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ABSTRACT

This paper considers the L-estimation of regression and scale parameter of the linear model
Y = β01o + Xβ + σe, where β0 is the intercept parameters and σ is the scale in the
model, based on k(≤ n) optimum regression quantiles as defined by Koenker and Bassett
(1978). In addition, the paper contains the trimmed estimation problem with continuous
weight functions, the estimation of conditional regression function and the related optimum
regression quantiles.

1 Introduction

Consider the model
Yn×1 = β01n×1 + Xn×pβp×1 + σen×1,

where E(en×1) = 0 and E(en×1e
′
1×n) = σ2In and the components of en×1 are independent and

distributed with the cdf F0 which is known. Our basic problem is the estimation of the parameter
(β′;σ) = (β0, . . . , βp;σ) based on the observation vector Y and the design matrix Dn = (1n|X).
For the location submodel i.e. when X = 0, Ogawa (1951) developed the procedure of estimation
the location and the scale parameters jointly as well as singly, based on a few selected sample quan-
tiles. Subsequently, many authors like Sarhan and Greenberg (1962), Saleh (1992), Saleh (1981),
Saleh and Ali (1966), and Harter (1963), among many others followed the procedure for various
specific distributions and obtained a few optimum sample quantiles for the estimation of location
and scale parameters of F0.

Recently, Koenker and Bassett (1978) introduced the concept of regression quantiles as an ex-
tension of the sample quantiles to the linear model. This concept seems to provide a reasonable basis
not only the construction of robust L-estimators of regression parameters but also develops robust
test of the linear hypothesis. Koenker and Bassett (1978) also suggested the trimmed least squares
estimator as an extension of the trimmed mean to the linear model. This idea has later been stud-
ied by Ruppert and Caroll (1980). They also derived the Bahadur type representation of regression
quantiles up to order Op(n

−1/2) which is also extended to order Op(n
−3/4) by Jureckova (1984).
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The trimmed least-squares estimation with continuous weight function have also been pursued by
Koenker and Portnoy (1987) and extended by Guttenbrunner and Jureckova (1992).

The object of this paper is to propose estimation of (β, σ) based on a few selected (optimum)
regression quantiles extending the idea of Theorem 4.3 of Koenker and Bassett (1978) from the
location scale model to the linear model.

2 Estimation of (β′, σ) based on a few selected regression quan-
tiles

Let Y1, . . . , Yn be independent observations Yi is distributed according to F0[(y−β0−
p∑
i=1

xijβi)/σ],

where F0 is known and absolutely continuous having pdf f0 which is non-negative and σ is the
unknown scale parameter while Dn = (1n|X) is a known design matrix satisfying the following
conditions

(i) lim
n→

x̄nj = x̄j , (ii) limn−1D′nDn = C, a (p+ 1)× (p+ 1) matrix.

Let Q0(λ) denote the quantile-function of the distribution F0 corresponding to the spacing
λ (0 < λ < 1) and q0(λ) = f0(Q0(λ)) be the density-quantile function. Assume that n is large
and k(≤ n) is a given integer. Consider the k fixed spacings λ1, . . . , λk satisfying the relation
0 < λ1 < · · · < λk < 1 and consider the k-regression quantiles β̂j(λ1), . . . , β̂j(λk) (j = 0, . . . , p)

which are the solution of the minimization problem

n∑
j=1

ρλi
(Yj − β0 − x′jt) = min

where ρλ(x) = x{λI(x > 0) − (1 − λ)I(x ≤ 0)} and I(A) is the indicator function of the set A.
The regression quantile minimization problem is equivalent to the linear program

minimize [λ1′nr
+ + (1− λ)1′nr]

subject to Y = β01n + Xβ + r+ + r−, {(β0,β), r+, r−} ∈ Rp+1 ×R2n

 (2.1)

Let us denote the vector of solutions for the minimization problem as

β̂j(λ) = (β̂j(λ1), . . . , β̂j(λk))′, j = 0, 1, . . . , p,

also, let Q0(λ) = (Q0(λ1), . . . , Q0(λk))′ and 1k = (1, . . . , 1)′, a k-tuple.
Then, using Theorem 4.2 of Koenker and Bassett (1978) we obtain that the k(p+1)-dimensional

random variable

√
n{[β̂0(λ)− β01k − σQ0(λ)]′, [β̂1(λ)− β11k]′, . . . , [β̂p(λ)− βp1k]′} =

√
n(θ̂n − θ)′,



L-Estimation of the Parameters in a Linear . . . 97

say, where (θ̂n − θ) is k × (p + 1)-dimensional matrix, converges in distribution to an k(p + 1)-
dimension normal distribution with mean 0 and covariance matrix σ2(C−1⊗Ω), where Ω is a k×k
matrix defined by

