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SUMMARY

Gelman and Loken (2014) draw attention to a “statistical crisis in science” and describe
how risks with multiple p-values can be present even in the analysis of a single data set.
There is indeed a crisis, as p-values are everywhere, in science, engineering, medicine,
social science, health care, and the media; and conflicting results are misrepresenting the
importance of p-values, and indeed of many disciplines themselves. We argue that risks
of misinterpretation are widespread, but that the crisis is really in the discipline of statis-
tics, and starts with mixed messages about the meaning and usage of p-values. These
mixed messages then have downstream effects that seriously misinform scientific endeav-
ours. What are these mixed messages concerning p-values? And should statistics continue
with such messages that compromise the discipline? We discuss this and offer recommen-
dations.
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1 Introduction
This article is a response to Gelman and Loken (2014), who drew attention to a “statistical crisis in
science” and showed how multiple p-values can arise, in good faith, in the analysis of a single data
set. At about the same time, the Journal of Basic and Applied Social Psychology made headlines in
Nature (Woolston, 2015) by deciding to no longer publish papers containing p-values. This debate
continues, and there were several media reviews of news in December 2015 from CERN’s Large
Hadron Collider about a possible discovery of a new particle, and the associated “5-sigma” criterion
commonly applied in high-energy physics (Castelvecchi, 2015; Spiegelhalter, 2015).

There is a crisis as p-values are everywhere, in science, engineering, medicine, social science,
health care, and in the standard media phrase “19 times out of 20” commonly appearing in the
reporting of polls. Our view is that while the risks of misinterpretation of p-values are widespread,
the crisis is really in the discipline of statistics, in providing mixed messages about the meaning of
a p-value. These mixed messages have downstream effects that can seriously affect all applications.
We discuss this and offer recommendations.
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2 Multiple meanings

2.1 The p-value function

Suppose we observe a variable, say y, that measures an unknown θ of interest; thus y is accessible
through measurement, but θ is only indirectly accessible, through inference from y. If we had
unlimited time and resources we could collect a great many values of the variable y and obtain
the probability distribution of the variable y. This density indicates the stochastic behaviour of the
variable, and if we assume that the form of the density is known, but its location (for example) is
not, by identifying this via an unknown parameter θ we can view learning where the distribution is
located as learning the value of θ. This could be, and often is, formalized by having a hypothesis,
called a null hypothesis and designated H0, that the unknown true value θ is θ0; an example is
indicated in Figure 1.

Figure 1: An accumulation of observations of y when the null hypothesis H0 : θ = θ0 holds.

Given a single observed measurement y0, an investigator could then construct Figure 2, which
shows that a proportion 6.1% of the distribution θ = θ0 falls to the left of the observed measurement
y0, and 93.9% falls to the right. The observed p-value associated with H0 would then be p0 = 6.1%

and is thus presenting just the percentile or statistical position of the data y0 under H0, or recording
just a pure statement of factual information. As a definition this aligns with Fisher’s 1920 proposal,
later clarified in Fisher (1956).

This example is simplified to an extreme, but asymptotic arguments developed in Fraser (1990),
Fraser and Reid (1993), and Brazzale et al. (2007, Ch. 8) show in wide generality that there is in fact
such an approximating location model relevant to a single parameter of interest and that it can can
be calculated quite routinely with more complex and realistic models.

Common statistical custom and usage don’t usually stop with this percentile position, but pro-
ceed from the statistical position to scientific statements with potentially huge impact. For example,
in high-energy physics, θ0 could represent the mean value under background radiation, and then



Crisis in science? . . . 3

Figure 2: An observed data point y0 and proportions left and right of the data under the hypothesis H0.

larger values θ > θ0 could indicate a new particle, such as the Higgs boson. In what sense does the
p-value provide support for this new particle?

