFD, it can pro-
duce parameter estimates and prediction which both arecasagthose produced by BFD. We note
that the parameter estimates resultant from BSS may becdbéaseto the selection af (s¥) and
inclusion of explanatory variables. For this example, thas is ignorable because the prediction
sites are randomly selected from the full dataset and thebeuwf explanatory variables included
in each model is relatively small. How to use BSS for parametémation will be discussed in the
Discussion section.

To understand why BSS works so well in both prediction anisnedion, we conduct the follow-
ing experiment to test if BSS can catch the long range depmedef the data. The experiment was
done in the following procedure:

e For each sample i_, find its minimum distance te¥; that is, set

d(s) = min ||s — sY||,

s?ésy

for each sites € D_,,.

Divide the samples itD_,, into 10 groups according s). Group 1 contains the one-tenth
samples with the smallest valuesdik), ..., and Group 10 contains one-tenth samples with
the largest values aff(s).

e Run BSS withn* = 500 and X\ = 2 for one dataset.
e Count the sampling frequency of the explanatory variaBléom each group.

Figure 1 shows the relative sampling frequency of the exitany variablesZ from each group.
All 10 groups have more or less same relative frequenciegrantighest is obtained for group 1.
This indicates that BSS is indeed able to catch the long rdegendence of the data. Therefore, it
is understandable why BSS performs like BFD in estimatiah@rediction even with only a subset
of the data being used. It is also reasonable that group lheasighest relative frequency, as the
samples in group 1 have higher correlations with the respeamples than those in other groups.
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Figure 1. Sampling frequency of the explanatory variatifedrawn by BSS for one dataset with
n* =500 and\ = 2.

To assess the sensitivity of BSS to the choice\pfve tried different values ok = 1, 2, 3,

5, and 10 for the case* = 200. The results were summarized in Table 2. The results inglicat
that as) increases, the number of explanatory variables includetienmodel tends to increase,
the resulting regression model tends to be overfitted (ttimate ofr2 tends to decrease slightly)
and the contribution of covariates to the regression maatalg to decrease (the estimate pfends

to decrease). This experiment suggests that a small valdarady be used, which will lead to a
parsimony regression model in general.

In summary, the numerical results of this example suggest® «choose a reasonably large
value of n* within the limit of our computer power, as a large valuerdf can generally work
better in both parameter estimation and prediction. Howeue excessively large value of is
not necessary, especially when one aims at prediction,eapréfdiction accuracy depends mainly
on the neighbors of the prediction site. In practice, theiwalfn* can be determined according
to the value of MSFE. Whenn* is reasonably large, say, the tier 3 neighboring points haesn
included in the response, a small value\pfay, 1 or 2, may be used.

3.2 A Large Data Example

To assess the performance of BSS for large spatial dataymdated 30 independent datasets from
the model (1.1) with the same parameters as for the last dranifach dataset contains 20,100
samples, where 100 randomly selected samples were userkthictpn and the remaining 20,000
samples were used for model building.

BSS was applied to this example widlj = o7 = 0.3, A = 1, andn* = 300, 500 and 700.
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Table 2: Sensitivity analysis of BSS for the valueXofRefer to Table 1 for the notation.

BSS(*, \)
(200,1) (200, 2) (200, 3) (200, 5) (200, 10)
m 26.5(0.17)  37(0.21)  45.8(0.27) 58(0.34)  82(0.43)
Proportion|  22.7% 23.7% 24.6% 25.8% 28.2%

& 0.52(0.08)  0.54(0.09) 0.53(0.09) 0.52(0.09)  0.50 (0.09)

& 0.98(0.01) 0.97(0.01) 0.96(0.01) 0.95(0.01) 0.94 (0.01)
¢/o? | 26.06(2.16) 26.58(2.22) 25.11(2.39) 25.67(2.28) 24.521(p

72 0.25(0.01) 0.23(0.01) 0.24(0.01) 0.23(0.01) 0.22(0.10)
MSPE | 0.414(0.01) 0.413(0.01) 0.414(0.01) 0.414(0.01) O0.4TH(O

The results were summarized in Table 3. The performance 8ffBthis example is similar to that
of the last example. It produced very reasonable paramstienates and MSPE values. For this
example, we also calculated MSEE The results indicate again that MSEES highly correlated
with MSPE and can be used as a tool for choosing approprititegefor BSS. It is worth pointing
out that for this example, even with only less than 5% (onaye) of samples being used at each
iteration, BSS still performs reasonably well in both paesen estimation and prediction. BSS can
have many applications. Recently, it has been applied t@Sian process regression by the authors.

