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SUMMARY

For a scalar or vector parameter of interest with a regular statistical model, we determine
the definitive null density for testing a particular value of the interest parameter: continuity
gives uniqueness without reference to sufficiency but the use of full available information is
presumed. We start with an exponential family model, that may be either the original model
or an approximation to it obtained by ancillary conditioning. If the parameter of interest
is linear in the canonical parameter, then the null density is third order equivalent to the
conditional density given the nuisance parameter score; and when the parameter of interest
is also scalar then this conditional density is the familiar density used to construct unbiased
tests. More generally but with scalar parameter of interest, linear or curved, this null density
has distribution function that is third order equivalent to the familiar higher-order p-value
®(r*). Connections to the bootstrap are described: the continuity-based ancillary of the
null density is the natural invariant of the bootstrap procedure. Also ancillarity provides
a widely available general replacement for the sufficiency reduction. Illustrative examples
are recorded and various further examples are available in Davison et al. (2014) and Fraser
et al. (2016).
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1 Introduction

We consider the problem of testing a value for a d-dimensional parameter of interest ¢/ in the pres-
ence of a (p — d)-dimensional nuisance parameter J, in the context of a statistical model f(y;1; \)
on R that we assume has the usual regularity conditions for deriving higher order approximations.
We show that continuity and ancillarity directly determine a density that is free of the nuisance pa-
rameters, a density that can be viewed as providing measurement of the parameter of interest. The
saddlepoint approximation then gives an expression for this density with error of O(n=3/2). If the
parameter of interest is scalar, inference based on this null density leads immediately to the familiar
r* approximation (Barndorff-Nielsen, 1991; Fraser, 1990; Brazzale et al., 2007). An associated av-
erage p-value can also be approximated to the same order by a parametric bootstrap, as initiated in
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Lee and Young (2005), Fraser and Rousseau (2008) and DiCiccio and Young (2008); computation
time and ease of use can however differ dramatically.

In §2 we present the model, in §3 develop the null density 3.4 for testing the interest parameter
1, and then in §4 specialize this to the linear interest parameter case obtaining the the null density
4.3; this is then shown to be equivalent to the familiar conditional distribution 4.5, which in the
scalar interest case is widely used to derive unbiased or similar tests. In §5, for ¢/ a scalar parameter,
we relate the null density to the higher-order likelihood based p-values obtained from the familiar r*
approximation. For a vector 1) we propose the use of directional p-values, which can be obtained by
one-dimensional integration. Numerical examples of the latter application are given in Davison et
al. (2014) and Fraser et al. (2016). Intrinsic connections with the parametric bootstrap are addressed
in §6.

2 Exponential model

Suppose we have a statistical model f(y; 0) for a response y € R™ with parameter € RP that takes
the exponential form

f(y;0) = exp [0(0) v (y) — s{w(0)}R(y), 2.1)

where the canonical () in R? is one-to-one equivalent to €, and the canonical v(y) in RP is the
usual variable directly affected by the parameter. The assumption of exponential form is more gen-
eral than it may appear, as this form arises widely with regular statistical models as the tangent
exponential approximation, tangent at the observed value y° with tangent vectors V. The construc-
tion of the tangent exponential model is briefly outlined in Appendix A, together with references to
the literature.

Two key simplifications offered by 2.1 are that the distribution of v provides all the information
about ¢ and that the density of v can be approximated by the saddlepoint method. Thus our model
for inference can be written

g(v; @) = exp {p™v — k() }g(v) (2.2)
ek/n
= G exp {£(p;v) — £(30) Hpo (@) 7/2{1 + O(n~3/2)}, 23)

where ¢(p;v) = ¢ v — k() is the log-likelihood function, ¢ = $(v) is the maximum likelihood
estimator, j,, () = —9¢/8,07 |, is the observed information array in the canonical parameteriza-
tion, and k/n is a generic normalizing constant (Daniels, 1954; Barndorff-Nielsen and Cox, 1979).
From some original regular model this approximation needs only the observed log-likelihood func-
tion £°(#) from y° and the observed gradient ¢ (#) of the log-likelihood in the directions V, and then
effectively implements the integration for the original model or its approximation 2.1 to produce the
marginal density g(v; ¢) to third order from that of y.