Ω =

[
λi ∧ λj − λiλj
q0(λi)q0(λj)

]
, (2.2)

which is the asymptotic covariance-matrix of k ordinary sample quantiles from the distribution F0.
This theorem parallels Mosteller (1946). Thus, following generalized least squares principle one
minimizes the quadratic from n(θ̂n−θ)′(C⊗Ω−1)(θ̂n−θ) to obtain the normal equations for the
asymptotically best linear estimators (ABLUE) of (β′, σ).

K1 x̄01K1 · · · x̄0pK1 K3

x̄01K1 (s2
11 + x̄2

01)K1 · · · (s1p + x̄01x̄0p)K1 x̄01K3

x̄02K1 (s12 + x̄01x̄02)K1 · · · (s2p + x̄02x̄0p)K1 x̄02K3

...
...

. . .
...

x̄0pK1 (s1p + x̄01x̄0p)K1 · · · (s2
pp + x̄2

0p)K1 x̄0pK3

K3 x̄01K3 · · · x̄0pK3 K2





β∗0

β∗1

β∗2
...

β∗p

σ


=



V0

V1

V2

...

Vp

Vp+1


where

V0 = Z0 + x̄01Z1 + · · ·+ x̄0pZp, Vj = x̄0jV0 + sj1Z1 + · · ·+ sjpZp, (j = 1, . . . , p)

Vp+1 = Z∗0 + x̄01Z
∗
1 + · · ·+ x̄0pZ

∗
p , Zj = 1′Ω−1β̂j(λ),

Z∗j = Q′(λ)Ω−1β̂j(λ), j = 0, 1, . . . , p,K1 = 1′kΩ
−11k,

K2 = Q′(λ)Ω−1Q(λ),K3 = 1′kΩ
−1Q(λ),∆ = K1,K2 −K2

3

nsij =

n∑
h=1

(xih − x̄i)(xjh − x̄j), i, j = 0, 1, . . . , p.

Then, the asymptotic distribution of

{
√
n(β∗0 − β0),

√
n(β∗1 − β1), . . . ,

√
n(β∗p − βp),

√
n(σ∗ − σ)} is Np+2(O, σ2K−1)

where 

K1 · · · x̄0K1 · · · x̄01K1 · · · K3

x̄01K1 · · · (s11 + x̄2
01)K1 · · · (s1p + x̄01x̄p)K1 · · · x̄01K3

...
...

. . .
...

x̄0pK1 · · · (sp1 + x̄01x̄0p)K1 · · · (spp + x̄2
0p)K1 · · · x̄0pK3

K3 · · · x̄01K3 · · · x̄0pK3 · · · K2


It may be verified that

| K |=| C | Kp
1 ∆, where ∆ = K1K2 −K2

3 . (2.3)
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Also, it may also be shown that the estimates are asymptotically unbiased.

Further, we note that the expressions corresponding to K1, K2 and K3 are given by

K1 =
k+1∑
i=1

[q0(λi)− q0(λi−1)]2/(λi − λi−1)

K2 =
k+1∑
i=1

[q0(λi)Q0(λi)− q0(λi−1)Q0(λi)]
2/(λi − λi−1), and

K3 =
k+1∑
i=1

[q0(λi)− q0(λi−1)][q0(λi)Q0(λi)− q0(λi−1)Q0(λi−1)]/(λi − λi−1)


(2.4)

with λ0 = 0 and λk+1 = 1. If one chooses symmetric spacings then K3 reduces to 0 and the
ABLUE are given by β∗ = K−1

1 C−1V∗ and σ∗ = K−1
2 Vp+1, where V′∗ = (V1, . . . , Vp).

It may be shown that the asymptotic relative efficiency (ARE) of the AVLUE based on the
regression quantile, with spacings (λ1, . . . , λk) relative to the usual least squares estimation (LSE)
is given by ARE (ABLUE: LSE) =

Kp
1 ∆

Ip11(I11I22−I212)
, where I = (Iij) is the information matrix of the

location-scale family with cdf F0.

