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SUMMARY

In this paper, we propose and explore a set of weighted generalized estimating equations for
fitting regression models to longitudinal binary responses when there are dropouts. Under
a given missing data mechanism, the proposed method provides unbiased estimators of
the regression parameters and the association parameters. Simulations were carried out to
study the robustness properties of the proposed method under both correctly specified and
misspecified correlation structures. The method is also illustrated in an analysis of some
actual incomplete longitudinal data on cigarette smoking trends, which were used to study
coronary artery development in young adults.

Keywords and phrases: Generalized estimating equation, Inverse probability weight, Lon-
gitudinal data, Marginal model, Missing response.

AMS Classification: MSC 2000: Primary 62F10; secondary 62F35

1 Introduction
We often collect longitudinal data in biological, medical and environmental studies. The main fea-
ture of longitudinal studies is that measurements from the same subjects are taken repeatedly over
a given period of time. A common goal of a longitudinal study is to characterize the change in
response over time and the factors that influence the change.

Our focus is on regression models for longitudinal binary responses, in which the mean binary
response at a given time is related to a set of covariates and a time trend by a known link function.
The analysis of longitudinal data is often complicated by the fact that not all outcomes are observed
at all occasions. In general, the outcome of a subject can be missing at one follow-up time and be
observed at the next follow-up time, resulting in a large class of missing data patterns. We restrict

c© Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka 1000, Bangladesh.



32 Chowdhury & Sinha

our attention to monotone missing data patterns resulting from attrition, where a subject may drop
out prior to the end of the study and does not return. For example, in a clinical trial, a patient may
drop out due to unknown reasons, possibly side effects of a treatment or curing of a disease. Once
a subject drops out of the study, no more measurements are taken on that subject. Dropout patterns
in longitudinal studies have been studied by many authors in the literature (for example, Little and
Rubin, 1987; Diggle and Kenward, 1994; Fitzmaurice et al., 1995; and Touloumi et al., 1999).

We focus on marginal models for analyzing longitudinal binary outcomes with dropouts. A
common approach for estimating the regression parameters of marginal models for longitudinal bi-
nary responses is the generalized estimating equations (GEEs) approach of Liang and Zeger (1986).
Prentice (1988) extended the GEE approach for estimating both regression and association param-
eters of marginal models. The GEE approach is based on a “working” correlation structure, and
provides consistent estimators even under a misspecified correlation structure. Lipsitz et al. (1991),
Carey et al. (1993) and Fitzmaurice and Lipsitz (1995) considered analyzing the longitudinal data
by modelling the association among repeated responses in terms of the marginal odds ratios.

When there are missing data, the classical GEE approaches of Liang and Zeger (1986) and
Prentice (1988) are valid only when the data are missing completely at random (MCAR) (Rubin,
1976); that is, given the covariates, the missing data process is independent of both the observed and
unobserved outcomes. Under a weaker assumption of missing at random (MAR), where missingness
depends on the observed but not the unobserved outcomes, the classical GEE estimator may be
biased (Fitzmaurice et al., 1995). Robins et al. (1995) proposed an inverse probability-weighted
first order GEE approach, in which a subject’s contribution to the usual GEE is reweighted by the
estimated probability of dropout at the time of attrition. This method yields unbiased estimating
equations and hence consistent estimators for the mean parameters when the missing data model is
MAR and the probability of dropout is correctly specified.

In this paper, we incorporate the inverse probability-weights of Robins et al. (1995) into the GEE
approach of Prentice (1988) for analyzing longitudinal binary responses with dropouts. We study
the empirical properties of the weighted GEE method in simulations. The paper is organized as
follows. Section 2 introduces the model and notation to define the response process and missing data
mechanism for incomplete binary longitudinal data. Section 3 reviews the ordinary unweighted GEE
and weighted GEE approaches for analyzing the incomplete data. Section 4 presents an application
of the proposed method using actual longitudinal data from a health study. Section 5 presents results
from a simulation study, which was carried out to investigate the empirical properties of the weighted
GEE approach. Section 6 gives the conclusions of the paper.

