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SUMMARY

Quantile regression presents a flexible approach to the analysis of survival data, allowing
for modeling quantile-specific covariate effect. Qian and Peng (2010) proposed profile es-
timating equations and a readily and stably implemented iterative algorithm for censored
quantile regression tailored to the partially functional effect setting with a mixture of vary-
ing and constant effects and demonstrated improved efficiency of estimation over a naive
two stage procedure. The aim of this study is to use the same algorithm on a quantile regres-
sion setting where some covariate effects follow general parametric pattern (e.g. normal,
gamma or logistic distribution) rather than a constant function or value and to determine the
strength of using the algorithm in such regression settings through simulation. Simulation
studies demonstrate that the method works well, for moderately censored data, if the para-
metric pattern g(.) is a known function with unknown parameter(s). A sensitivity analysis
is performed to check the consequences of misspecification of such parametric pattern.

Keywords and phrases: Quantile regression; Censored data; Parametric pattern; Efficiency;
Sensitivity analysis.

1 Introduction
Regression quantiles, a new class of statistics is a simple minimization problem yielding the ordi-
nary sample quantiles in the location model (Koenker and Bassett, 1978). Quantile regression, first
proposed by Koenker and Bassett (1978), has emerged as a significant extension of classic linear
regression by seminally using the concept of conditional quantiles. Quantile regression has great
flexibility and straightforward interpretation in assessing covariate effects on event times, resulting
in growing interests in its applications in survival analysis. The quantile regression is more flex-
ible because the effect of covariates is not restricted to be constant in contrast to the accelerated
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failure time model (Prentice, 1978; Buckley and James, 1979; Louis, 1981; Wei and Gail, 1983;
Ritov, 1990; Tsiatis, 1990; Wei, Ying, and Lin, 1990). Quantile regression has become a useful
complement to the use of the Cox model (Qian and Peng, 2010).

A quantile regression model for an event time of interest, Y (possibly transformed), and a co-
variate vector X including a constant term, can be expressed as,

QY (r | X) = XTβ(r), r ∈ (0, 1), (1.1)

where QY (r | X) ≡ inf{y : pr(Y ≤ y | X) ≥ r} denotes the rth conditional quantile of Y given
X , and β(r) represents the effect of X on QY (r | X).

In quantile regression analyses, location-shift effects may often be found adequate for a subset
of covariates. For small samples, formulating all effects as functional (Peng and Huang, 2008) may
offer unnecessary flexibility at the price of efficiency. For such, Qian and Peng (2010) adopted a
quantile regression model with a mixture of varying and constant effects, referred to as partially
functional effects that provides a simpler view of covariate effects, and may thus be preferred over
its fully functional counterpart.

A few of the past studies on quantile regression with survival data centered around dealing with
censoring. Approaches of Powell (1984, 1986), Ying et al. (1995), Fitzenberger (1997), Buchin-
sky and Hahn (1998), Yang (1999), Chernozhukov and Hong (2002), and Honore et al. (2002)
assumed known censoring time or unconditional independence between T and C. Portnoy (2003)
and Neocleous et al. (2006) studied the estimation of quantile regression model by adopting the
self-consistency principle for the Kaplan-Meier estimate (Efron, 1967) under a weaker random cen-
soring assumption that C is independent of T conditional on X . Later, Peng and Huang (2008)
developed a new approach by utilizing the martingale feature associated with censored data, which
greatly facilitates both large sample properties and inferential procedures. Qian and Peng (2010)
used the same approach to represent censored quantile regression tailored to the partially functional
effect setting with a mixture of varying and constant effects. They have shown that, such models
can offer a simpler view regarding covariate-survival association with greater efficiency.

In this paper, the estimation technique of Qian and Peng (2010) has been applied on quantile
regression setting where some covariate effects follow a more general parametric pattern instead
of a constant function. For this purpose, normal, extreme value and logistic distributions are used
to present covariate effects. This generalization is straightforward and would be useful in practical
settings where strong preliminary information on the evolving paths of quantile effects is available.
Monte Carlo simulation is used to check the performance of the methodology under this scenario
and a sensitivity analysis has been performed to examine the consequences of misspecification of
parametric patterns.