Definitive Testing of a Parameter ... 49

3 Curved interest and exponential model

In 2.2 and 2.3 we suppressed the dependence of ¢ on € for convenience; and we now assume that
our parameter of interest is 1() € R%, and use 2.3 to obtain the density 3.4 for testing 1/() = 1o,
eliminating the nuisance parameter A. Thus, we consider ¥ (¢) to be fixed at v in 2.3, so the model
has a p-dimensional variable v, and a (p — d)-dimensional unknown parameter A. With () fixed
at 1, there is an approximate ancillary statistic S for A, a function of v with a marginal distribution
free of A (Fraser et al., 2010), and the ancillary density is uniquely determined to O(n~3/2). Thus
the reference marginal density for inference about a value 1) based on this function of v is also
unique.

To describe this density we define a plane L° in the sample space by fixing the constrained
maximum likelihood estimator of ) at its observed value:

L ={veRr: Ay =X\ }

where Ay, (v) is obtained as the solution of the score equation d¢(p;v)/dX = 0 with notation
Ay (00) = /A\?po = A%, The constrained estimate of the full parameter ¢ at (s,t°) is @". In some
generality the interest parameter ) can be non-linear; in that case we define a new parameter y =
X (¢) linear in ¢ that is tangent to 1(¢) at ¢"; the right hand panel of Figure 1 shows the curve with
1 fixed, the constrained maximum likelihood estimate @°, and the linear approximation

x() = %(@°) + ¥ (e — ¢°), 3.1

as well as the overall maximum likelihood estimate ¢°; here )2 = (9 /dp)|zo is the needed Jaco-
bian. The complementing parameter A in the full parameter space is shown in Figure 1 as orthogonal
to x, for convenience. The left panel of Figure 1 shows the sample space, using corresponding ro-
tated canonical variables s and t: in particular the profile plane L° on the sample space corresponds
to a p — d dimensional variable ¢, fixed at its observed value t°. The d-dimensional variable s on
LY indexes the ancillary contours where they intersect L. In effect (s, ) plays the role of the full
canonical variable in an approximating exponential model, and Y is linear in the canonical parame-
ter.
On LY the saddlepoint approximation to the joint density is, from 2.3

k/n

(geﬂ)p/z exp {£(@; 5, %) — £(35,8°) oo (2) 712, (3.2)

9(s,1%) =

where ¢ = ((s,t°). The conditional density of ¢ given the ancillary labelled by S = s has a p*
approximation at its maximum which when evaluated on L° at (% simplifies to

ek/n

WU(M)(@)I’W- (3.3)

The marginal density for the ancillary variable S as indexed by s on the observed L° is then
obtained by dividing the joint density 3.2 at (s;%o) by the conditional density 3.3 of ¢ given the
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ancillary S, with both evaluated at (s, %) on L°:

ek/n ~ A o ~
9m(5%0) = (g yazm P UG 5, 17) = U35, ) i () on (@l ds, (34

to third order. In 3.4, the exponent /(@) — £(¢) is the log-likelihood ratio statistic at (s, ") for the
tested value 1), and the nuisance information determinant in the exponential parameterization (\)
can be obtained from that in terms of A by applying the Jacobian @3,

1700 (W0, A0 = 123 (@)1 1% (@) (872, (3.5)

as described in Fraser and Reid (1993), Brazzale et al. (2007) or Davison et al. (2014). In the left
panel of Figure 1 we show the curve () = )0, and two different lines L° and L% corresponding
to two different points u° and u°° on an ancillary contour for the particular 1/, value.
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Figure 1: Score space on left; canonical parameter space on right; ancillary contours through ob-
served 1 and through a nearby point ©°° on same ancillary contour for ).