Thus, in order to obtain the optimum spacing vector (λ0
1, . . . , λ

0
k) we maximize Kp

1 ∆ with re-
spect to (λ0

1, . . . , λ
0
k) subjects to 0 < λ1 < . . . < λk < 1. Thus, we solve the system of equations

p∆Kp−1
1

δK1

δλi
+Kp

1

δ∆

δλi
= 0, i = 1, . . . , k.

Therefore, the ABLUE of (β0, . . . , βp, σ) are obtained first by computing β̂j(λ0
i ), j = 0, 1, . . . , p

and i = 1, 2, . . . , k and K1,K2,K2, Z1, Z2, Z
∗
1 and Z∗2 using the optimum spacings (λ0

1, . . . , λ
0
k)

then using the normal equations (2.9). Then, the ARE is given by Kp
10∆0

Ip11(I11I22−I212)
, where K10 and

∆0 are the maximum values of K1 and ∆ is achieved. We shall consider an example in section 4
using exponential errors.

3 Estimation of conditional quantile function

Consider the conditional quantile functions Q(ξ) = l0β0 + l1β1 + . . .+ lpβp+σQ0(ξ), 0 < ξ < 1.
The estimate of Q(ξ) is obtained by substituting ABLUE of (β0, . . . , βp;σ) which is

Q∗(ξ) = l0β
∗
0 + l∗1β1 + . . .+ l∗pβp + σ∗Q0(ξ).

The asymptotic variance of Q∗(ξ) is given by

σ2l′K−1l, l = (l0, . . . , lp, Q(ξ))′.
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Here, the vector l is known. Similarly, the asymptotic variance of the LSE of the parameter is
σ2l′I∗−1l, where

I∗ =



I11 · · · x̄0I11 · · · x̄01I11 · · · I12

x̄01I11 · · · (s11 + x̄2
01)I11 · · · (s1p + x̄01x̄0p)I11 · · · x̄01I12

x̄02I11 · · · (s12 + x̄01x̄02)I11 · · · (s2p + x̄02x̄0p)I11 · · · x̄02I12

...
...

. . .
...

x̄0pI11 · · · (sp1 + x̄01x̄0p)I11 · · · (spp + x̄2
0p)I11x̄0p · · · I12

I12 · · · x̄01I12 · · · x̄0pI12 · · · I22


Thus, the ARE of Q∗(ξ) relative to LSE Q∗(ξ) is given by

ARE(Q∗(ξ) : Q∗∗(ξ)) =
l′I∗−1l

l′K−1l
.

Since, ξε(0, 1) can assume infinitely many values tabular values of ARE becomes, prohibitive
except for chosen values of ξ. However, it is well-known that

Chmin(I∗−1K) ≤ l′I∗−1l

l′K−1l
≤ Chmax(I∗−1K),

where Chmin(A) and Chmax(A) and the minimum and maximum characteristic roots.
This means that the maximum ARE is Chmax(I∗−1K). Thus, one can maximize Chmax(I∗−1K)

or tr(I∗−1K) with respect to (λ1, . . . , λk) to obtain (λ∗1, . . . , λ
∗
k) to be the optimum values. These

spacings will be used to obtain the appropriate regression quantiles to obtain the optimum estimator
of Q(ξ).

Special case of interest is the vector (1, 0, . . . , 0, Q(ξ)) which defines the quantile-function,
Q(ξ) and the ABLUE of Q(ξ). Then,

l′I∗−1l = I∗(11) + 2Q0(ξ)I∗(p+2,1) +Q2
0(ξ)I∗(p+2,p+2) and

l′K−1l = K(11) + 2Q0(ξ)K(p+2,1) +Q2
0(ξ)K(p+2,p+2).

Hence, we maximize tr(M) or Chmax(M), where

M =

 I∗(11) I∗(1,p+2)

I∗(p+2,1) I∗(p+2,p+2)

 K(11) K(1,p+2)

K(p+2,1) K(p+2,p+2)

 ,
where I∗(−1) = (I∗(i,j)) and K(−1) = (K(i,j)). Thus, one maximizes tr(M) or Chmax(M) to
obtain optimum few regression quantiles.