2 Model and Notation

2.1 Response Model

Suppose K subjects are observed at a fixed set of T time points. Let Yit represent a binary response
variable from subject i, i = 1, . . . ,K, at visit t, t = 1, . . . , T . For the ith subject, we can form a
T × 1 vector, Yi = (Yi1, . . . , YiT )′, of binary response variables. Let the lower case letters yit and
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yi denote the realizations of Yit and Yi, respectively. Also, let xit = (1, xit,1, . . . , xit,p−1)′ be a
p × 1 vector of covariates from subject i at time t. The covariates may be time-dependent or fixed
across the entire observation times. Let xi = (x′i1, . . . ,x

′
iT )′.

Assume that the marginal distribution of Yit is Bernoulli:

Yit ∼ Bernoulli(pit), i = 1, . . . ,K; t = 1, . . . , T, (2.1)

with the probability of success,

pit = E(Yit|xi) = P (Yit = 1|xi). (2.2)

Let pi = (pi1, . . . , piT )′. Assuming that the mean of response variable Yit depends only on the
covariate vector for subject i at time t, i.e., pit = E(Yit|xi) = E(Yit|xit) (Pepe and Anderson,
1994), we consider modelling the mean response by the logistic regression:

logit(pit) = log

(
pit

1− pit

)
= x′itβ, (2.3)

where β = (β0, β1, . . . , βp−1) is the vector of regression parameters. The marginal variance of the
response variable Yit is specified as a function of the marginal mean as

vit = var(Yit|xit) = pit(1− pit). (2.4)

We assume that Yit and Yi′t′ are uncorrelated when i 6= i′. Let

corr(Yit, Yit′) = αtt′ (2.5)

represent the correlation between Yit and Yit′ for given xit, where α = (α12, . . . , α1T , α23, . . . , αT−1,T )′

is the vector of correlation parameters.

2.2 Missing Data Model

Note that attrition due to drop out and staggered entry is common in many longitudinal studies,
so the response vector Yi may not be completely observed for many subjects. In many cases, the
responses are missing due to some stochastic missing data mechanism. To introduce a missing data
model, let Ri = (Ri1, . . . , RiT )′ denote the response indicators for the vector Yi = (Yi1, . . . , YiT )′,
i.e., Rit be the indicator variable taking the value 1 if the response Yit is observed and 0 otherwise.
Throughout the paper, we assume a monotone missing data pattern, where Ri1 ≥ . . . ≥ RiT and
Ri1 = 1 for all subjects.

In general, the missing data mechanism can depend on the full vector of responses Yi (including
the unobserved components of Yi) and the matrix of covariates xi. Let

λit = P (Rit = 1|Ri1 = . . . = Ri,t−1 = 1,yi,xi, τ ) (2.6)

be the probability that the ith subject is observed at time t, given that the subject is observed at
previous t − 1 time points and given the response vector yi and covariate matrix xi. Here the
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components of τ are referred to as the “nuisance parameters” of the missing data model. We denote
the observed components of the response vector Yi by the vector Yo

i and unobserved components by
the vector Yu

i . In (2.6), as missingness depends on the unobserved values of the response variables,
it is referred to as nonignorable (NI) missingness. Data are called missing at random (MAR) if

λit = P (Rit = 1|Ri1 = . . . = Ri,t−1 = 1,yoi ,xi, τ ). (2.7)

Data are called missing completely at random (MCAR) if λit = P (Rit = 1|Ri1 = . . . = Ri,t−1 =

1,xi, τ ).
Note that in the case of dropouts, the random vector Ri = (Ri1, . . . , RiT )′ of binary indicators

can be characterized by a single random variable

Mi = 1 +

T∑
t=1

Rit, (2.8)

which indicates the time of dropout. In this case, the missing data or dropout process can be defined
by

νimi = fMi(mi|yi,xi, τ ) = P (Mi = mi|yi,xi, τ ). (2.9)

If we assume that all subjects are observed on the first occasion, then Mi takes on values between 2

and T + 1, where the maximum value (T + 1) corresponds to a complete measurement sequence. It
can be shown that

P (Mi = m|yi,xi, τ ) = P (Ri2 = · · · = Ri,m−1 = 1, Rim = 0|yi1, . . . , yim,xi, τ )

=

{
m−1∏
t=2

P (Rit = 1|Ri1 = · · · = Ri,t−1 = 1, yi1, . . . , yit,xi, τ )

}
× {P (Rim = 0|Ri1 = · · · = Ri,m−1 = 1, yi1, . . . , yim,xi, τ )}∆ (2.10)

where ∆ = I{m ≤ T} and I{} denotes an indicator variable.