The ancillary distribution 3.4 for testing is recorded in terms of s on L but represents the result
of integrating along the ancillary contours relative to (@) = g, not by integrating for fixed s;
accordingly the distribution appears to depend on ¢, but this is an artifact of its presentation using
coordinates that do depend on t0 (Fraser and Reid, 1995; Fraser and Rousseau, 2008); see Example
4.1 in the next section. The ancillary distribution is developed above within an exponential model,
either the given model or a tangent approximation to it as described in Appendix A. The development
for a regular model from the point of view of approximate studentization is available in Fraser and
Rousseau (2008); the distribution has third order uniqueness even though the third order ancillary
itself is not unique.
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4 Linear interest and exponential model

Consider a special case of the exponential model 2.1 where the interest parameter ) = x is linear
and the full canonical parameter ¢ is just (i, \):

9(v;0) = exp {v{ ¥ + vy A = k(¥ \)}h(v). @.1
It is helpful to centre v at the observed value: letting s = v; — v and t = vy — v gives
g(s,t;0) = exp {sTh + TN+ L(h, \) }h(s, t). 4.2)
where (°(1), \) is the negative cumulant generating function for the latent density h(s,t). The
marginal density 3.4 then simplifies to
ok/n

Im(8;¢) = @n)i2 exp {f(éw) - E(é)}bee(é)|_1/2|JAA(éw)\I/Qd& 4.3)

where 6 = (s, t°) and 6, = (1), )\A?b), all to third order.

The conditional density of s given ¢ is more conventionally used for inference about 1) in this
linear setting. From 4.2 we have

ge(slt; ) = exp{s™ ¥ — ke (1) Yhe(s), 4.4

and its saddlepoint approximation is

. ek/n h N —1/2 |J/\,\(¢75\?¢)‘ e
ge(slt; ) = Wexp {£p(¥) — tp(D)}Hgp ()Y {M} ; 4.5)

where £p (1)) is the profile log-likelihood function £(3), Ay), and gp (1)) = —2(p (1) /APAPT is
the associated information function (Davison, 1988; Barndorff-Nielsen and Cox, 1979). The two
densities 4.3 and 4.5 are identical, as |796(8)| = |70 (¥)||7ax(0)].

In the above we have not distinguished the tested value vy, because in the exponential model
with canonical interest parameter v, the planes L° for different tested values of 1) are parallel, and
the distributions as recorded on each plane are equivalent, so the resulting marginal density 4.3 can
be used as the pivotal quantity to test any value of 1) and thereby provide confidence intervals or
regions.

Example 4.1. We illustrate this with a simple exponential model, for which the detailed calculations
are readily obtained. Take p = 2 and suppose that the joint density of s, t is of the form

g(s,t;0,X) = ¢(s — ¥)p(t — 1) exp {—awA?/(2n'/?)}h(s, 1), (4.6)

where ¢(.) is the standard normal density. The function h(s, t) can be explicitly obtained as

1 1
h(s,t) =1+ ias(tQ —)n~ V2 4 §a2(82 —1D)(t* = 6t2 +3)n" !+ 0(n=3/?), 4.7



52 Fraser

and we can re-write the density as

9(s, £, 2) ={1 = apd?/(2n'/2) + VX" (8n)} (s — )6t — ) 48)
x {14 as(t? —1)/(2nY?) + a®(s* — 1)(t* — 61> + 3)/(8n) + O(n~>/?)}.