2 Methods
Let T and C denote the survival time of interest and the censoring time, respectively. Define V =

min(T,C) and δ = I(T ≤ C),where I(·) is the indicator function. Without loss of generality, we
let Y = log T and partitionX as (WT , ZT )T ,whereW is a p×1 vector of covariates with r-varying
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effects, and Z is a q × 1 vector of covariates with constant effects. The observed data consist of n
independent and identically distributed replicates of (V, δ,W,Z), denoted by {(Vi, δi,Wi, Zi), i =

1, . . . , n}.
Then, a partially functional quantile regression model will take the form

QY (r |W,Z) = WTβ(r) + ZT γ, r ∈ (0, 1), (2.1)

where β(r) is the vector of functional regression coefficients for W and γ is the vector of constant
coefficients for Z.

Consider, FT (t | W,Z) = pr(T ≤ t | W,Z) and ΛT (t | W,Z) = − log{1 − FT (t | W,Z)}.
Here ΛT (t |W,Z) is the cumulative hazard function of T conditional onW and Z. Let the counting
process be N(t) = I(V ≤ t, δ = 1), Y (t) = I(V ≥ t), the martingale process be M(t) =

N(t) − ΛT (t ∧ V | W,Z) and {Ni(t), Yi(t),Mi(t)}(i = 1, . . . , n) be the sample analogues of
{N(t), Y (t),M(t)}. Also, Ni = Ni(r), that is, Ni = 1 if the ith individual had the event at or prior
to time r, and 0, otherwise.

Following the arguments in Peng and Huang (2008) and Qian and Peng (2010), the following
equality holds for r ∈ (0, 1):

E
{ 1√

n

n∑
i=1

ωi

(
Ni exp

(
WT
i β0(r) + ZTi γ0

)
−
∫ r

0

I
[
Vi ≥ exp

(
WT
i β0(u) + ZTi γ0

)]
dH(u)

)}
= 0,

where ωi represents either Wi (if covariate effects are varying) or Zi (if covariate effects are con-
stant) and β0(·) and γ0 are the true values of β(·) and γ in model (2.1) and H(v) = − log(1 − v)

for 0 ≤ v ≤ 1. Due to identifiability problem posed by censoring, let us restrict β0(·) to {β0(r) :

r ∈ (0, rU ]}, where rU is a constant in (0, 1) assumed to meet certain theoretical constraints (Qian
and Peng, 2010).

To avoid potential efficiency loss by better utilization of the information on partially functional
effect patterns Qian and Peng (2010) proposed a set of profile estimating equations. The concept
was to estimate β0(r) keeping γ0 as a constant nuisance while estimating γ0 based on all martingale
structured information in the estimation of β0(r). The estimating equations are,

n1/2Sn(β, γ, r) = 0, 0 < r ≤ rU (2.2)

n1/2Un(γ) = 0, (2.3)

where

Sn(β, γ, r) = n−1
n∑
i=1

Wi

(
Ni exp

(
WT
i β(r)+ZTi (γ)

)
−
∫ r

0

I
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WT
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dH(u)

)
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Ni exp
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)
−
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Vi ≥exp
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i β̂(u, γ)+ZTi γ

)]
dH(u)

)
.
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Here β̂(r, γ) denotes the solution to estimating equation (2.2) given a fixed γ. The estima-
tor of γ0, denoted by γ̂, is defined as the solution to estimating equation (2.3), and the estimator
of β0(r) is defined as β̂(r) = β̂(r, γ̂). By the definition of QT (0 | W,Z), and from model (2.1),
exp(WTβ0(0)+ZT γ0) = 0 is achieved. This along with the boundedness of γ0, implies exp(WTβ0(0)) =

0. So, exp(WT
i β̂(0, γ)) = 0 for i = 1, . . . , n could be set.

Let the effect of Z takes the form g(r; θ), where g(.) is a known pdf and θ is an unknown
parameter. Then the quantile regression model takes the form:

QY (r |W,Z) = WTβ(r) + ZT g(r; θ), r ∈ (0, 1), (2.4)

The estimating equations are simple modifications of equations (2.2) and (2.3) and thus taking
forms,

n1/2Sn(β, g(r; θ), r) = 0, 0 < r ≤ rU (2.5)

and
n1/2Un(g(r; θ)) = 0, (2.6)

where

Sn(β, g(r; θ), r) = n−1
n∑
i=1

Wi

(
Ni exp

(
WT
i β(r)+ZTi g(r; θ)

)
−

r∫
0

I
[
Vi≥exp

(
WT
i β(u)+ZTi g(r; θ)

)]
dH(u)

)
and

Un(g(r; θ)) = n−1
n∑
i=1

Zi

(
Ni exp

(
WT
i β̂(rU , g(r; θ))+ZTi g(r; θ)

)
−

rU∫
0

I
[
Vi ≥exp

(
WT
i β̂(u, g(r; θ))+ZTi g(r; θ)

)]
dH(u)

)
.