3 Methods of Estimation

3.1 Generalized Estimating Equation

Our primary interest lies in estimating the regression parameters β as well as the association pa-
rameters α, with τ being viewed as nuisance parameters of the missing data model. Recall that we
partitioned Yi into the observed components Yo

i and the unobserved components Yu
i . Similarly,

we consider partitioning the mean vector pi into poi and pui .
As a naive method, one can consider analyzing the longitudinal data by simply ignoring the

missing data pattern and then estimating the model parameters based on the observed data only. In
such a case, the generalized estimating equations (GEEs) of Liang and Zeger (1986) can be used for
estimating the regression parameters β:

Uβ(β,α) =

K∑
i=1

D′iV
−1
i (Yo

i − poi ) = 0, (3.1)
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where Di = ∂poi /∂β, Bi = diag{pi1(1 − pi1), . . . , piT (1 − piT )}, Bo
i has the same form as Bi,

but with pi replaced by poi , Vi = (Bo
i )

1/2Ro(α)(Bo
i )

1/2, and Ro(α) is a “working” correlation
matrix for Yo

i depending on the vector α of correlation parameters. The above equations can be
solved numerically for β̂ using an iterative method.

Liang and Zeger (1986) considered estimating the association parameters α by the method of
moments, which uses the Pearson residuals

r̂it =
(yit − p̂it)

(1− p̂it)1/2
. (3.2)

The moment estimators of αtt′ may be obtained as

α̂tt′ =

K∑
i=1

r̂itr̂it′/(K − p) (3.3)

where p is the length of β.
Prentice (1988) considered an extension of the GEE approach to allow joint estimation of the

regression parameters β and the association parameters α. Specifically, a GEE estimator of the
correlation parameter α may be obtained from a second set of estimating equations by noting that
the “sample correlation”

Zitu = Zitu(β) =
(Yit − pit)(Yiu − piu)

(pitqitpiuqiu)1/2
(3.4)

has mean ρitu and variance

witu = 1 + (1− 2pit)(1− 2piu)(pitqitpiuqiu)−1/2ρitu − ρ2
itu, (3.5)

for t < u < T , i = 1, . . . ,K, and t = 1, . . . , T . Let Zi = (Zi12, . . . , Zi1T , Zi23, . . . , Zi,T−1,T )′

and ρi = (ρi12, . . . , ρi1T , ρi23, . . . , ρi,T−1,T )′. We denote the observed component of Zi by Zoi and
that of ρi by ρoi . Let, woitu is calculated with respect to the ith and uth elements of poi and ρoi .

Then following Prentice (1988), the GEE estimators of (β,α) may be obtained by solving the
estimating equations

Uβ(β,α) =

K∑
i=1

D′iV
−1
i (Yo

i − poi ) = 0, (3.6)

Uα(β,α) =

K∑
i=1

G′iW
−1
i (Zoi − ρoi ) = 0, (3.7)

where Gi = ∂ρoi /∂α and Wi = diag{woi12, . . . , w
o
i1T , w

o
i23, . . . , w

o
i,T−1,T }.

Note that under an MAR or NI process, E(Yo
i |xi,β) 6= poi , in general, and consequently, the

ordinary GEE approach may provide biased estimators of both the regression parameters β and
the association parameters α (Fitzmaurice et al., 1995). In the next section, we discuss the use of
weighted generalized estimating equations for estimating the regression and association parameters
when there are dropouts.
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3.2 Weighted Generalized Estimating Equation

Robins et al. (1995) proposed the weighted GEE (WGEE) approach for estimating the regression
parameters. In the WGEE approach, a subject’s contribution to the ordinary GEEs is weighted by
the inverse probability of dropout at the given time. The WGEE estimators of β are obtained by
solving:

Ũβ(β,α) =

K∑
i=1

1

νim
D′iV

−1
i (Yo

i − poi ) = 0, (3.8)

where νim is introduced in (2.9). The estimating equations (3.8) are unbiased for 0 at the true β if
νim is correctly specified (Fitzmaurice et al., 1995).

