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SUMMARY

A bivariate version of the hyper-Poisson distribution is introduced here through its prob-
ability generating function (pgf ). we study some of its important aspects by deriving its
probability mass function, factorial moments, marginal and conditional distributions and
obtain certain recurrence relations for its probabilities, raw moments and factorial mo-
ments. Further, the method of maximum likelihood is discussed and the procedures are
illustrated using a real life data set.
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1 Introduction
Bivariate discrete distributions have received a great deal of attention in the literature. For details see
Kumar (2008), Kocherlakota and Kocherlakota (1992) and references therein. Bardwell and Crow
(1964) studied the hyper-Poisson distribution (HP distribution), which they defined as follows. A
random variable X is said to follow an HP distribution if it has the following probability mass
function (pmf ) , for x = 0, 1, . . .

g(x) = P (X = x) =
θx Γ(λ)

φ(1;λ; θ) Γ(λ+ x)
, (1.1)

in which λ, θ are positive real numbers and φ(1;λ; θ) is the confluent hypergeometric series (for
details see Mathai and Saxena, 1973 or Slater, 1960). The probability generating function (pgf ) of
the HP distribution with pmf (1.1) is the following

G(t) =
φ(1;λ; θt)

φ(1;λ; θ)
, (1.2)
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which reduces to Poisson distribution when λ = 1 and when λ is a positive integer, the distribution
is known as the displaced Poisson distribution studied by Staff (1964). Bardwell and Crow (1964)
termed the distribution as sub-Poisson when λ < 1 and super-Poisson when λ > 1. Bardwell
and Crow (1964) and Crow and Bardwell (1965) considered various methods of estimation of the
parameters of the distribution. Some queuing theory with hyper-Poisson arrivals has been developed
by Nisida (1962) and certain results on moments of hyper-Poisson distribution has been studied
in Ahmad (1979). Roohi and Ahmad (2003a) discussed the estimation of the parameters of the
hyper-Poisson distribution using negative moments. Roohi and Ahmad (2003b) obtained certain
recurrence relations for negative moments and ascending factorial moments of the HP distribution.
Kemp (2002) developed q-analogue of the HP distribution and Ahmad (2007) introduced and studied
Conway-Maxwell hyper-Poisson distribution. Kumar and Nair (2011, 2012a, 2012b) introduced
modified versions of the HP distribution and discussed some of their applications.

Ahmad (1981) introduced a bivariate version of the HP distribution through the following pgf

Q(t1, t2) = (φ1φ2)−1 exp[θ(t1 − 1)(t2 − 1)]φ1[1;λ1; θ1t1]φ2[1;λ2; θ2t2], (1.3)

in which φi = φ(1;λi; θi). For r ≥ 0, s ≥ 0, the pmf q(r, s) = P (Z1 = r, Z2 = s) ofZ = (Z1, Z2)

with pgf (1.3) is the following

q(r, s) =
eθΓ(λ1)Γ(λ2)

φ1 φ2

min(r,s)∑
i=0

r−i∑
j=0

s−i∑
k=0

(−1)j+kθr−i−j1 θs−i2 θi+j+k

Γ(λ1 + r − i− j)Γ(λ2 + s− i− k)i!j!k!
, (1.4)

where λ1 > 0, λ2 > 0 and 0 < θ ≤ min(θ1/λ1, θ2/λ2).

Through the present paper we introduce another bivariate version of the HP distribution, which
we named as ‘the bivariate hyper-Poisson distribution (BHPD)’and obtain its important properties.
In section 2, it is shown that the BHPD possess a random sum structure. Further we obtain its
conditional probability distribution, probability mass function and factorial moments in section 2.
In section 3, we develop certain recursion formulae for probabilities, raw moments and factorial
moments of theBHPD and in section 4 we discuss the estimation of the parameters of theBHPD
by the method of maximum likelihood and the distribution has been fitted to a well-known data set
and it is observed that the BHPD gives better fit than the bivariate Poisson distribution and the
bivariate hyper-Poisson distribution of Ahmad (1981).

Note that the bivariate version of HP distribution introduced in this paper is relatively simple in
terms of its pmf and pgf compared to the bivariate version due to Ahmad(1981), and further this
bivariate form possess a bivariate random sum structure as given in section 2. The random sum
structure arises in several areas of research such as ecology, biology, genetics, physics, operation
research etc. For details, see Johnson et al. (2005).