More informative than a single p-value, the p-value function p(θ), records the statistical position
of the observed data y0 for a range of values of θ: see Figure 3. This function presents the “statistical
position” of the observation. It does not single out particular alternatives to θ0, but leaves this choice
to appropriate judgement in an application context Fraser (2014).

The p-value function presents in one plot all possible confidence bounds: we could for example
solve 0.95 = p(θ; y0), the solution of which, θ̂L say, is a lower confidence bound at the conventional
95% limit. Under repeated observation of y from the model, the interval (θ̂L,∞) will include the
true value of θ 19 times out of 20, on average. The p-value function has also been called the
confidence distribution function, e.g. in Cox (1958), Efron (1993), Xie and Singh (2013), Hjort and
Schweder (2016). The p-value function or confidence distribution function has the added benefit
that the direction of departure is recorded, as well as the magnitude.

2.2 Decision theory

Calculating observed proportions such as 0.061 and 0.939 as above was historically often chal-
lenging, and reference values corresponding to one or several standard values such as 5%, 10%,
90%, and 95% were derived and recorded in tables. Then in an investigation a statement such as
“significant at the 10%” level, or “not significant at the 5% level”, would be offered for the data
point y0 in Figure 2.

With the development of the theory of hypothesis testing by Neyman and Pearson (1933), this
practice acquired a formal theoretical status. In due course the original concept of a p-value or
observed level of significance as the position of the data with respect to the model changed its pre-
sentation into a decision for or against the hypothesisH0, at some chosen fixed level of significance.
The observed value y0 then became a decision for, or against, some null value. Taking such de-
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Figure 3: The observed p-value function from data y0 as in Figure 3; height at θ0 is 6.1%.

cisions at face value is a substantial change from the notion of statistical position, and has had the
profound and unfortunate consequence of setting an arbitrary standard for determining the adequacy,
or even publishibility, of the results from an experiment.

When p-values are used only to make a decision, and a larger sample size is viewed as a route to
getting to the decision point faster, the results can be even more misleading.

Gelman and Loken express this concern for treating p-values from a decision theoretic view-
point: “By convention, a p-value below 0.05 is considered a meaningful refutation of the null hy-
pothesis: however, such conclusions are less solid than they appear”. They do not, however, dwell
further on this point. Many contemporary presentations of introductory statistics also overlook such
concerns.

The point was emphasized famously in Ioannidis (2005), but there is a much earlier literature
warning about this. Sterling (1959) wrote of “publication decisions and their possible effects on
inferences drawn from tests of significance”; in particular “. . . (where) a borderline between accep-
tance and rejection is taken (at a) fixed point (say) 0.05 . . . is interesting by itself . . . (and when) used
as a critical criterion for selecting reports for (publication) in professional journals (might result in)
unanticipated results.” Rozeboom (1960) wrote of “The fallacy of the null-hypothesis significance
test” and quoted a famous philosophical epigram that the “accept-reject” paradigm is the “glory of
science and the scandal of philosophy”, meaning the glory of statistics and the scandal of logic and
application.

2.3 Bayesian view of p-value

To this point we have assumed that the model for Figure 1 provides the full background information
for θ. Another approach is available if we have a function π(θ) allegedly describing a probability
density for potential values of θ. If the joint model is then accepted as valid, the application of the
basic rules of conditional probability enable calculation of a probability distribution for θ, given the
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observed measurement y0, as f(θ | y0) = cπ(θ)f(y; θ). We can then compute, for example, the
probability that θ is larger than θ0, having observed y0.

But where does such a probability density function π(θ) come from? Efron (2013) cites two
possibilities: there may indeed be a case in some applications where randomness for the source of the
true θ can be identified with a distribution π(θ): he calls this a genuine prior. If θ represents the rate
of defectives in a manufacturing process, there may be enough data from previous manufacturing
runs to identify such a distribution.