4 Real Data Study

4.1 Precipitation Anomaly Data

To demonstrate the performanceB8Sor real problems, we considered a precipitation dataset fr
the National Climatic Data Center (NCDC) for the years 1895397. This data has been studied by
many authors including Johes al. (2003), Furreet al. (2006), and Kaufmaet al. (2008), among
others. In this study, following Kaufmaet al. (2008), we use the precipitation anomalies of 1962,
which are available atht t p: / / www. i mage. ucar . edu/ Dat a/ preci p_t aperi ng/. This
dataset consists of 7,352 samples (sites) and, as mentignkdufmanet al. (2008), there is no
noticeable evidence for nonstationarity.

For this example, we randomly choose a subset of 250 out 82&58mples for model testing,
and use the remaining samples for model building. We triéfdréint values oi* = 250, 500 and
750. Since our results reported in the previous section indittzt BSS is not sensitive to the value
of A\, we setA = 1 for this example. For each value af, BSS was run 5 times independently
with o7 = o5, = 0.3. Each run consisted of 10,000 iterations, with the first 6,@rations being
discarded for the burn-in process and 1000 samples beifegted from remaining 5,000 iterations
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Table 3: Performance of BSS for the large data example. RefEble 1 for the notation.

BSSq*, \)
(300, 1) (500, 1) (700, 1)
m 136(0.68) 134(0.98) 133(0.78)
Proportion 2.18% 3.17% 4.17%
&o 0.665(0.100) 0.687(0.098) 0.705(0.096)
& 0.967(0.010) 0.985(0.006) 0.990(0.004)
o/a? 23.05(1.86) 22.96(1.52) 23.39(1.58)
72 0.228(0.007) 0.232(0.006) 0.237(0.004)
MSPE 0.345(0.00) 0.326(0.00) 0.316(0.00)
MSE,, 0.343(0.00) 0.320(0.00)  0.305(0.00)
Time(hr) 2.6 11.0 21.9

at equally spaced time points. The results were summanzé&dtle 4.

Table 4 shows an interesting pattern: The estimatg/of* tends to decrease a$ increases.
This is reasonable. When* = 250, D, consists of only the tier 1 sites, which are far from each
other. To establish the dependence among these sites,eaviig ofp/o? is needed. When*
increases, the estimate @fo2 will converge to its true value. However, as longésis reasonably
large, sayn* > 3n,, BSS will perform very well in prediction. The reason is thia¢ sparsity of
neighboring information can be partially compensated leybdated parameter estimates. Table 4
shows that BSS produced similar prediction results with= 500 andn* = 750 in terms of MSPE.
Based on this observation, we conclude that BSS is a usgbubaph for prediction.

To show that BSS can produce reasonable parameter estifoatesdel (1.1), we compare the
predicted anomalies on a regular gridx®0 x 400 with the unit grid size (longitudex latitude)
0.065 x 0.12, where the anomalies were predicted using the covariapeeitg method (Furrest
al., 2006) with the BSS estimates given in Table 4. In this studytapered the estimated covariance
matrices by a spherical family with a range of 50 miles. Thaults were shown in Figure 2. The
BSS prediction matches with observations very well, evethie case witm* = 250. This indicates
that the estimates produced by BSS are reasonable for thisltiaeeds to emphasize that BSS uses
only a small proportion of the data at its each iteration.

4.2 Gold Mine Data

The Gold mine data, available aht t p: / / www. kri gi ng. coni dat aset s/, is constructed
based on a Wits type gold mine. The samples are chipped frerfatie of the reef in a working
section of the mine (stope). As the face advances, new chiplsa are taken. Values within a stope
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Table 4: BSS results for the anomalies of 1962. The estinva¢es calculated by averaging over
the results of 5 independent runs, with their standard &given in the parenthesis. The CPU times
were recorded for a single run on a Desktop of Dual Core 3.0.@Gmportion was calculated in
(n* +m)/n x 100%.

BSS@*, \)
(250, 1) (500, 1) (750, 1)
m 89(0.65) 90(0.59) 89(0.67)
Proportion 4.61% 8.03% 11.41%
o -0.046(0.013) -0.076(0.005) -0.08(0.00)
¢/o? 206.16(11.10) 196.59(1.10) 172.76(1.93)
72 0.096(0.011) 0.123(0.001) 0.112(0.001)
MSPE 0.320(0.003)  0.272(0.001) 0.272(0.000)
Time(hr) 1.3 7.8 24.8

are traditionally estimated using the sample values froenfélce. The data set was used in Clark
and Harper (2000). To ensure the data normality holds foraihddl), we work on the logarithm of
the observations.