4 Trimmed estimates of regression parameters
In this section, we discuss the trimmed L-estimators of the regression and scale parameters with
continuous weight functions as in the location-scale case in Bennet (1952) extended by Chernoff,
Gastwirth and Johns (1967).
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Let us consider the spacings λr+j = (r + j)/(n+ 1), j = 1, . . . , n− 2r and let the regression
quantiles be

β̂j(λ) =

(
β̂j

( r + 1

n+ 1

)
, . . . , β̂j

(n− 2r

n+ 1

))′
, j = 0, 1, . . . , p

for the corresponding spacings. Now, using Bennett’s (1952) approximation, we obtain

1

n
1′Ω−11 :=

1−λr∫
λr

{q′0(u)

q0(u)

}2

du+
q2
0(λr)

λr
+
q2
0(λn−r)

1− λn−r
= I0

11

1

n
Q′0(λ)Ω−1Q0(λ) :=

1−λr∫
λr

{
1 +Q0(u)

q′0(u)

q0(u)

}2

du+
Q2

0(λr)q
2
0(λr)

λr
+
q2
0(λn−r)

1− λn−r
= I0

22

1

n
1′Ω−1Q0(λ) :=

1−λr∫
λr

q′0(u)

q0(u)

{
1 +Q0(u)

q′0(u)

q0(u)

}
du+

Q2
0(λr)q

2
0(λr)

λr

+
Q0(λn−r)q

2
0(λn−r)

1− λn−r
= I0

12

Further, for i = r + 2, . . . , n− r − 1, we get

1

n
1′Ω−1 :=

q0(λi)[{q0(λi+1)− q0(λi)} − {q0(λi)− q0(λi−1)}]
λi+1 − λi

:= −q0(λi)
d2q0(λi)

dλ2
i

dλi −
1

n
ϕ1(λi)(say)

with i = [nλi] + 1. In particular if i = r + 1, we get

1

n
1′Ω−1 :=

1

n
ϕ1(λr+1) +

q2
0(λr+1)

λr+1
− q′0(λr+1)

Similarly for i = n− r, we get

1

n
1′(λ)Ω−1 :=

1

n
ϕ1(λn−r)−

q2
0(λn−r)

λn−r
− q′0(λn−r)

Again, for i = r + 2, . . . , n− r − 1, we have

1

n
Q′0(λ)Ω−1 :=

1

n
ϕ2(λi) = q0(λi)

d2Q0(λi)q0(λi)

dλ2
i

and for i = r + 1 and for i = n− r, we get

1

n
Q′0(λ)Ω−1 :=

1

n
ϕ2(λr+1) +

Q0(λr+1)q0(λr+1)

λr+1
− {q0(λr+1) +Q0(λr+1)q′0(λr+1)} and

1

n
Q′0(λ)Ω−1 :=

1

n
ϕ2(λn−r)−

Q0(λn−r)q0(λn−r)

λn−r
− {q0(λn−r) +Q0(λn−r)q

′
0(λn−r)}
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respectively. From the above calculation, the functions φ1(u) and φ2(u) are of the form

ϕ1(u) = −q0(u)
d2q0(u)

du2
= − d

du
{q
′
0(u)

q0(u)
}

ϕ2(u) = −q0(u)
d2{uq0(u)}

du2
= −{q

′
0(u)

q0(u)
+Q0(u)

d

du
[
q′0(u)

q0(u)
]}

Thus, to obtain trimmed ABLUE of (β0, . . . , βp;σ) we solve the normal equations

I0
11 x̄01I

0
11 · · · x̄0pI

0
11 I0

12

x̄01I
0
11 (s2

11 + x̄2
01)I0

11 · · · (s1p + x̄01x̄0p)I
0
11 x̄01I

0
12

...
...

. . .
...

x̄0pI
0
11 (sp1 + x̄0px̄01) · · · (s2

pp + x̄2
0p)I

0
11 x̄0pI

0
12

I0
12 x̄01I

0
12 · · · x̄0pI

0
12 I0

22





β∗0

β∗1
...

β∗p

σ∗


=



V0

V1

...

Vp

Vp+1


,

where

V0 = Z0 + x̄01Z1 + · · ·+ x̄0pZp, Vj = x̄0jV0 + sj1Z1 + · · ·+ sjpZp

Vp+1 = Z∗0 + x̄01Z
∗
1 + . . .+ x̄0pZ

∗
p

Zj =
1

n

n−r∑
i=r+1

ϕ1

( i

n+ 1

)
βj

( i

n+ 1

)
and Z∗j =

1

n

n−r∑
i=r+1

ϕ2

( i

n+ 1

)
β̂j

( i

n+ 1

)
with j = 0, 1, . . . , p.

Thus, the trimmed ABLUE of the regression as well as the scale parameter is given by

β∗0

β∗1
...

β∗p

σ∗


=



I0
11 x̄01I

0
11 · · · x̄0pI

0
11 I0

12

x̄01I
0
11 (s2

11 + x̄2
01)I0

11 · · · (s1p + x̄01x̄0p)I
0
11 x̄01I

0
12

...
...