An alternative construction of a distribution π(θ) is by describing symmetries among various
θ values: Efron (2013) calls these Laplace priors, as they received special support from Laplace
(1812). In that case the construction of f(θ | y0) can be regarded as a completely formal exercise,
not embodying any probability interpretation. In this setting the best we could argue is that these
probabilities have a meaning in as much as they lead to identical conclusions as the p-value function.
Then the probability interpretation of the result is vacuous, but not misleading.

This is the case, for example, in a simple location model with a uniform prior for θ. The fre-
quency calculation and the Bayes posterior probability calculation are computational reflections of
each other; thus s0(θ0) =

∫
θ0
f(θ | y0)dθ attaches the same value, 6.1%, to the statement that θ is

larger than θ0 as the argument above attaches to the probability under the model f(y; θ0) that y is
less than y0: the Bayes posterior bound is in fact exactly a confidence bound: see Figure 4.

In our view the two ingredients π(θ) and f(y; θ), even if π(θ) is a genuine prior, should be
left separate, rather than being combined into a joint model π(θ)f(y; θ) describing the pair (y, θ).
This makes available the full background information, and leaves to the concerned user the option
to combine them if desired. This point is discussed from a slightly different point of view in Cox
(2006, Ch. 5) and Cox and Reid (2015),where it is argued that “personalistic” priors have a different
logical status from probability density functions.

Figure 4: The Bayes calculation with the Laplace noninformative prior can with location symmetry duplicate
the frequency calculation, thus giving a confidence result.
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3 Responsibility and Risks

We have discussed three different interpretations for “p-value” or “level of significance”: (i) The
frequency view: The statistical position of the observed data with respect to a θ0 value being tested;
(ii) The decision theory view: The conventional level at which the data is just significant with respect
to a θ0 value being tested; and (iii) The Bayes view: The Bayes survivor calculation at a θ0 value
using some prior distribution for θ.

It is our view that the discipline of statistics should acknowledge responsibility for the conse-
quences of the confusion, in many areas of application, caused by these multiple meanings. Fraser
(2014) highlights three historically prominent cases where responsibility for statistical steps seems
overwhelming, even in legal senses. The launch of the space-shuttle Challenger failed on January
28, 1986, causing seven deaths: statistical data available before the flight indicated a concern with
the effect of low temperatures on critical O-rings, but the statistical warnings were by-passed (Dalal
et al., 1989). The pain relief drug Vioxx was approved by the US Food and Drug Administration in
1999, but withdrawn by the pharmaceutical company in 2004 after evidence for an elevated risk of
heart attacks became overwhelming, although statistical assessments as early as 2000 had indicated
heightened risk of such serious events (Abraham, 2005). An estimated 40,000 people died and a five
billion dollar settlement with the pharmaceutical company was obtained for those injured or the sur-
vivors (ONeil, 2012). Before the L’Aquila earthquake on April 5, 2009 an official committee with
statistical expertise underemphasized in public statements the risk of an imminent major earthquake;
some 300 died in that earthquake, and seven committee members were convicted of manslaughter
(Marshall, 2012; Prats, 2012), a conviction that was overturned on appeal for six of the members
(Abbott and Nosengo, 2014).

These examples emphasize that a misleading use of statistics can have serious consequences in
lives lost and in billions of dollars in costs. These consequences can start with conflicting messages
from statistics, and in particular the message that “statistical significance” is treated as an absolute, a
decision, and that the goal of the statistical analysis of an observed set of data is to reach that elusive
bar: a theme very common to applied work, especially among those new to the research process.

Gelman and Loken (2014) focus their discussion on the decision theoretic interpretation and ad-
dress the consequences from this approach, emphasizing in particular the problem that for a given
scientific or social scientific problem, the translation of “interesting science” to “statistical hypothe-
sis” can, and often does, involve several hypotheses, and hence the calculation of several p-values,
with a particular data set. They write “It would take a highly unscrupulous researcher to perform
test after test in a search for statistical significance . . . at the 0.05 level . . . The difficult challenge lies
elsewhere”. They further note “it is reasonable for scientists to refine their hypotheses in light of
the data”. Their assessment of the risks emphasizes that the formulation of an hypothesis in science
or social science is not as straightforward as identifying a single θ0, and as a result multiple testing
is implicit in a great many analyses, and more subtle than carrying out several tests in search of
“p < 0.05”.

