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SUMMARY

When data is correlated both spatially and temporally, spatial and spatio-temporal mod-
elling is useful for meaningful interpretation of the parameters of the covariates and for
reliable predictions. In this paper we discuss some modelling strategies for point refer-
enced spatial and spatio-temporal data. We describe Gaussian models in this context and
use Bayesian hierarchical approaches for model based inference and predictions through
the Markov chain Monte Carlo (MCMC) algorithm. Yearly average precipitation data from
Western Australia is used to illustrate the models.

Keywords and phrases: Bayesian inference, spatial and spatio-temporal prediction, dy-
namic model.

1 Introduction

Practitioners and researchers are increasingly analysing data that are geographically referenced, and
both spatially and temporally correlated. For example, in environmental science, there is a growing
need to model climate data (e.g., temperature, precipitations) that are measured at a network of
monitoring stations with regular or irregular time-series of observations at each location. One of
the important intentions of modelling spatially referenced data is to obtain spatial predictions at
locations where no data has been observed, and also for spatio-temporal data to obtain forecasts to
future time-points. With the advancement of Bayesian methods and high powered computing in the
last few decades, spatial and spatio-temporal statistical modelling have became feasible and indeed
popular tools for analysing such data.

In this paper we present a brief overview of the models used for spatially referenced data. We
elaborate the models through real-life practical data applications using R (R Core Team, 2017),
a popular programming language tool for statistical applications. The models discussed in this
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Figure 1: Three types of spatial data: (a) Temperature monitoring locations in Western Australia,
(b) California redwood trees in a sampling region, and (c) Female population distribution in western
suburbs of Melbourne.

paper are hierarchical in nature and use Bayesian methods to obtain model-based inference and
predictions. We avoid technical theorems and proofs, and refer to those in books and articles when
necessary. In addition, we present a brief overview of Bayesian hierarchical techniques for readers.

Perhaps the most well-known book on spatial statistical analysis is Cressie (1993). The book
includes high level mathematics of the subject, but represents less on modern hierarchical Bayesian
methods. However, the recent books of Cressie and Wikle (2011), Banerjee et al. (2014) and Diggle
(2013) bring together modern aspects of spatial and spatio-temporal modelling theory. They cover
the effective use of Markov chain Monte Carlo (MCMC) computing for analysing spatial and spatio-
temporal data with complex and sophisticated hierarchical models, and extend the methodology to
non-Gaussian and multivariate data. The books also address the modelling problems associated with
spatial and temporal misalignments of data.

Spatially dependent data are often classified into three major types (Banerjee et al., 2014): (i)
point-referenced data (ii) point pattern data, and (iii) areal data. Point referenced data is also known
as the geostatistical data, where the random observation is measured at a location, which varies con-
tinuously over the study region. Theoretically the number of locations in the study region is infinite.
For point pattern data the study domain is random and its index set gives the locations of random
events that describe the observed spatial point patterns. The third type of spatial data is known as
areal data, where the study domain is a fixed subset with regular or irregular shapes, but partitioned
into a finite number of areal units with well-defined boundaries. Figure 1(a) is an example of the
point-referenced data where precipitation is measured at 38 high-quality weather monitoring loca-
tions in Western Australia (WA). Here the monitoring locations are fixed; however, the precipitation
measurements are random. An example of point-pattern data is shown in Figure 1(b), where Califor-
nian redwood trees are distributed over a sampling region (Strauss, 1975). Here the sampling region
is fixed; however, the position of the trees are random. Figure 1(c) is an example of areal data, where
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the distribution of the percentage of females in the population are observed at postcode levels in the
western part of Melbourne. This paper will focus on methods for analysing point referenced spatial
data only. Furthermore, we restrict attention to Gaussian modelling strategies for analysing point
referenced data.

In 1951 D. G. Krige, a South African mining engineer, developed a method for spatial predic-
tion using a small amount of Gaussian data. Later, Matheron (1963) formalised the method and
named it “Kriging” in honour of D. G. Krige. Kriging is basically a method of ‘optimal’ spatial
prediction at unobserved locations when the spatial covariance function is known. Krige developed
a range of statistical estimation methods for mining applications termed geo-statistical techniques.
One of his aims was to quantify the spatial variability of a variable of interest that varied spatially.
He mentioned that the spatial technique allows one to solve some important problems in mining
exploration.

The rest of this paper is organised as follows. In Section 2 we describe the basics of point ref-
erenced data and process. The technique ‘kriging’ is described with a practical data application.
Section 3 explains the basic idea of Bayesian analysis and modelling. This is followed by a de-
scription of spatial and spatio-temporal modelling techniques with examples in Sections 4 and 5.
In Section 6 we explain the concept of dynamic modelling with example. Finally, in Section 7 we
provide a conclusion with some discussions on the big-n problem for spatial and spatio-temporal
hierarchical models.