2 The BHP distribution
Consider a non-negative integer valued random variable X following HP distribution with pgf (1.2),
in which θ = θ1 + θ2 + θ3, θ1 > 0, θ2 > 0 and θ3 ≥ 0. Define αj = θj/θ, for j = 1, 2, 3 and let
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{Yn = (Y1n, Y2n), n = 1, 2, . . .} be a sequence of independent and identically distributed bivariate
Bernoulli random vectors, each with pgf

P (t1, t2) = α1t1 + α2t2 + α3t1t2.

Assume that X,Y1, Y2, . . . are independent. Let T0 = (T10, T20) = (0, 0) and define

TX = (T1X , T2X) =

(
X∑
x=1

Y1x,

X∑
x=1

Y2x

)
.

Then the pgf of TX is the following, in which Λ = φ−1(1;λ; θ1 + θ2 + θ3).

H(t1, t2) = G{P (t1, t2)} = Λφ(1;λ; θ1t1 + θ2t2 + θ3t1t2) (2.1)

We call a distribution with pgf as given in (2.1) as ‘the bivariate hyper-Poisson distribution’or in
short, ‘the BHPD’. Clearly the BHPD with λ = 1 is the bivariate Poisson distribution discussed
in Kocherlakotta and Kocherlakotta (1992, pp 90) and when λ is a positive integer the BHPD with
pgf (2.1) reduces to the pgf of a bivariate version of the displaced Poisson distribution.

Let (X1, X2) be a random variable having the BHPD with pgf (2.1). Then the marginal pgf of
X1 and X2 are respectively

HX1
(t) = H(t, 1) = Λφ[1;λ; (θ1 + θ3)t+ θ2] and

HX2
(t) = H(1, t) = Λφ[1;λ; (θ2 + θ3)t+ θ1].

The pgf of X1 +X2 is

HX1+X2(t) = H(t, t) = Λφ[1;λ; (θ1 + θ2)t+ θ3t
2],

which is the pgf of a modified version of the HP distribution studied in Kumar and Nair (2011).
Let x be a non-negative integer such that P (X2 = x) > 0. On differentiating (2.1) with respect

to t2x times and putting t1 = t and t2 = 0 , we get

H(0,x)(t, 0) = (θ2 + θ3t)
x

( x−1∏
j=0

Dj

)
Λδx(θ1t) (2.2)

where Dj = (1 + j)/(λ+ j) and δj(t) = φ(1 + j;λ+ j; t) for j = 0, 1, 2, . . ..
Now applying the formula for the pgf of the conditional distribution in terms of partial deriva-

tives of the joint pgf, developed by Subrahmaniam (1966), we obtain the conditional pgf ofX1 given
X2 = x as

HX1|X2=x (t) =

(
θ2 + θ3t

θ2 + θ3

)x
φ(1 + x;λ+ x; θ1t)

φ(1 + x;λ+ x; θ1)
= H1(t)H2(t), (2.3)

where H1(t) is the pgf of a binomial random variable with parameters x and p = θ3(θ2 + θ3)−1

and H2(t) is the pgf of a random variable following the HPD with parameters 1 + x, λ + x and
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θ1. Note that, when θ3 = 0 and/or when x = 0, H1(t) reduces to the pgf of a random variable
degenerate at zero. Thus the conditional distribution X1 given X2 = x given in (2.4) can be viewed
as the distribution of the sum of independent random variables V1 with pgf H1(t) and V2 with pgf
H2(t). Consequently from (2.4) we obtain the following

E(X1 |X2 = x ) =
xθ3

(θ2 + θ3)
+
θ1Dxδx+1(θ1)

δx(θ1)
(2.4)

Var(X1 |X2 = x) =
xθ2θ3

(θ2 + θ3)2
+

θ1Dx

δ2
x(θ1)

{Dx+1δx(θ1)δx+2(θ1)θ1

+ δx(θ1)δx+1(θ1)−Dx[δx+1(θ1)]2θ1}. (2.5)

In a similar approach, for a non-negative integer x with P (X1 = x) > 0, we can obtain the
conditional pgf of X2 given X1 = x by interchanging θ1 and θ2 in (2.3). Therefore it is evident
that comments similar to those in case of the conditional distribution of X1 given X2 = x are valid
regarding conditional distribution of X2 given X1 = x and explicit expressions for E(X2 |X1 = x )

and V ar(X2 |X1 = x) can be obtained by interchanging θ1 and θ2 in the right hand side expressions
of (2.5) and (2.6) respectively.