The related marginal density is obtained by taking all terms in 4.8 to the exponent and completing
the square; this shows that, ignoring terms of O(n~3/2), there is a pivotal function Z, which follows
a standard normal distribution to third order:

Zy = s{1+a*(2t* = 1)/dn} — {1 — a*(2t* — 1) /dn} —a(t> — 1)/2n"/%.  (4.9)

From this we see that s has conditional bias a(t> —1)/2n'/? 4 O(n~"), but this bias in the measure-
ment of 9 is of no consequence for inference, as it is removed as part of forming the pivot Z;. If we
ignore terms of O(n 1) then s — a(t*> — 1)/(2n"/?) is standard normal to O(n "), i.e. to this order
only a location adjustment is needed to obtain an approximately standard normal pivotal quantity.

S Inference for i) from the reference density

The base density g,,(s;%) on RY given at 3.4 is to third order the unique density for inference
about 1), in the sense that it is a direct consequence of requiring model continuity to be retained in
the elimination of the nuisance parameter (Fraser et al., 2010). The density can be computed from
the distribution 2.2 or 2.3 for the canonical variable u or from the observed log-likelihood from
the original model £(; ") = log{f(y";¢)} together with the observed log-likelihood gradient
©(0) = £.v(6;y°) in directions V; see Appendix A.

If d = 1, the one-dimensional density can be integrated numerically. It can also be shown to be
third-order equivalent to a standard normal density for the familiar pivot 7* = r*(v; "), defined by

r* (3 9°) =T—r‘1log%, (5.1)
. N 1/2

r == (206{p0):9°) - He0u)iy'N) (52)

Q = £|x(0) — x(04)|/6 . (5.3)

where 62 = |5 ,\){go(éw)ﬂ /| jw{gzz(é)ﬂ is a particular estimate of the variance of the numerator
of @, and =+ designates the sign of 1/® — 1. From the definition 3.1 of y as tangent to v at p(0y),
we obtain an alternate expression for @),

[£(0) = (00 o200 Lano )"/
@ (@)

which can be more convenient for computation. Several examples of the use of 7*(;4°) as a
standard normal pivotal for inference about a scalar parameter of interest are given in Fraser et
al. (1999) and Brazzale et al. (2007). For Example 4.1, straightforward calculations verify that
r*(1;y°) = Zy of 5.4t0 O(n=3/2).

Q= (5.4)
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Example 5.1. As an illustration of exact and approximate p-value contours, consider two exponen-
tial life variables y1, yo with failure rates 1, @2 and with interest parameter chosen as the total fail-
ure rate 1) = ¢ + @2; the model is @12 exp {—@1y1 — way2} With 0 < y1,y2 < 0. A rotation of
variable and of parameter through 7 /4 gives new variables s = (y; 4+12)/2"/2,t = (—y1 +y2)/2'/?
and new parameters x = (1 + ©2)/2'/2, X = (—p1 + ¢2)/2'/? on equivalent rotated quadrants;
the model then becomes

fls,t) = (x*/2 = N?/2) exp (—xs — Alt]),

with s > || > 0,x > |A| > 0 and parameter of interest ¢» = 2'/2x. The exact conditional
density of s, given t, is f(s|t;x) = xexp{—x(s—|t])}, for s > |¢|, i.e. the pivotal quantity
Z, = x(s — [t]) follows an exponential distribution with rate 1. The approximation 4.3 is an
O(n~3/?) approximation to this, equivalent to a standard normal distribution for the adjusted log-
likelihood root 775 .

In Figure 5 we illustrate three quantile contours, at levels 25%; 50%, 75%, for the exact condi-
tional distribution and for the normal approximation to the distribution of r*, for testing the value
of ¥ = 0.6931 or equivalently x = 0.4901. The contours of the exact conditional density are
line segments, and the contours of the approximate normal distribution for 5 are smooth curves.
The conditional and marginal approaches are identical to third order: the difference that appears in
Figure 5 is due entirely to the approximation to the marginal density. From one point of view the
normal approximation to 7} replaces exact similarity of the test with similarity to O(n=?/?), and the
smoothed version is somewhat less sensitive to the exact value of ¢. Third-order similarity of tests
based on r* is established in Jensen (1992).