Based on equations (2.5) and (2.6) the parameters are estimated using the iterative algorithm pro-
posed by Qian and Peng (2010).

3 Simulation Study
Two scenarios of Monte Carlo simulation schemes have been used in this paper (following Qian and
Peng, 2010). In scenario (I) event times were generated from a log-linear model with independent
and identically distributed errors,

log T = Qε(r) + g(r;θ1)Z1 + g(r;θ2)Z2 + ε,

where the error ε followed the extreme value distribution. Under this scenario, model (2.1) held with
W = 1 , Z = (Z1, Z2)T and β0(r) = Qε(r) and γ0 ≡ (γ01, γ02)T = {g(r;θ1), g(r;θ2)}T , where
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θ1 and θ2 are the vectors of parameters of the respective distributions. C is uniformly distributed
in C ∼ Unif

{
0.1I(Z1 = 1), cu

}
and values of cu under normal, extreme value and logistic

distribution are 2.5, 7.0 and 5.6 respectively for 25% censoring and 4.6, 12.0 and 10.0 for 15%

censoring respectively.
In scenario (II) event times were generated from a log-linear model with heteroscedastic errors,

log T = Qε(r) + g(r;θ)Z1 +QW (r)ξW1 + ε,

where the error ε followed the standard normal distribution. The covariate ξ was standard ex-
treme value distributed and was independent of ε. Under scenario (II) model (2.1) held with W =

(1,W1)T and Z = Z1 and β0(r) = {β01(r), β02(r)}T = {Qε(r), QW (r)}T and γ0 = g(r;θ),
where θ is the vector of parameters of the corresponding distribution. C is uniformly distributed in
C ∼ Unif

{
0.3I(Z1 = 1), cu

}
. Values of cu under normal, extreme value and logistic distribution

are 4.25,10.0 and 8.75 for 25% censoring and 7.04, 15.5 and 17.5 for 15% censoring respectively.
In each scenario, two different sample sizes 25 and 100 have been considered and 1000 datasets

have been generated for each case. In (I) and (II), Z1 was simulated from uniform(0, 1), and Z2,
W1 followed Bernoulli distributions with a success probability of 0.5.

Standard normal, standard extreme value and standard logistic distribution have been used to
present the covariate effects to illustrate the situations where some covariate effects are believed to
follow a specific distribution.

4 Sensitivity Analysis

One of the important advantages of quantile regression is its flexibility to have room for various
effect patterns without assuming a distribution. A major concern under this scenario could be that
the proposed estimator may produce bias if the parametric pattern is not correctly specified. Sen-
sitivity analysis can be performed to examine the uncertainty in the output of a model that can be
apportioned to different sources of uncertainty in its inputs (Salteli et.al., 2008). A large number of
literature is available on sensitivity analysis, distinguished by the approaches or type of sensitivity
measures based, for example, on variance decompositions, partial derivatives or elementary effects
(Hossain and Muttlak, 2001; Jo, 2002; Cheung and Chappell, 2002; Majumdar et al., 2010).

In this study, the relative precision of the estimates under an assumed distribution over the cor-
rectly specified distribution is considered as a measure of sensitivity. Let g(·) has, e.g., a rectangular,
normal, extreme value, logistic or gamma distribution. Under pattern misspecification one assumes
g(.) to follow some other distribution than the true one and obtains the estimates of the quantile
regression model defined earlier. The precision of the estimates are calculated for the model with
incorrectly specified parametric distribution and compared with the precision of the estimates under
the correctly specified distributions.