In order to obtain the probability mass function pmf of the BHPD, we need the following
partial derivatives of H(t1, t2), in which r is a non-negative integer.

H(r,0)(t1, t2) = (

r−1∏
i=0

Di)(θ1 + θ3t2)rΛ∆r(t1, t2), (2.6)

where

∆j(t1, t2) = φ(1 + j;λ+ j; θ1t1 + θ2t2 + θ3t1t2), j = 0, 1, 2, . . .

The following derivatives are needed in the sequel, in which 0 ≤ i ≤ r and j ≥ 1.

∂i(θ1 + θ3t2)r

∂ti2
=

r!θi3
(r − i)!

(θ1 + θ3t2)r−i (2.7)

∂j∆r(t1, t2)

∂tj2
=

r+j−1∏
i=r

Di(θ2 + θ3t1)j∆r+j(t1, t2). (2.8)

Differentiating both sides of (2.7) s-times with respect to t2 and applying (2.8) and (2.9), we get the
following

H(r,s)(t1, t2) = (

r−1∏
i=0

Di)Λ

s∑
m=0

(
s

m

)
∂m(θ1 + θ3t2)r

∂tm2

∂s−m∆r(t1, t2)

∂ts−m2

= (

r−1∏
i=0

Di)Λ

min(r,s)∑
m=0

(
s

m

)
r!

(r −m)!
θm3 (θ1 + θ3t2)r−m

×
r+s−m−1∏

i=r

Di(θ2 + θ3t1)s−m∆r+s−m(t1, t2) (2.9)
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Now, by putting (t1, t2) = (0, 0) in (2.10) and by dividing r!s!, we get the pmf of the BHPD as

h(r, s) = Λθr1θ
s
2

min(r,s)∑
m=0

D∗

m!(r −m)!(s−m)!
(
θ3

θ1θ2
)m, (2.10)

where

D∗ =

r+s−m−1∏
j=0

Dj and
k∏
j=0

Dj = 1, for any k < 0.

By putting (t1, t2) = (1, 1) in (2.10) we get the (r, s)th factorial moment µ[r,s] of the BHPD
as

µ[r,s] = Λr!s!(θ1 + θ3)r(θ2 + θ3)s
min(r,s)∑
m=0

D∗ξr+s−m
m!(r −m)!(s−m)!

βm (2.11)

where ξj = φ(1 + j;λ+ j; θ1 + θ2 + θ3), for j = 0, 1, . . . and β = θ3(θ1 + θ3)−1(θ2 + θ3)−1.
From (2.12) we have the following, in which ψj = Λξj , for j = 1, 2, . . .

E(X1) = µ[1,0] = D0ψ1(θ1 + θ3) (2.12)

E(X2) = µ[0,1] = D0ψ1(θ2 + θ3) (2.13)

Cov(X1, X2) = D0(D1ψ2 −D0ψ
2
1)(θ1 + θ3)(θ2 + θ3) +D0ψ1θ3 (2.14)

where D0 and D1 are as given in (2.2).

3 Recurrence relations

Let (X1, X2) be a random vector following the BHPD with pgf (2.1). For j=0, 1, 2, ..., define
λ∗ + j = (1 + j, λ+ j) and λ(j) = (1 + j)(λ+ j)−1 Now, the pmf h(r, s) of the BHPD given in
(2.11) we denote by h(r, s;λ∗). Then we have the following result in the light of relations:

H(t1, t2) =

∞∑
r=0

∞∑
s=0

h(r, s;λ∗)tr1t
s
2 = Λφ(1;λ; θ1t1 + θ2t2 + θ3t1t2) (3.1)

and

ξ1

∞∑
r=0

∞∑
s=0

h(r, s;λ∗ + 1)tr1t
s
2 = φ(2;λ+ 1; θ1t1 + θ2t2 + θ3t1t2), (3.2)

in which ξ1 is as given in (2.12).