Example 5.2. As an illustration of an exponential model with a curved interest parameter suppose
in Example 5.1 that the parameter of interest is now taken to be ¢ = ¢1¢9; we let A = @5 be an
initial nuisance parameter. Then

b =1/(nya), A=1/y1, AL =1/ys = pA* /).

The linear parameter () is

X(®) = X(P) + Yu () (¢ — @) = X(P) — 20102 + a1 + P12

and s is the corresponding linear combination of y; and y». The information determinants |7, ()]
and |j(ax)(@)| are ¢~2 and 21/J;\w;\/(1/3(¢2 + 1)), respectively; the latter is obtained using @) =
(—1/A2,1). The marginal density of s is approximated by 3.4, from which it follows that Ty is a
pivotal quantity following a standard normal distribution to O(n~3/2). The quantile curves will be
similar in shape to those in Example 4.1, but there is no exact conditional density for comparison.

When 1) is a vector, the marginal density on L° does not immediately lead to a single p-value
function. A directional approach is available following Fraser and Massam (1985), Skovgaard
(1988), Fraser and Reid (2006) and references therein. On L° the mean value under the fitted null
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Figure 2: The exact conditional contours and the third order approximate contours at quantile levels
25%, 50% and 75% for testing v = 0.6931 in the simple exponential life model.

parameter value @% is 5, = 7621 (v, 5\%) with corresponding data s = 0 in the standardized coordi-
nates. Then conditioning on the direction from expected sy, to observed s = 0 gives the directional
p-value

B I7° gm{se + (0 — sw)}td_ldt'
fooo gm{sy + (0 — 31/,)}td*1dt7

p(¥)

which can easily be evaluated numerically. A number of examples based on familiar exponential
models where calculations are particularly accessible are presented in Davison et al. (2014) and
Fraser et al. (2016).

6 Bootstrap and higher order likelihood

For the exponential model 2.1, improved p-values for testing a scalar interest parameter ¥ = g
can also be obtained using bootstrap sampling from the estimated model f(y; 93). In particular, this

bootstrap applied to the signed log-likelihood root 7, = £[2{¢(f) — £(8,,)}]"/? produces p-values
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that are uniformly distributed with accuracy O(n~3/2), and are asymptotically equivalent to this
order to p-values obtained from the normal approximation to . If however the estimated sampling
model is taken to be the traditional f(y; éo) then the relative error drops to O(n 1) (DiCiccio et al
(2001); Lee & Young (2005)).

The bootstrap has an intrinsic connection with the ancillary distribution 3.3 for the marginal
variable S, as recorded in terms of s on the observed L°. Indeed, the bootstrap distribution f(y; 92)
directly produces the preceding null distribution for the ancillary S; this follows by noting that the
distribution of S is free of A and thus a particular choice A = 5\3 in the re-sampling model just
generates the same marginal null distribution. Accordingly the distribution 3.3 can be viewed as an
invariant of the bootstrap procedure. It also follows that the bootstrap distribution of any statistic
that is a function of the ancillary .S is also an invariant of the bootstrap distribution to third order.

More generally with an asymptotic model having full parameter dimension p, and null parameter
dimension p—d, the moderate deviations region can be presented as a product space with coordinates
(S, 5\1/,) and a bootstrap step can be viewed as a projection along contours of the ancillary variable .S
such that dependence on the conditional 5\¢, is reduced by a factor O(n~'/2) (Fraser and Rousseau,
2008).

Meanwhile for the higher-order likelihood approach, the standard normal approximation to the
usual 77, is accurate to O(n—3/?). This, with the preceding bootstrap result, shows that the higher-
order 7, approximation can be implemented directly by bootstrap resampling of rj, or equivalently
the bootstrap resampling of r,, which is known to be affinely equivalent to 77, to third order, using of
course the estimated null model f(y; é?b); computation times however can be significantly different:
for a recent example calculations used 20 hours for the bootstrap calculation to achieve the same
accuracy as the higher order likelihood calculation achieved in 0.09 seconds.