Note that to estimate the association parameters α, here we consider extending the GEE ap-
proach of Prentice (1988). Specifically, we consider estimating α by solving the weighted GEEs:

Ũα(β,α) =

K∑
i=1

1

νim
G′iW

−1
i (Zoi − ρoi )

=

K∑
i=1

T+1∑
mi=2

I{Mi = mi}
νimi

G′i(mi)W
−1
i (mi) {Zi(mi)− ρi(mi)} = 0, (3.9)

where Zi(mi) and δi(mi) are the corresponding mi − 1 elements of of Zi and ρi. For instance, if
mi = m then Zi(m) = (Zi12, . . . , Zi1,m−1, Zi23, . . . , Zi,m−2,m−1)′ and
ρi(m) = (ρi12, . . . , ρi1,m−1, ρi23, . . . , ρi,m−2,m−1)′. We define Gi(mi) and Wi(mi) analogously.
Note that, the number of response patterns in Zi is the same as that of in Yi since everyone responds
to the first observation, and there are only T possible patterns. We can show that

E

[
I{Mi = mi}

νimi

G′i(mi)W
−1
i (mi) {Zi(mi)− ρi(mi)}

]
= EYi

[
G′i(mi)W

−1
i (mi) {Zi(mi)− ρi(mi)}EMi|Yi

{
I{Mi = mi}

νimi

}]
= EYi

[
G′i(mi)W

−1
i (mi) {Zi(mi)− ρi(mi)}

]
= 0. (3.10)

Thus the estimating equations (3.9) are unbiased for 0 at the true α if νim is correctly specified.
Since the estimating equations for both β and α are unbiased for 0, from the standard theory of
method of moments, we can argue that the WGEE estimators

(
β̃, α̃

)
obtained by solving (3.8) and

(3.9) are consistent for (β,α). If the drop out probabilities νimi
are consistently estimated, then the

WGEE estimators would still provide consistent estimators of (β,α).
The iterative procedure for calculating the WGEE estimators

(
β̃, α̃

)
begins with some starting

values (β(0),α(0)) and produces updated values (βs+1,αs+1) from interim values (βs,αs) by
means of the iterative equations

βs+1 = βs +

(
K∑
i=1

1

νim
D′iV

−1
i Di

)−1 K∑
i=1

1

νim
D′iV

−1
i (Yo

i − poi ) , (3.11)
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αs+1 = αs +

(
K∑
i=1

1

νim
G′iW

−1
i Gi

)−1 K∑
i=1

1

νim
G′iW

−1
i (Zoi − ρoi ) , (3.12)

for s = 0, 1, 2, . . ., where the second term on the right side of each estimating equation is evaluated
at the current estimates (βs,αs). Note that the association parameters α are often estimated by
the method of moments or by the GEE approach of Prentice (1988), without any use of inverse
probability weights in the estimating equations for α. Here we consider finding the estimators
by incorporating the weights into the GEEs for α. This weighted GEE is found to improve the
efficiency of the estimators of α.

3.3 Approximate Variance of the WGEE Estimator

Similarly to White (1982), we consider approximating the variance-covariance matrices of the
WGEE estimators β̃ and α̃ by using sandwich-type estimators. In particular, we approximate the
variance-covariance matrix of β̃ from

V (β̃) = M−1
β QβM

−1
β , (3.13)

where the matrices Mβ and Qβ are obtained as Mβ =
∑K
i=1(1/νim)D′i V

−1
i Di and Qβ =∑K

i Sβ,iS
′
β,i with Sβ,i = (1/νim)D′iV

−1
i (Yo

i − poi ).
Similarly, the variance-covariance matrix of the WGEE estimator α̃ is obtained from

V (α̃) = M−1
α QαM

−1
α , (3.14)

where the matrices Mα and Qα are given by Mα =
∑K
i=1(1/νim)G′iW

−1
i Gi and Qα =

∑K
i Sα,iS

′
α,i

with Sα,i = (1/νim)G′iW
−1
i (Zoi − ρoi ). The matrices Mβ, Mα, Qβ, and Qα are evaluated at the

WGEE estimators β̃ and α̃.