The data set consists of 21,577 observations. We randondgt250 observations for model
testing and use the remaining observations for model mgldBSS was run for 5 times indepen-
dently withoj = 0.2 andoj, = 0.3. Each run consists of 10,000 iterations, where the first(,00
iterations were discarded for the burn-in and 1,000 sanvpdge collected from the remaining iter-
ations at equally-spaced time points. The numerical reswdtre summarized in Table 5.

Table 5 shows a similar pattern to Table 4: Asincreases, the estimate ¢fs? tends to de-
crease. Figure 3 shows the images of the observations adidfpra surfaces. It indicates again that
BSS can produce reasonable parameter estimates for mobleleiden with only a small proportion
(less than 5%) of the data being used at each iteration.

5 Discussion

In this paper, we have proposed a prediction-oriented B®®oaph for dealing with the large
matrix inverse problem encountered in geostatistics. T8 Bpproach works by performing a re-
gression analysis based on the prediction request, witHdteedimension being reduced through a
stochastic variable selection procedure. Like other dsimmreduction approaches, such as those
proposed by Banerjest al. (2008), Cressie and Johannesson (2008), Fiele). (2009) and Stein
(2008), BSS tries to make use of all data available. In BSS,ishdone through Bayesian model
averaging. By averaging over the outputs of the models Wittt different sets of explanatory vari-
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Figure 2: Images of observed and predicted anomalies of @8&2regular grid of siz800 x 400.
(a) Observed anomalies; (b) prediction surfacerfor= 250; (c) prediction surface fon* = 500;
(d) prediction surface fon* = 750.

ables, BSS can essentially incorporate all data informaitito the resulting parameter estimates and
future value prediction. Our simulated examples show th#t an appropriate choice of response
variables and an appropriate choice\pBSS can produce parameter estimates and prediction which
both are nearly as good as those produced by the Bayesiandnegith the full data, although BSS
uses only a small proportion of the data at each iterationafeally large data set, say, the number
of observations is over 20,000, our numerical results (@fhd simulated example and the 2nd real
example) indicate that BSS can produce very reasonablengtea estimates and predictions with
only less than 5% of the data used at each iteration.

As previously mentioned, the parameter estimates prodogd8iSS can be biased due to the
choice of the response variables and inclusion of explaypatariables. For example, when the
response variables are not uniformly selected from the fsebservations and the number of ex-
planatory variables included in the regression is too lafyeresulting parameter estimates may be
biased. To address this issue, we propose an ensemble B&&eppwhich works in a style of
bootstrap sampling as follows:
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(a) Observed Image (b) Predicted Image with prior 500 (c) Predicted Image with prior 750

e TR R | Y
gt
d B

Figure 3: Images of observations and predicted surfacesegudar grid of size800 x 200 for the
goldmine data. The prediction surfaces were produced la} Kxgging for which each grid point is
predicted based on the nearest 100 points. (a) Images afvakises; (b) prediction surface by the
BSS estimate witlw* = 500; and (c) prediction surface by the BSS estimate with= 750.
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Table 5: BSS results for the gold mine data. The estimates wadculated by averaging over the
results of 5 independent runs, with their standard errarsrgin the parenthesis. The CPU times
were recorded for a single run on a Desktop of Dual Core 3.0.@Gmportion was calculated in
(n* +m)/n x 100%.

BSS@*, \)
(500, 1) (750, 1)
m 151(0.76) 152(1.38)
Proportion 3.02% 4.18%
&o 3.76(0.003)  3.77(0.002)
@/o2 99.45(1.08) 71.21(1.19)
T2 0.098(0.001) 0.058(0.001)
MSPE | 0.154(0.000) 0.139(0.000)
Time(hr) 9.4 28.0

e Select multiple response sets, with each being drawn ralydoom the set of observations.
e Run BSS for each response set.

e Average the parameter estimates resultant from each resen

In this case, the hyperparametemay be set to a small number or even zero, as one aims
at parameter estimation instead of prediction. Followiragrf the standard theory of bootstrap
(Efron and Tibshirani, 1993), the parameter estimatedtesdifrom the ensemble BSS approach is
unbiased.
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