For an exponential model with scalar linear interest parameter, DiCiccio & Young (2008) show
that the null model bootstrap distribution of -, directly approximates the conditional distribution of
1, even though the bootstrap is an unconditional simulation; this follows from 4.3 and 4.5 by noting
that the marginal and conditional distributions are identical to third order.

More generally with a regular model and conditioning based on tangent vectors V' a bootstrap
step provides an average over the conditioning indexed by the vectors V' and thus does not record
the precision information that is routinely available by the higher order approach and even certain
higher order Bayesian calculations. Thus we can say that the parametric bootstrap based on the
observed maximum likelihood estimate under the null reproduces an average of the higher order
1, evaluations rather than the individual precision-tuned p-values coming from the higher-order
method.

7 Conclusion

For general regular models with scalar or vector, linear or curved interest parameters, we have de-
termined the score space distribution that has nuisance parameter effects removed and has the full
information to provide r* tests for scalar parameters and directed tests for vector parameters. We
have thus extended available distribution theory for statistical inference, and integrated the direc-
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tional methodology with the higher order distribution theory. In particular for the vector parameter
case this can fine-tune the Bartlett-corrected 1-dimensional numerical integration (Davison et al.,
2014).

Acknowledgment

This research is part of a continuing joint research project on statistical inference using methods
of likelihood asymptotics, joint with Nancy Reid, Department of Statistical Sciences, University
of Toronto, and received support from the Natural Sciences and Engineering Research Council of
Canada, the Department of Statistical Sciences at the University of Toronto, and the Senior Scholars
Funding of York University. Very special thanks to Mahbub Latif for support with type setting, and
to Wei Lin and Uyen Hoang for manuscript development.

Appendix A

In the context of a regular statistical model with continuity suppose that the variable y has n indepen-
dent coordinates, with n > p, the dimension of the parameter 6. Let p = p(y; 6) be the vector with
ith coordinate p; = F;(y;;0), where F;(.; 0) is the distribution function for the ith component of y.
By inverting p = p(y; 6) to solve for y we obtain the generalized quantile function y = y(p; #). This
quantile function links change in the parameter with change in the variable y; the assumed model
continuity provides the inverse. The local effect of the continuity at the observed data y° can then
described by the n x p matrix of gradient vectors, called ancillary directions,

_ 9y(p:0)

%
06 yo,go

(D

which link change in the coordinates of 6, at 6°, to change in the response, at y°, for fixed p. A
number of examples of the matrix V' are given in Fraser et al. (2010, §3) and Brazzale et al. (2007,
§8.4). The column vectors of V' are tangent to the flow of probability under 6-change near 6°; this
flow defines the continuity-based ancillary contours concerning 6. Fraser et al. (2010) show that
these vectors define a surface in the sample space that is ancillary to O(n~1).

Our continuity assumption, which we view as intrinsic to a general approach to inference using
approximate ancillarity, rules out unusual pivots as in the inverted Cauchy introduced in McCullagh
(1992); see Fraser et al. (2010, Example 5 ). A different, although related, approach is needed for
discrete responses y; see Davison et al. (2006) for discussion.

For vector parameters the approach builds on the presence of the quantile function presentation
of the model and with independent vector coordinates may leave arbitrariness that can be addressed
in other ways.

Given this matrix of ancillary directions V/, a tangent exponential model with canonical param-
eter

(0) = Lo (855°),
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can be constructed, where

oL(0;y)
6V éo’yo

Ly (0;y°) =

is shorthand for the set of directional derivatives of £(6;y) in the sample space, each direction
determined by a row of V. The tangent exponential model is

Jrem(s;0) = exp{p(0)"s + £(8;y°)}h(s), (:2)

where s € RP has the same dimension as the parameter ¢, and can be thought of as the score
variable. The tangent exponential model was introduced in Fraser (1990); see also Reid and Fraser
(2010, §2) and the references therein. The model was introduced mainly as a tool to obtain an r*
approximation for inference about a scalar component parameter, without the need to explicitly com-
pute an ancillary density. Here we are using the tangent model as a descriptive device for obtaining
a conditional density for inference about a scalar or vector parameter of interest, via saddlepoint
approximations.