4 Application: Analysis of Smoking Data

We present an analysis of data on cigarette smoking trends from the Coronary Artery Development
in Young Adults (CARDIA) study, an epidemiological study that recorded cardiovascular risk fac-
tors on five occasions over a 10-year period in black and white males and females (Hughes et al.,
1987). This study was conducted in four urban centres (Birmingham, AL; Chicago, IL, Minneapolis,
MN; and Oakland, CA) across the United States in which a total of 5,115 young adults aged 18-30
years were followed prospectively and examined up to five times from 1986 to 1996. Recruitment,
restricted to blacks and whites, was carried out to achieve approximate balance in sample size with
respect to age, race, gender, and education. Study participants were scheduled for visits at years 0,
2, 5, 7, and 10. We consider the first four visits and 5,078 (99.3%) young adults with self reported
smoking status (yes/no) known at baseline (year 0). Data from person-exams occurring after a per-
son’s first missed exam were omitted to create a data set with monotone missingness. Specifically,
578 person-exams of a total of 17,995 were omitted to create a monotone data set.
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Here the goal is to draw inferences on the change in smoking prevalence of young adults in the
presence of missing data and intraperson correlation based on our proposed method. The model
parameters were estimated and compared using the unweighted GEE , WGEE1 and the proposed
WGEE2 methods.

Let the binary response variable Yit = 1 if the ith individual is smoker at the tth visit, and 0 if
he/she is a nonsmoker. The marginal mean response pit = E(Yit) is defined as a function of the
covariates in the form

logit(pit) = β0 + β1(age/10)i + β2xt + β3eduhi + β4educi
+ β5racebfi + β6racewmi + β7racewfi, (4.1)

for i = 1, . . . , 5078 and t = 1, . . . , 4, where agei = age of individual i in years at baseline time; xt =

year since the baseline measurement = 0,2,5,7; the binary indicators eduhi = 1 if ith individual’s
education level is high school or less, and 0 otherwise; educi = 1 if education level is up to some
college, and 0 otherwise; racebfi = 1 if the person is black female, and 0 otherwise; racewmi = 1
if the person is white male, and 0 otherwise; and racewfi = 1 if the person is white female, and 0
otherwise.

Table 1: ML Estimates and Standard Errors of Missing Data Model Parameters for the CARDIA Study.

Estimate S.E z-value

Intercept -1.923 0.038 -51.28

Previous smoking status 0.389 0.037 10.57

Race (Black Female) -0.197 0.046 -4.25

Race (White Male) -0.809 0.053 -15.18

Race (White Female) -0.722 0.062 -11.68

To estimate the model parameters in (4.1) by the WGEE methods, we first estimate the inverse
probability weights based on the missing data model

logit(p∗it) = τ0 + τ1yi,t−1 + τ2racebfi + τ3racewmi + τ4racewfi, (4.2)

where p∗it = P (Rit = 0|Ri1 = . . . , Ri,t−1 = 1,yi,xi, τ ) is the conditional probability that the ith
individual drops out at time t.

Table 5 presents the pseudo-maximum likelihood estimates of the missing data model parameters
τ = (τ0, τ1, τ2, τ3, τ4), their standard errors, and the corresponding z-values. Results in this table
suggest that the dropout probabilities vary across the race and gender as well as the smoking status
of an individual at the previous visit. Young adults are likely to have exp(0.389) = 1.47 times
higher odds to miss a visit if they were a smoker (vs. nonsmoker) at the previous visit. Also
the study suggests that the black males are more likely to miss a visit than any other race-gender
combinations. The seven-year follow-up rates for the CARDIA study were 62%, 68%, 81% and
79% for black males, black females, white males and white females, respectively. The fitted missing
data model appears to reflect this scenario.
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We finally find the GEE, WGEE1, and WGEE2 estimators of the regression parameters in the
marginal model (4.1) assuming both exchangeable and serial correlation structures. The estimates
of the model parameters, their standard error and the corresponding z-values are presented in Table
6. From these results, the ordinary GEE approach appears to give somewhat different results as
compared to the WGEE1 and WGEE2 approaches. For example, under the exchangeable correlation
structure, the covariate age has the coefficient 0.320 by the GEE method, whereas this coefficient
is 0.481 by both WGEE1 and WGEE2 methods. The results are generally very close by the two
weighted GEE methods, except for the correlation coefficient α. For example, the estimate of α
under the exchangeable correlation structure is 0.727 by the WGEE2 method, whereas the estimate
is 0.706 by the WGEE1 method and 0.709 by the unweighted GEE method.