. . .
...

x̄0pI
0
11 (sp1 + x̄0px̄01) · · · x̄0p−1I

0
11 x̄0pI

0
12

I0
12 x̄01I

0
12 · · · x̄0pI

0
12 I0

22



−1 

V0

V1

...

Vp

Vp+1


The covariance matrix of trimmed ABLUE of the parameters is given by

σ2



I0
11 x̄01I

0
11 · · · x̄0pI

0
11 I0

12

x̄01I
0
11 (s11 + x̄2

01)I0
12 · · · (s1p + x̄01x̄0p)I

0
11 x̄01I

0
12

...
...

. . .
...

x̄0pI
0
11 (sp1 + x̄0px̄01)I0

11 · · · (spp + x̄2
0p)I

0
11 x̄0pI

0
12

I0
12 x̄01I

0
12 · · · x̄0pI

0
12 I0

22



−1
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It may be noted that these trimmed estimators are similar to Bennetts (1952) estimator for the loca-
tion and scale parameters for the location and scale model of distribution. Computation of estimators
will be highly computer-intensive which is not a problem now a days. In a separate paper, the author
will demonstrate the application of these formulas derived here.

5 Simple linear model and estimation using optimum regression
quantiles

Consider the simple linear model will the known error distribution F0,

Yi = β0 + β1xi + ei, i = 1, . . . , n.

Let the spacing vector be λ1, . . . , λk and for j = (0, 1), the associated regression quantiles be
β̂j(λ) = (β̂j(λ1), β̂j(λ2), . . . , β̂j(λk))′. Then, under the assumed condition the normal equations
are given by the following expression by letting x̄ = x̄0 and c2 = lim 1

n

∑
x2
i we have K1 x̄0K1 K3

x̄0K1 (s11 + x̄2
0K1) x̄0K3

K3 x̄0K3 K2


β
∗
0

β∗1

σ∗

 =

V0

V1

V2


using p = 1. The solution for the estimators becomesβ

∗
0

β∗1

σ∗

 =


K2

∆ +
x̄2
0

s11K1
− x̄
s11K1

−K3

∆

− x̄0

s11K1

1
s11K1

0

−K3

∆ 0 K1

∆


V0

V1

V2

 ,

V0 = Z0 + x̄0Z1, V1 = x̄0Y0 + s11Z1, V2 = Z∗0 + x̄0Z
∗
1

The covariance matrix of the estimators is given by

Cov(β∗1 , β
∗
2 , σ
∗) =

σ2

n


K2

∆ +
x̄2
0

s11K1
− x̄0

s11K1
−K3

∆

− x̄0

s11I1
1

s11K1
0

−K3

∆ 0 K1

∆


The covariance matrix of the LSE is given by

σ2

n


I22
|I| +

x̄2
0

s11I11
− x̄0

s11I11
− I12
|I|

− x̄0

s11I11
1

s11I11
0

− I12
|I| 0 I11

|I|
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with I = (Iij) is the information for the location-scale distribution F0. Then ARE of the ABLUE
relative to LSE has the same expression as (2.16) with p=1. Thus, we maximize K1∆ with respect
to λ1, . . . , λk. If F0(x) = (1 + e−x)−1, i.e. logistic distribution, it is then known that the optimum
spacings vector is given by ((k + 1)−1, 2(k + 1)−1, . . . , k(k + 1)−1). Thus, for k = 3, we get the
popular Gastwirths (1966) trimean type robust estimators in the case of this linear model.

Let F0(x) = 1− e−x. In this case errors should be subtracted by 1. Then, one can easily verify
that (see, Saleh and Ali, 1966; Saleh, 1981;).

K1 = 1/eu1 − 1, K2 = (eu1 − 1){u2
1 + L(eu1 − 1)}, L =

k∑
i=2

(ui − ui−1)2

eui − eui−1
,

K3 = u1(eu1 − 1)−1and ∆ = L(eu1 − 1)−1, ui = log(1− λi)−1, i = 1, 2, . . . , k

The ARE is given by K1∆.