Result 3.1. The probability mass function h(r, s;λ∗) of the BHPD satisfies the following recur-
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rence relations.

h(r + 1, 0;λ∗) =
D0ψ1θ1

(r + 1)
h(r, 0;λ∗ + 1), r ≥ 0 (3.3)

h(r + 1, s;λ∗) =
D0ψ1

(r + 1)
[θ1h(r, s;λ∗ + 1) + θ3h(r, s− 1;λ∗ + 1], r ≥ 0, s ≥ 1 (3.4)

h(0, s+ 1;λ∗) =
D0ψ1θ2

(s+ 1)
h(0, s;λ∗ + 1), s ≥ 0 (3.5)

h(r, s+ 1;λ∗) =
D0ψ1

(s+ 1)
[θ2h(r, s;λ∗ + 1) + θ3h(r − 1, s;λ∗ + 1], r ≥ 1, s ≥ 0 (3.6)

Proof. Relation (2.7) with r = 1 gives

H(1,0)(t1, t2) = D0(θ1 + θ3t2)Λ∆1(t1, t2) (3.7)

On differentiating both sides of (3.1) with respect to t1, we have

H(1,0)(t1, t2) =

∞∑
r=0

∞∑
s=0

(r + 1)h(r + 1, s;λ∗)tr1t
s
2 (3.8)

By using (3.2) and (3.8) in (3.7) we get the following, in which ψ1 is as given in (2.13).
∞∑
r=0

∞∑
s=0

(r + 1)h(r + 1, s;λ∗)tr1t
s
2 = D0ψ1[θ1

∞∑
r=0

∞∑
s=0

h(r, s;λ∗ + 1)

tr1t
s
2 + θ3

∞∑
r=0

∞∑
s=0

h(r, s;λ∗ + 1)tr1t
s+1
2 ] (3.9)

On equating the coefficient of tr1t
0
2 on both sides of (3.9) we get the relation (3.3) and on equating

the coefficient of tr1t
s
2 on both sides of (3.9) we get the relation (3.4). We omit the proof of relations

(3.5) and (3.6) as it is similar to that of relations (3.3) and (3.4).

Result 3.2. For r, s ≥ 0, simple recurrence relations for factorial moments µ[r,s](λ
∗) of order (r, s)

of the BHPD are the following.

µ[r+1,s](λ
∗) = D0ψ1(θ1 + θ3)µ[r,s](λ

∗ + 1) +D0ψ1θ3sµ[r,s−1](λ
∗ + 1) (3.10)

µ[r,s+1](λ
∗) = D0ψ1(θ2 + θ3)µ[r,s](λ

∗ + 1) +D0ψ1θ3rµ[r−1,s](λ
∗ + 1), (3.11)

in which µ[0,0](λ
∗) = 1.

Proof. Let (X1, X2) be a random vector having the BHPD with pgf H(t1, t2) as given in (2.1).
Then the factorial moment generating function F (t1, t2) of the BHPD is

F (t1, t2) = H(1 + t1, 1 + t2)

=

∞∑
r=0

∞∑
s=0

µ[r,s](λ
∗)
tr1t

s
2

r!s!

= Λφ[1;λ; θ1 + θ2 + θ3 + (θ1 + θ3)t1 + (θ2 + θ3)t2 + θ3t1t2] (3.12)
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Differentiate (3.12) with respect to t1 to get

∂F (t1, t2)

∂t1
= [(θ1 + θ3) + θ3t2)]D0Λ

× φ[2;λ+ 1; θ1 + θ2 + θ3 + (θ1 + θ3)t1 + (θ2 + θ3)t2 + θ3t1t2] (3.13)

Based on the similar argument as in the proof of Result 3.1., by using (3.12) with λ∗ replaced by
λ∗ + 1, one can obtain the following from (3.13).

∞∑
r=0

∞∑
s=0

µ[r+1,s](λ
∗)
tr1t

s
2

r!s!
= D0ψ1{(θ1 + θ3)

∞∑
r=0

∞∑
s=0

µ[r,s](λ
∗ + 1)

tr1t
s
2

r!s!

+ θ3

∞∑
r=0

∞∑
s=0

µ[r,s](λ
∗ + 1)

tr1t
s+1
2

r!s!
} (3.14)

Now on equating the coefficients of (r!s!)−1tr1t
s
2 on both sides of (3.14) we obtain the relation (3.10).