The relative precision, φ, of the estimates are obtained as :

φ =

(
1/mse(estimates under wrongly specified distribution)

)(
1/mse(estimates under correctly specified distribution)

) , (4.1)
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wheremse is the mean squared error of the estimates which is a total of bias-squared and variance of
the estimates. Values of relative precisions (for various estimators) for various assumed distributions
relative to the correctly specified distributions under two scenarios (and for two sample sizes, which
are 25 and 100) are presented in Tables 3 and 4 considering 15% of the data being censored.

5 Results

Table 1 reports simulation results under scenario (I) (i.e. model with independent and identically
distributed errors) where some covariate effects follow standard normal distribution. Point esti-
mates, β̂(r)(r = 0.1, 0.3, 0.5, 0.7), θ̂1andθ̂2 are approximately unbiased. The amount of bias tends
to be smaller for larger sample size (n = 100) and lower censoring rate.The resampling-based vari-
ance estimates, empirical variances and the difference between these two variances decrease with
increasing size of sample. The resampling-based variance estimates agree with the empirical vari-
ances very well. The coverage probabilities are seen to be close to the nominal level for both sizes
of the sample and for both censoring proportions. These probabilities increase as the sample size
increases and censoring proportions decreases. The covariate effects were assumed to have several
other distributions (e.g. extreme value, logistic) and similar results are obtained.

Table 1: Simulation results under scenario (I) for covariate effects having Normal distribution

Normal Covariate Effects

Biasa EstVarb EmpVarc Cov95d

Estimated Sample 25% 15% 25% 15% 25% 15% 25% 15%

Effects Size cense cense cense cense cense cense cense cense

β̂(0.1) 25 0.07 0.04 0.07 0.05 0.07 0.05 93.0 94.9

β̂(0.3) 25 0.08 0.04 0.06 0.04 0.05 0.04 92.0 93.9

β̂(0.5) 25 -0.06 -0.04 0.05 0.04 0.05 0.04 93.0 94.8

β̂(0.7) 25 -0.06 -0.06 0.05 0.04 0.05 0.04 91.9 92.7

θ̂1 =
(θ̂11
θ̂12

)
25

(−0.06
0.05

) (−0.04
0.05

) (0.05
0.05

) (0.06
0.06

) (0.05
0.05

) (0.05
0.05

) (92.9
92.2

) (94.2
93.7

)
θ̂2 =

(θ̂21
θ̂22

)
25

(0.05
0.05

) (0.04
0.04

) (0.07
0.06

) (0.06
0.06

) (0.07
0.06

) (0.06
0.05

) (94.0
95.0

) (94.2
96.7

)
β̂(0.1) 100 0.03 0.02 0.04 0.03 0.04 0.03 94.6 95.2

β̂(0.3) 100 0.03 0.01 0.03 0.02 0.03 0.02 94.7 96.0

β̂(0.5) 100 -0.01 -0.01 0.03 0.02 0.02 0.02 95.5 96.0

β̂(0.7) 100 -0.01 -0.01 0.02 0.02 0.02 0.02 95.7 96.2

θ̂1 =
(θ̂11
θ̂12

)
100

(−0.02
0.02

) (−0.02
0.02

) (0.03
0.03

) (0.02
0.02

) (0.03
0.03

) (0.02
0.03

) (95.7
95.5

) (95.9
96.0

)
θ̂2 =

(θ̂21
θ̂22

)
100

(0.02
0.02

) (0.01
0.02

) (0.03
0.03

) (0.02
0.02

) (0.03
0.03

) (0.02
0.02

) (94.7
94.8

) (95.0
95.2

)
a: empirical bias; b: average of resampling-based variance estimates; c: empirical variance;

d: empirical coverage probabilities of 95% confidence intervals (%); e: censoring.



Quantile Regression Models . . . 57

Table 2 presents results from scenario (II), demonstrating that the estimators for effects following
logistic distribution are still approximately unbiased. Similar to scenario I, the resampling-based
variance estimates, empirical variances and the difference between these two variances are larger for
smaller sizes of sample. The resampling-based variance estimates and the empirical variances are
very similar. The coverage probabilities are also seen to be close to the nominal level for both sample
sizes and for both censoring proportions. The covariate effects were tested under the assumption of
several other distributions (e.g. normal, extreme value) and similar results are obtained.