Thus K1∆ = (eu1 −1)−2e−u1Qk−1, where Qk−1 =
k−1∑
i=1

(ti − ti−1)2/(eti − eti−1) as in Saleh

and Ali (1966). Thus, maximizing K1∆ w.r.t. (λ1, . . . , λk) one gets the optimum solution. Thus,
we get

λ∗1 =
(
n+

1

2

)−1

and λ∗j+1 =
2 + (2n− 1)λ0

j

2n+ 1
, j = 1, . . . , k − 1,

where λ0
j (j = 1, . . . , k − 1) are the optimum spacings for the scale-parameter alone which are

available in Sarhan and Greenberg (1962). For example for k = 5, we have λ0
1 = .3931, λ0

2 = .6670,
λ0

3 = .8434, λ0
4 = .9434 and λ0

5 = .9885. Thus, one can use these spacings to obtain the spacings
(5.1) for the six optimum regression quantiles for the estimation of β0, β1 and σ.

As for the conditional quantile-function for a given ξ ∈ (0, 1)

y(ξ) = β0 + β1x0 + σQ0(ξ), Q0(ξ) = ln(1− ξ)−1

= l′(β0, β1, σ)′, = l(1, x0, Q0(ξ))′

we use the estimator y∗(ξ) = β∗0 + β∗1x0 + σ∗Q0(ξ). To obtain optimum spacings one has to
maximize the maximum characteristic root of the matrix M given by

M =


1

n−1 +
x̄2
0

ns11
− x̄0

ns11
− 1
n−1

− x̄0

ns11
1

ns11
0

− 1
n−1 0 n

n−1


 K1 x̄0K1 K3

x̄0K1 (s11 + x̄2
0)K1 x̄0K3

K3 x̄0K3 K2


or tr(M) w.r.t. (λ1, . . . , λk). Here, the first matrix is the covariance matrix of the maximum likeli-
hood estimators.

6 Marginal estimation of the intercept, scale and the quantile-
function of the distribution

In the linear model Y = β01n + Xβ + σe, (β0, σ) represents the location (intercept) and the scale
parameter. Further, the parameters Q(ξ) = β0 + σQ0(ξ), (0 < ξ < 1) will be called the quantile-
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function of the distribution F0. If we are particularly interested in the estimation of β0, σ and
Q(ξ), we may consider the regression-quantiles β̂0(λ) = (β̂0(λ1), . . . , β̂0(λk))′ corresponding to
the spacing vector λ = (λ1, . . . , λk)′. Thus, from Section 2, we find

√
n[β̂0(λ)−β01k−σQ0(λ)]−

Nk(0, σ2C11Ω), where C−1 = (Cij) and Ω is defined in (2.2). Thus, minimizing

n[β̂0(λ)− β01k − σQ0(λ)]Ω−1[β̂0(λ)− β01k − σQ0(λ)]

one obtains the ABLUE of (β0, σ) as

β∗0 =
K2Z0 −K3Z

∗
0

∆
and σ∗ =

K1Z
∗
0 −K3Z0

∆
,

where ∆ and K1,K2,K3 have the same definition as in (2.3-2.4). The variance-covariance matrix
for (β∗0 , σ

∗) is given by

Cov(β∗0 , σ
∗) =

σ2C11

n∆

 K2 −K3

−K3 K1


Also, the ABLUE of Q(ξ) is given by

Q∗(ξ) = β∗0 + σ∗Q0(ξ), 0 < ξ < 1

with asymptotic variance

Var(Q∗(ξ)) =
σ2C11

n∆
[K2 +K1Q

2
0(ξ)− 2K3Q0(ξ)].

The corresponding LSE has the asymptotic variance given by

Var(Q∗∗(ξ)) =
σ2C11

n | I |
{I22 + I11Q

2
0(ξ)− 2I12Q0(ξ)}.

The ARE of Q∗(ξ) relative to Q∗∗(ξ) is then given by

ARE(Q∗(ξ) : Q∗∗(ξ)) =
∆{I22 + I11Q

2
0(ξ)− 2I12Q0(ξ)}

| I | [K2 +K1Q2
0(ξ)− 2K3Q0(ξ)]

.

The numerator and denominator may be written as l′I−1l and l′K−1l, where

I =

I11 I12

I12 I22

 and K =

K1 K3

K3 K2


and l′ = (1, Q0(ξ)). Thus, ARE is the expression

l′I−1l

l′K−1l
and Chmin(I−1K) ≤ l′I−1l

l′K−1l
≤ Chmax(I−1K).

Thus, to obtain the optimum spacings for (β∗0 , σ
∗) andQ∗(ξ) the maximum ∆ and Chmax(I−1K) or

tr(I−1K) respectively w.r.t. (λ1, . . . , λk)′. The problem have been discussed in many publications
listed in Saleh (1992) and available.
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