A similar procedure implies (3.11).

Result 3.3. Two recurrence relations for the (r, s)th raw moments µr,s(λ∗) of the BHPD are:

µr+1,s(λ
∗) = D0ψ1θ1

r∑
j=0

(
r

j

)
µr−j,s(λ

∗ + 1) +D0ψ1θ3

r∑
j=0

s∑
k=0

(
r

j

)(
s

k

)
µr−j,s−k(λ∗ + 1)

(3.15)
and

µr,s+1(λ∗) = D0ψ1θ2

s∑
k=0

(
s

k

)
µr,s−k(λ∗ + 1) +D0ψ1θ3

r∑
j=0

s∑
k=0

(
r

j

)(
s

k

)
µr−j,s−k(λ∗ + 1)

(3.16)

Proof. The characteristic function A(t1, t2) of the BHPD with pgf (2.1) is the following. For
(t1, t2) in R2,

A(t1, t2) = H(eit1 , eit2) = Λφ[1;λ∗;λ(t1, t2; θ)] =

∞∑
r=0

∞∑
s=0

µr,s(λ
∗)

(it1)r(it2)s

r!s!
, (3.17)

where λ(t1, t2; θ) = θ1e
it1 +θ2e

it2 +θ3e
i(t1+t2), θ = (θ1, θ2, θ3) and i =

√
−1. On differentiating

(3.17) with respect to t1, we obtain

D0Λφ[2;λ∗ + 1;λ(t1, t2; θ)]{i(θ1 + θ3e
it2)eit1} =

∞∑
r=0

∞∑
s=0

iµr,s(λ
∗)

(it1)r−1(it2)s

(r − 1)!s!
.
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By using (3.17) with λ∗ replaced by λ∗ + 1; and on expanding the exponential functions, we obtain
the following, in the light of some standard properties of double sum

∞∑
r=0

∞∑
s=0

µr+1,s(λ
∗)(it1)r(it2)s

r!s!

= D0ψ1

∞∑
r=0

∞∑
s=0

(it1)r(it2)s

r!s!
{θ1

r∑
j=0

(
r

j

)
µr−j,s(λ

∗ + 1) + θ3

r∑
j=0

s∑
k=0

(
r

j

)(
s

k

)
µr−j,s−k(λ∗ + 1)}

(3.18)

Now equate the coefficients of (r!s!)−1(it1)r(it2)s on both sides of (3.18) to get the relation (3.15).
A similar procedure gives (3.16).

4 Estimation of parameters

Here we obtain the estimators of the BHPD by the method of maximum likelihood. Let a(r, s)

be the observed frequency of the (r, s)th cell of the bivariate data. Let y be the highest value of r
observed and z be the highest value of s observed. Then by using (2.11) the likelihood function of
the sample is the following.

L =

y∏
r=0

z∏
s=0

[h(r, s)]

a(r,s)

⇒ logL =

y∑
r=0

z∑
s=0

a(r, s) log h(r, s).

Let θ̂1, θ̂2, θ̂3 and λ̂ denotes the likelihood estimators of θ1, θ2, θ3 and λ respectively. Now θ̂1 , θ̂2,
θ̂3 and λ̂ are obtained by solving the likelihood equations (4.1), (4.2), (4.3)and (4.4) given below.

∂ logL

∂θ1
= 0

Equivalently,

y∑
r=0

z∑
s=0

a(r, s)

{
−1

λ

φ(2;λ+ 1; θ1 + θ2 + θ3)

φ(1;λ; θ1 + θ2 + θ3)
+

min(r,s)∑
m=0

D∗θr−m−1
1 θs−m

2 θm3
(r−m−1)!(s−m)!m!

ξ(r, s)

}
= 0. (4.1)

∂ logL

∂θ2
= 0

Equivalently,

y∑
r=0

z∑
s=0

a(r, s)

{
−1

λ

φ(2;λ+ 1; θ1 + θ2 + θ3)

φ(1;λ; θ1 + θ2 + θ3)
+

min(r,s)∑
m=0

D∗θr−m
1 θs−m−1

2 θm3
(r−m)!(s−m−1)!m!