Table 2: Simulation results under scenario (II) for covariate effects having logistic distribution

Logistic Covariate Effects

Biasa EstVarb EmpVarc Cov95d

Estimated Sample 25% 15% 25% 15% 25% 15% 25% 15%

Effects Size cense cense cense cense cense cense cense cense

β̂1(0.1) 25 0.06 0.06 0.06 0.06 0.06 0.06 93.7 93.9

β̂1(0.3) 25 0.05 0.05 0.06 0.05 0.06 0.05 94.7 94.9

β̂1(0.5) 25 -0.06 -0.05 0.06 0.05 0.06 0.05 93.2 94.6

β̂1(0.7) 25 -0.08 -0.07 0.05 0.05 0.05 0.04 93.9 94.2

β̂2(0.1) 25 0.08 0.07 0.07 0.06 0.06 0.06 92.0 93.4

β̂2(0.3) 25 0.07 0.06 0.06 0.06 0.06 0.05 93.5 94.0

β̂2(0.5) 25 0.07 -0.05 0.06 0.05 0.06 0.05 94.6 95.2

β̂2(0.7) 25 -0.07 -0.05 0.06 0.04 0.05 0.04 95.0 95.2

θ̂ =
(θ̂1
θ̂2

)
25

(0.05
0.05

) (0.04
0.04

) (0.06
0.06

) (0.06
0.06

) (0.06
0.06

) (0.06
0.06

) (94.2
94.0

) (94.4
94.8

)
β̂1(0.1) 100 0.03 0.02 0.02 0.02 0.02 0.02 94.8 95.9

β̂1(0.3) 100 0.02 0.02 0.02 0.02 0.02 0.02 95.0 96.1

β̂1(0.5) 100 -0.02 -0.01 0.02 0.02 0.02 0.01 95.2 95.8

β̂1(0.7) 100 -0.03 -0.02 0.02 0.01 0.02 0.01 94.0 95.0

β̂2(0.1) 100 0.04 0.02 0.02 0.02 0.02 0.02 94.0 94.8

β̂2(0.3) 100 0.03 0.02 0.02 0.02 0.02 0.02 94.4 95.2

β̂2(0.5) 100 0.04 -0.03 0.02 0.02 0.02 0.02 93.0 94.7

β̂2(0.7) 100 -0.02 -0.02 0.02 0.01 0.02 0.01 94.9 96.0

θ̂ =
(θ̂1
θ̂2

)
100

(0.02
0.02

) (0.01
0.01

) (0.03
0.03

) (0.02
0.02

) (0.03
0.03

) (0.02
0.02

) (94.7
94.7

) (96.0
95.9

)
a: empirical bias; b: average of resampling-based variance estimates; c: empirical variance;

d: empirical coverage probabilities of 95% confidence intervals (%); e: censoring.

Tables 3 and 4 represents the sensitivity analysis for scenario (I) and scenario (II) respectively
under 15% censoring with sample sizes 25 and 100. Both the tables report that the precision of the
estimates are largely affected by the misspecification of the underlying distributions. Even though,
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the precision of the estimates increases for a relatively larger sample (n = 100), the cost of misspec-
ification in terms of precision is very high for smaller samples (say n = 25).

Table 3: Relative Efficiency (φ) of the parameter estimates under model misspecification with 15%
censoring for scenario I for the sample sizes (n = 25, n = 200)

Assumed True distribution

Distributions Coefficients Rectangular Normal Extreme Value Logistic Gamma(0.5)

Rectangular β̂(0.2) (1.00,1.00) (0.58,0.87) (0.45,0.72) (0.49,0.77) (0.47,0.76)

β̂(0.4) (1.00,1.00) (0.60,0.89) (0.49,0.75) (0.52,0.78) (0.51,0.77)

β̂(0.6) (1.00,1.00) (0.69,0.90) (0.58,0.79) (0.60,0.87) (0.60,0.85)

Normal β̂(0.2) (0.60,0.91) (1.00,1.00) (0.39,0.79) (0.48,0.87) (0.48,0.85)

β̂(0.4) (0.63,0.93) (1.00,1.00) (0.41,0.80) (0.50,0.88) (0.52,0.87)

β̂(0.6) (0.65,0.94) (1.00,1.00) (0.42,0.84) (0.54,0.89) (0.57,0.88)