It is clear from Table 6 that the covariates Age, Year Followup, and Level of Education have
significant influence on the smoking trend in young adults. The older individuals are more likely to
be a smoker, but there is an overall trend of quitting this habit over time. These results also suggest
that the level of education has strong influence on the smoking status of the subjects. For example,
the young adults are estimated to have exp(1.728) = 5.64 times higher odds to be a smoker if their
level of education is up to high school or less than those who have a college degree or more. The
results are somewhat similar under the serial and exchangeable correlation structures. However, the
serial correlation structure may be preferable here, as this appears to give slightly smaller standard
errors of the estimates as compared to the exchangeable correlation structure.

5 Simulation Study

To study the empirical properties of the GEE and WGEE estimators under incomplete longitudinal
data, we ran two sets of simulations. In the first set, the estimators were studied under correctly
specified MAR models. In the second set, the robustness properties of the estimators were studied
under misspecified nonignorable missing data models. In each set of simulations, data were gener-
ated under both exchangeable and serial correlation structures among the responses. The following
three methods were compared in the simulations:

i. GEE: Estimators of both β and α are obtained by solving the unweighted GEEs (3.6) and
(3.7) following Prentice (1988).

ii. WGEE1: Estimators of β are obtained by solving the weighted GEEs (3.8), but estimators of
α are obtained by solving the unweighted GEEs (3.7).

iii. WGEE2: Estimators of both β and α are obtained by solving the weighted GEEs (3.8) and
(3.9).

Note that although the GEE approach of Prentice (1988) has been studied extensively for complete
data, but little is known about its properties under incomplete data with a stochastic missing data
mechanism. We are not aware of any work that studies the performance of the WGEE1 and WGEE2
methods for incomplete longitudinal data.
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5.1 Response Models for Simulations

For the simulation study, we consider a two-group design configuration with a binary response
measured on four occasions. The marginal model for the mean response E(Yit|xit,β) is given by

logit {E(Yit|xit,β)} = β0 + β1xi + β2t, t = 1, . . . , 4, (5.1)

where xi is a dichotomous covariate indicating the group membership for the ith individual (i =

1, . . . ,K) observed over a fixed set of T = 4 time-points, t = 1, 2, 3, 4. Throughout the simulations,
we consider P (Xi = 1) = 0.2. The marginal mean E(Yit|xit,β) is defined as a function of both xi
and time-point t.

The simulated data were generated using two types of correlation structures: exchangeable and
serial, with the correlation parameter α. For the exchangeable correlation, we chose corr(Yit, Yit′) =

α and for the serial correlation, we chose corr(Yit, Yit′) = α|t−t
′| for all (t, t′). We employ Bahadur

(1961) model to generate the longitudinal data. We estimate the model parameters assuming both
exchangeable and serial correlation structures. Under the “true” correlation structure, the “fitted”
model assumes the same correlation as that of the true model, whereas under the “misspecified”
correlation structure, these two correlations are different.

Throughout the simulations, the regression and association parameters were fixed at β = (β0, β1, β2)′ =

(−1, 1, 0.2)′ and α = 0.5, respectively. The regression parameters β were chosen so that the
marginal means E(Yit|xit,β) ranged from 0.3 to 0.7. Also, the correlation parameter α was chosen
so that the conditional probabilities from the Bahadur (1961) model were within the range (0, 1).
Each simulation run was based on 1000 replications of data sets, with each data set containing
K = 500 subjects and a maximum of T = 4 observations per subject.