We agree with them that the risks of using arbitrary p-values to define ‘significance’, and us-
ing these as decisions is very serious when multiple formulations of hypotheses lead explicitly or
implicitly to large numbers of p-values. Among their recommended strategies of pre-registration,
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authentic replication, and analysis of “all data”, they include a claim “that p-values should not nec-
essarily be taken at face value”. This last we disagree with! It is the conventional but unwarranted
attribution of decision, and the use of p-values for journal management, that are at the heart of the
problem.

The p-value and p-value function is simply recording the statistical position of data relative to
an hypothesis; it is elemental and provides an appropriate starting point for inference conclusions.
It can guide the judgments about scientific conclusions, but cannot replace them. The consensus
judgment in high-energy physics is that a ‘discovery’ is claimed when the p-value is less than 1 in
3.5 million: it is called “5-sigma” as this is the probability that a normal variable is greater than five
standard deviations from the mean, the normal here being an approximation to the Poisson count of
number of observed particles. Another physics example that received wide publicity in the popular
media of the time was Eddington’s verification of Einstein’s theory of general relativity. The orbit
of Mercury had been known in the 18-hundreds to precess at a rate different from that predicted
by Newtonian mechanics, and Einstein’s general relativity provided an adequate explanation. But
further corroboration seemed appropriate to the physics community. General relativity also predicts
the bending of light rays as they pass near a large mass; this provided, then, an appropriate variable
to measure, and in May 1919 Eddington was able to carefully measure the apparent position of stars
in the sky as indicted by light from the stars after it had passed adjacent to the sun during a solar
eclipse.

Suppose, as viewed, the star light was passing on the right side of the hidden sun where general
relativity would indicate that its apparent position in the sky was displaced to the right. Then if
a 5-sigma event had been observed, the statistical position of the observed data would have been
p = 0.999, 999, 7, indicating the large departure to the right; this value is the complement of
0.000, 000, 3, in turn the reciprocal of 1 in 3.5 million. This p value records that data value was
large, near 1; it is in the right tail of the null distribution under the standard theory of the time. The
statistical position version of the p-value is appropriate and indicates the magnitude of the departure
as well as the type of departure.

We believe the discussion is more urgent now, in the era of Big Data. As a reviewer has em-
phasized, the use of false discovery rates has been developed as a method of protecting against
multiple hypothesis tests. In applications of many similar tests to a single set of data, for example
in genome-wide association studies, this has provided some protection against claims of discoveries
that could not subsequently be validated. Indeed the conventional, if somewhat arbitrary, 5-sigma
rule of high energy physics is an ad hoc correction for multiple testing to protect exactly against
false discoveries. This seems not to solve the issue, but rather to move the decision boundary.

An approach more directly aligned with the presentation of the p-value function is a method
to correctly combine many such functions into a single summary p-value function. Methods of
combination motivated by developments in the theory of composite likelihood are in development
(Fraser and Reid, 2016).

For a great many settings where Big Data is available for analyses, the calculation of the di-
mensionality for possible hypotheses may be difficult or impossible, and the potential for making
incorrect decisions is enormous. Attributing significance or decision to a comparison selected from
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among millions of potential hypotheses suggests serious rethinking of the exploration process, the
evaluation process, and the decision process. The risks for misleading decisions seem large; we
could have mega p-values, mega decisions and mega wrong ‘answers’. Scientists and social scien-
tists are making serious efforts to address these issues; see for example the Science editorial McNutt
(2014), and Gelman and Loken (2014)’s suggestions around pre-registration. Perhaps Statistics
should stand up for its responsibilities before a Big Data Disaster.
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