Example .1. Suppose y; are independent observations from the curved exponential family N (1; c¢21)?),
where c is fixed. The ith component of the quantile vector p is (y; — v)/(ct), and the ith entry of
the n x 1 vector V is 4?2 /4/°. Using this to define (6) we have

1
212

n .00 .
(0) = Ly (B:5°) = 3 %gfv - iw S0 /400) -

i=1

> )P /4%,

a linear combination of 1/1) and 1/12. In terms of the sufficient statistic (3 y;, > y?) an exact
ancillary is " y2 /(3" y;)?. The ancillary based on the V; is consistent with this as both {?} and
c{yY} on the linear space LV give the same value to > y2 /(> y;)%.

Appendix B

(i) From likelihood to density by Taylor expansion. Example 4.1 is motivated by the usual Taylor
series expansion of the log-likelihood function for a regular p-dimensional statistical model: the
leading term is the log-likelihood for a normal distribution, with higher order terms that drop off as
n'/2;n=1;n=3/2; see for example, DiCiccio et al. (1990) and Cakmak et al. (1998). To simplify
the calculations we introduce just one third derivative term: a\?x/(2n'/?), where a = 0%£/0\20y,
evaluated at the expansion point. The resulting likelihood function can be inverted to provide an
expression for the latent density h(s, t), to O(n~3/2), verifying 4.7:

9(s,t;x,A) :% exp {—(s = Xx)?/2 = (t = \)*/2 — ax\* /2n"/*}n(s, 1) (3
= (5 — x)(t — N{1 — ax 2/2n? + a®x2\*/8n}h(s, t) + O(n~/?)
=¢(s — x)P(t — A){1 — ax)\2/2n1/2 +a®x*\*/8n}

x {1+ as(t®> —1)/2n'2 + a?(s®> — 1)(t* — 6> + 3)/8n} + O(n~*/?);
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the second equality uses exp (¢/n'/?) = 1 4 ¢/n'/? 4+ ¢2/2n 4+ O(n=?/?), and the third equality
uses (1 —¢/2n'? + 2/8n)~" = 1 + ¢/2n'/? + % /8n 4+ O(n~>/?) together with E(z> — 1) =
0%, E(z* — 622 + 3) = 0* when x follows a N (6, 1) distribution.

(ii) From density to likelihood by Taylor expansion. The conditional model for s given ¢ is
available as the ¢-section of the density 4.6 and gives 4.8, up to a normalizing constant as:

g(slt; x) =co(s — xX){1 + as(t® — 1)/2n*/? + a®(s* — 1)(t* — 61> + 3)/8n} (4)
=¢(s — x){1 4+ as(t? —1)/2n*? + a(s*> — 1)(t* — 6t> + 3)/8n}
{1+ ax(t® = 1)/2n'? + o>\ (t* — 6t + 3)/8n} 1
=¢(s — {1+ as(t® — 1)/2n/? + a®(s* — 1)(t* — 61> + 3)/8n}
{1 —ax(t* — 1)/2n"% + a® 2 (t* + 2t* — 1)/8n}
=¢(s — x){1 +as(t? —1)/2n"/% + a®(s> — 1)(t* — 6t> 4+ 3)/8n}
exp {—ax(t? —1)/2n% + a®x2 (4t — 2)/8n}
The second equality comes by evaluating the constant c as the reciprocal of an integral with respect
to s and uses E(z) = 6 and E(2%—1) = 02 when z follows a N (6, 1) distribution; the third equality

comes from calculating the reciprocal of the factor coming from the preceding integration; and the
fourth comes by taking the preceding to the exponent.
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