5.2 Dropout Models for Simulations

The dropout model was assumed to be functionally independent of the group membership, but was
assumed to be dependent on the current and previous values of the response variable. That is, we
assumed that

P (Mi = mi|yi,xi, τ ) = P (Mi = mi|yi1, . . . , yimi , τ ). (5.2)

We assumed that all subjects were measured at the first time-point. Since we observe the individuals
at a fixed set of T = 4 time-points, the values of Mi can vary between 2 and 5, mi = 2, . . . , 5.

To calculate P (Mi = mi|yi1, . . . , yimi
, τ ) in (5.2), the individual conditional probabilities of

the missing data indicators Rit were obtained from

P (Rit = 0|Ri1 = . . . = Ri,t−1 = 1, yi1, . . . , yimi , τ ) =
exp(τ0 + τP yi,t−1 + τCyit)

1 + exp(τ0 + τP yi,t−1 + τCyit)
, (5.3)

for t = 2, 3, 4, i.e., the probability of being observed at a given time is entirely determined by the
previous and the current, possibly unobserved, responses. Note that the choice τC = 0 leads a
MAR model, whereas the choice τP = τC = 0 leads to the assumption that the data are missing
completely at random (MCAR). For τC 6= 0, missingness depends on a current value of the response
variable Y , and the missing data become nonignorable (NI).
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Using (2.10) and (5.3) , the probability P (Mi = mi|yi1, . . . , yimi
, τ ) in (5.2) is obtained as

νimi = P (Mi = mi|yi1, . . . , yimi , τ )

(5.4)

5.3 Estimating Dropout Probabilities

For calculating the WGEE estimators, prior to solving the iterative equations (3.11) and (3.12),
we estimate the response probability weights νimi

using (2.10). From (5.4) we find the pseudo-
likelihood function for τ as

L(τ ) =

K∏
i=1

P (Mi = mi|yi1, . . . , yimi
, τ )

(5.5)

Let logit{p∗it(τ )} = τ0 + τP yi,t−1 + τCyit. We find the pseudo-ML estimator of τ by maxi-
mizing the above likelihood function. From (5.5), the pseudo-score equations for τ takes the form

S(τ ) =

K∑
i=1

{
−
mi−1∑
t=2

p∗it(τ )y∗it + I(mi ≤ 4){1− p∗im(τ )}y∗im

}
= 0, (5.6)

where y∗it = (1, yi,t−1, yit)
′. The approximate variance of the pseudo-ML estimator of τ is obtained

from the Information matrix

I(τ ) =

K∑
i=1

min(mi,4)∑
t=2

p∗it(τ )(1− p∗it(τ ))y∗itý
∗
it. (5.7)

We apply Newton-Rapson iterative algorithm to solve the estimating equations for the pseudo-
ML estimator τ̂ = (τ̂0, τ̂P , τ̂C)′. The predicted probabilities of response for individual i at time t is
obtained as

1− p̂∗it =
1

1 + exp(ý∗itτ̂ )
. (5.8)

Then we estimate the probability of dropping out for individual i at time mi by

ν̂imi
= P (Mi = mi|yi1, . . . , yimi

, τ̂ ) =

{
mi−1∏
i=2

(1− p̂∗it)

}
×
{
p̂∗i,mi

}I{mi≤4}
. (5.9)

We replace νim’s in equations (3.11) and (3.12) by ν̂im and then solve these equations iteratively for
the WGEE estimators β̃ and α̃.

In the first set of simulations, the data were generated using a MAR model. The parameter
values of the dropout model (5.3) were chosen as τ = (τ0, τP , τC)′ = (−2, 2, 0)′ and (−2, 3, 0)′.
For these two choices of τ , the data contained roughly 30% and 40% missing values, respectively.
Table 1 presents the empirical percentage relative biases, mean squared errors, and coverage proba-
bilities of the GEE, WGEE1 and WGEE2 estimators of the regression parameters β = (β0, β1, β2)′
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and the correlation parameter α for (τ0, τP , τC) = (−2, 2, 0). Table 2 repeats these results for
(τ0, τP , τC) = (−2, 3, 0).