ξ(r, s)

}
= 0. (4.2)
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∂ logL

∂θ3
= 0

Equivalently,

y∑
r=0

z∑
s=0

a(r, s)

{
−1

λ

φ(2;λ+ 1; θ1 + θ2 + θ3)

φ(1;λ; θ1 + θ2 + θ3)
+

min(r,s)∑
m=0

D∗θr−m
1 θs−m

2 θm−1
3

(r−m)!(s−m)!(m−1)!

ξ(r, s)

}
= 0. (4.3)

∂ logL

∂λ
= 0

Equivalently,

y∑
r=0

z∑
s=0

a(r, s)

{
−1

φ(1;λ; θ1 + θ2 + θ3)

∞∑
x=0

(θ1 + θ2 + θ3)xη(x)+

1

ξ(r, s)

min(r,s)∑
m=0

η(r + s−m)
(r + s−m)!θr−m1 θs−m2 θm3

(r −m)!(s−m)!m!

}
= 0, (4.4)

in which ξ(r, s) =
min(r,s)∑
m=0

D∗θr−m
1 θs−m

2 θm3
(r−m)!(s−m)!m! and η(u) = Γ(λ)

Γ(λ+u) [ψ(λ)− ψ(λ+ u)].

5 An application
Here we illustrate the method of maximum likelihood estimation using a real life data set taken from
Patrat (1993). The description of data is as follows: The North Atlantic coastal states in USA can be
affected by tropical cyclones. They divided the states into three geographical zones: Zone 1 (Texas,
Louisina, The Mississipi, Alabama), Zone 2 (Florida), and Zone 3 (Other states)

Now the interest is in the study of the joint distribution of the pair (X1, X2), where X1 and X2

are the yearly frequency of hurricanes affecting respectively zone 1 and zone 3. The observed values
of (X1, X2) during 93 years from 1899 to 1991 are as given in Table 1. We obtain the corresponding
expected frequencies by fitting the bivariate Poisson distribution (BPD), the bivariate hyper-Poisson
distribution of Ahmad (1981) (BHPDA) and the bivariate hyper-Poisson distribution (BHPD)
introduced in this paper using method of maximum likelihood in Table 1. The estimated values of
the parameters of the BPD, the BHPDA and the BHPD and the chi-square values in respective
cases are listed in Table 2. From Table 2, it can be observed that the BHPD gives a better fit to this
data compared to the existing models- the BPD and the BHPDA.
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Table 1: Comparison of observed and theoretical frequencies Hurricanes (1899-1991) having af-
fected Zone 1 and Zone 3, using method of maximum likelihood.

Zone 1 0 1 2 3 Total

Zone 3

OBS 27 9 3 2 41

0 BPD 28.24 12.71 2.86 0.48 44.29

BHPDA 28.31 12.49 2.95 0.48 44.23

BHPD 25.64 14.31 2.50 0.26 42.71

OBS 24 13 1 0 38

1 BPD 20.30 9.79 2.35 0.42 32.86

BHPDA 20.46 9.56 2.37 0.40 32.79

BHPD 23.23 10.88 2.23 0.27 36.61

OBS 8 2 1 0 11

2 BPD 7.29 3.75 0.96 0.19 12.19

BHPDA 7.39 3.65 0.95 0.17 12.16

BHPD 6.60 3.62 0.88 0.12 11.22

OBS 1 0 2 0 3

3 BPD 2.12 1.16 0.32 0.06 3.66

BHPDA 1.78 0.93 0.25 0.05 3.01

BHPD 1.11 0.72 0.21 0.14 1.07

OBS 60 24 7 2 93

Total BPD 57.95 27.41 6.49 1.15 93

BHPDA 57.94 26.63 6.52 1.1 92

BHPD 56.58 29.53 5.82 0.79 93
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Table 2: Estimated values of the parameters of the BPD, the BHPDA and the BHPD by the
method of maximum likelihood estimation and corresponding chi-square values.

Distributions Estimation of parameters Chi−square values

BPD θ̂1 = 0.683, θ̂2 = 0.450, θ̂3 = 0.021 2.524

BHPDA θ̂1 = 0.780, θ̂2 = 0.324, θ̂3 = 0.021 2.452

λ̂1 = 1.075, λ̂2 = 0.619

BHPD θ̂1 = 0.414, θ̂2 = 0.255, θ̂3 = 0.049 0.463

λ̂ = 0.457
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