Gamma(0.5) β̂(0.2) (0.56,0.70) (0.52,0.68) (0.44,0.53) (0.47,0.58) (1.00,1.00)

β̂(0.4) (0.59,0.72) (0.55,0.69) (0.45,0.55) (0.49,0.63) (1.00,1.00)

β̂(0.6) (0.60,0.75) (0.58,0.70) (0.46,0.57) (0.50,0.64) (1.00,1.00)

6 Conclusion
In this study, the partially functional quantile regression methods for randomly right censored data
are tailored to the regression settings where some covariate effects follow certain parametric patterns.
The estimating equations for censored quantile regression by Qian and Peng (2010) are modified for
estimating the quantiles and other parameter(s) of interest.

In situations where the restricted model (under this study) is correctly specified, the estimators
are more efficient than Qian and Peng (2010)’s estimator for model with partially functional effects.
However, the sensitivity analysis shows that the consequences of misspecification of parametric
forms could be severe, especially for small samples. So the practitioners should keep in mind that
when the parametric pattern is not specified properly, the proposed estimator may cause bias. There-
fore, this model is useful when there is a strong evidence or preliminary information on the pattern
of the quantile effects. Nevertheless, while applying this technique, an important question arises as
how to split the covariates in W and Z. We suggest that one start with fitting a partially functional
model to the data and apply Qian and Peng (2010)’s approach to examine the form of the covariate
effects first, and finally fit the proposed model as a restricted model if seems appropriate.
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Table 4: Relative Efficiency (φ) of the parameter estimates under model misspecification with 15%
censoring for scenario II for the sample sizes (n = 25, n = 100)

Assumed True distribution

Distributions Coefficients Rectangular Normal Extreme Value Logistic Gamma(0.5)

Rectangular β̂1(0.2) (1.00,1.00) (0.49,0.82) (0.36,0.71) (0.45,0.77) (0.44,0.75)

β̂2(0.2) (1.00,1.00) (0.52,0.84) (0.35,0.75) (0.45,0.78) (0.45,0.77)

β̂1(0.4) (1.00,1.00) (0.53,0.87) (0.39,0.77) (0.48,0.80) (0.47,0.78)

β̂2(0.4) (1.00,1.00) (0.59,0.86) (0.36,0.78) (0.51,0.81) (0.50,0.81)

β̂1(0.6) (1.00,1.00) (0.54,0.88) (0.44,0.79) (0.50,0.82) (0.48,0.81)

β̂2(0.6) (1.00,1.00) (0.60,0.87) (0.38,0.79) (0.55,0.83) (0.53,0.82)

Normal β̂1(0.2) (0.58,0.79) (1.00,1.00) (0.50,0.71) (0.56,0.77) (0.53,0.75)

β̂2(0.2) (0.55,0.77) (1.00,1.00) (0.48,0.70) (0.50,0.76) (0.50,0.75)

β̂1(0.4) (0.60,0.81) (1.00,1.00) (0.51,0.73) (0.58,0.78) (0.55,0.77)

β̂2(0.4) (0.57,0.79) (1.00,1.00) (0.51,0.70) (0.54,0.78) (0.53,0.77)

β̂1(0.6) (0.61,0.87) (1.00,1.00) (0.51,0.75) (0.59,0.80) (0.57,0.79)

β̂2(0.6) (0.60,0.82) (1.00,1.00) (0.52,0.72) (0.56,0.79) (0.54,0.78)

Gamma(0.5) β̂1(0.2) (0.59,0.78) (0.57,0.77) (0.50,0.67) (0.54,0.72) (1.00,1.00)

β̂2(0.2) (0.58,0.75) (0.54,0.72) (0.49,0.66) (0.52,0.69) (1.00,1.00)

β̂1(0.4) (0.61,0.80) (0.58,0.78) (0.52,0.70) (0.54,0.75) (1.00,1.00)

β̂2(0.4) (0.59,0.78) (0.55,0.75) (0.49,0.68) (0.54,0.70) (1.00,1.00)

β̂1(0.6) (0.64,0.83) (0.62,0.80) (0.54,0.71) (0.57,0.77) (1.00,1.00)

β̂2(0.6) (0.62,0.81) (0.59,0.79) (0.51,0.70) (0.55,0.74) (1.00,1.00)
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