In the second set of simulations, we study the effects of misspecified missing data models on the
estimators of the regression and association parameters. As before, the data were generated from
the binary longitudinal model (5.1), but with a nonignorable missing data model (5.3) with non-
zero τC = 0.5, 1.0. Table 3 presents the empirical percentage relative biases, MSEs and coverage
probabilities of the estimators for τ = (τ0, τP , τC) = (−2, 2, 0.5) for which the data contained
roughly 32% missing observations. Table 4 repeats the results for τ = (τ0, τP , τC) = (−2, 1, 1) for
which the data contained roughly 40% missing observations. In both cases, we estimated the model
parameters under the misspecified MAR model.

5.4 Diagnostic methods

We compare three methods based on empirical biases, mean squared errors and coverage probabili-
ties of the estimators. Specifically, the bias of an estimator θ̂ of θ is estimated by

bias(θ̂) ≈
S∑
s=1

(θ̂s − θ)
S

, (5.10)

where θ̂s is the estimate of θ obtained from the sth simulated data set and S is the simulation size.
We calculate the percentage relative bias as

bias(θ̂)
θ

× 100. (5.11)

Note that as the values of model parameters chosen in the simulations are different in magnitude, we
consider calculating the percentage relative biases rather than the absolute biases of the estimators.

The mean squared error (MSE) of θ̂ is estimated by

MSE(θ̂) ≈
S∑
s=1

(θ̂s − θ)2

S
. (5.12)

We also find the coverage probabilities of an estimator θ̂ for 95% confidence intervals, θ̂±1.96×
SE(θ̂), where SE(θ̂) is the standard error of θ̂. The empirical coverage probability (CP) is obtained
from

CP(θ̂) =
1

S

S∑
s=1

I
{
|θ̂s − θ| ≤ 1.96× SE(θ̂)

}
, (5.13)

where I {} is an indicator variable.

5.5 Results

It is clear from Table 1 that both WGEE1 and WGEE2 methods provide approximately unbiased
estimates of the regression parameters under all simulation configurations considered. The biases of
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these estimators increase slightly when the proportion of missing observations increases, as shown
in Table 2. We expect such small increase in bias for the larger proportion of missing data, as fewer
observations are available to model the missing data pattern in this case. We have noticed in further
simulations (not shown here) that these biases decrease with larger sample sizes.

On the other hand, the unweighted GEE approach, generally provides large biases for both the
regression parameters and the correlation parameter, as expected. For example, as shown in Table
2, under the correctly specified serial correlation structure, the GEE estimator of β2 gives −46.39%

relative bias and that of α gives −28.48% relative bias. When comparing the WGEE1 and WGEE2
methods, our proposed WGEE2 method generally provides smaller bias for the correlation parameter
α. For example, from Table 2, under the correctly specified serial correlation, the WGEE1 estimator
of α gives −14.14% relative bias, whereas the proposed WGEE2 estimator of α gives a much
smaller relative bias of −1.99%.

The WGEE2 estimators also give better coverage probabilities; in particular, for the correlation
parameter α. For example, as shown in Table 1, under the correctly specified exchangeable correla-
tion structure, the WGEE2 estimator of α gives an empirical coverage probability of 97%, which is
close to the nominal 95% confidence level. On the other hand, the GEE and WGEE1 estimators of
α give empirical coverage probabilities of 35% and 49%, respectively.

The mean squared errors of the WGEE2 estimators are also smaller as compared to the WGEE1
and GEE estimators. Under misspecified correlation structures, although the WGEE2 method pro-
vides slightly larger biases, but these biases are still smaller than those obtained by the GEE and
WGEE1 methods. In this sense, the WGEE2 method is considered to be more robust than the other
two methods.

It is clear from Tables 3 and 4 that all three methods provide biased estimators of the model
parameters under the misspecified missing data model. However, the extent of the bias from the
WGEE2 method is less severe as compared to the GEE and WGEE1 methods. The WGEE2 method
also provides smaller MSEs and better coverage probabilities as compared to the other two methods.

6 Conclusions

The purpose of this research was to provide a better alternative to the unweighted GEE models
of Prentice (1988) for analyzing incomplete longitudinal data. Our simulation study demonstrates
that the proposed WGEE2 approach generally provides unbiased and efficient estimators when the
missing data mechanism follows a MAR model. When the missing data are nonignorable, all three
methods give biased estimators of the model parameters. However, the extent of the bias is generally
less severe as compared to the unweighted GEE and WGEE1 methods.
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