2 Spatial Processes and Kriging

Let s be any spatial location within a study region S C R?, where R¢ is the d dimensional space
(e.g., Euclidean). The spatial process is written as:

Z(s):seSc R

where Z(s) is a (univariate) measurement of the attribute of interest at location s. Notationally, for
n different locations, the measurements can be written as, Z(s) = (Z(s1),...,Z(sn))’-

Before further model discussions, we define the terms stationarity and isotropy. The idea of
stationarity comes from the general theory of stochastic processes. Consider two spatial locations, s
and s + h, where h € R?. A spatial process is called strictly stationary if, for any given n > 1, any
set of n locations {s1, . ..,s,} and for any h € R%, the joint distributions of Z(s) and Z (s + h) are
same, i.e.:

w(Z(s1),...,Z(sn)) =7(Z(s1 + h),..., Z(s, + h)).

Assume that the process has a valid covariance function Cov(Z(s), Z(s + h)). The process Z(s) is
known as second-order stationary (also known as weak stationary), if

Cov(Z(s),Z(s+h))=C(h), V scS8, heR?

where C'(h) is a function that depends on the difference in the spatial locations, h, only. For non-
stationary spatial process either or both the above type of stationarity conditions do not hold. The
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function C'(h), is known as a covariogram. The intrinsic stationary defines only the first and second
moments of the differences Z(s +h) — Z(s) but not anything about their distributions. We can
write the covariance function C'(h) as:

C(h) = aQﬁ(si,sj; D),

where o2 is the common variance term and £(s;, sj; @) is the spatial correlation between locations
s; and s; with smoothness and decay parameters & = (v, ¢)’.

A spatial process Z(s) is called isotropic if its covariance function C'(h) depends only on the
distance |h| between the two locations s and s + h. Covariance functions of anisotropic processes
exhibit different behaviour in different directions. However, isotropic processes are popular because
of their simplicity, and easy interpretability. There are some common parametric isotropic covari-
ance models available in spatial analysis (Banerjee et al., 2004, p.27). These models are in simple
parametric form and are available as candidates for the variogram 2+v(h), where the variogram is
defined as:

E[Z(s+h) — Z(s)]* = Var(Z(s +h) — Z(s)) = 2v(h)

The term ~(h) is also known as the semivariogram (Banerjee et al., 2004, p.22).
A special case of the function k(s;,s;; ®) is the parametric Matérn class correlation func-
tion (Matérn, 1986) defined as:

K(si; 855 0,v) = QV%F(V)(QWH& —s;ll0)" K, (2VV|[si —sjl|0), ¢ >0,v>0,

where K, is the modified Bessel function of the second kind with order v, and ||s; — s,|| is the dis-
tance between locations s; and s, Special cases of this correlation function include the exponential
and Gaussian form, obtained by setting v = 1/2 or v — oo, respectively. The exponential form is:

H(Sivsj§¢):exp(_¢|‘si_sj||)v ¢ >0,
and the Gaussian form is:

K(siysj39) = exp(—ollsi —s;[|*), ¢ >0.
We can also write the term x(s;, s;; ¢) as a parametic spherical correlation function:

3 1 3
r(si,sj30) = 1= Sollsi —sjll + S (@llsi —s51)°), 0 <[lsi —s5ll <1/¢.

A summary of the covariance functions are given in Banerjee et al. (2004)[p.24]. For more details
see Banerjee et al. (2014); Cressie (1993); Cressie and Wikle (2011).
2.1 Kriging

In spatial statistics the goal is to obtain an optimal spatial prediction (or kriging) for the variable Z
at a location s, where no data has been observed. For squared error loss the best linear prediction
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minimizes E[Z(so) — (3. 1;Z(s;) + 80)]? over &y and I;. We let >_1; = 1 for a constant mean
process and the term Jy becomes zero under unbiased and intrinsic stationarity assumptions. Using
Lagrange multipliers for constrained optimisation it can be shown that this becomes a function of
the semivariogram +(h) (Cressie, 1993). Thus, we obtain an ordinary kriging estimate by estimating
~. The beauty of ordinary kriging is that it does not require any distributional assumption for the
Z(s;). However, it comes with limitations of a constant mean, and it fails to estimate the uncertainty
of the prediction.
Kriging can also be structured in a Gaussian context. Let

Z=upl+n, wheren~ N(0,X),

where with a nugget effect, ¥ = o%x(.) + 721, and without a nugget effect, ¥ = o%x(.). Note that
the term o2 is known as the sill or spatial variance and the nugget effect (72) measures the variation
of the Gaussian white-noise. If we include covariates x = (z(s1), ..., x(s,))’ in the model, then:

Z=XB+mn, wheren~ N(0,Y),
X isan n x p design matrix and 3 is a p x 1 vector of parameters. The spatial prediction at sy is:
E[Z(s0) | 2] = x(,B+ C'S™H(Z — X ),

where C' = Cov(Z(s), Z(sp)) and xq is the observed covariates at the prediction location sg. In
this case the prediction error can be estimated.

2.2 Example

Consider the average precipitation data in Figure 1(a) collected from September—December 2009
at 38 locations in Western Australia (WA). To check the presence of the spatial correlation in these
data, we first plot the empirical variogram. Note that the data consists of 8 missing values. These
are removed, but can be treated as a part of the prediction problem. However, in Sections 4 and 5
a Bayesian approach can also be used to address the missing value problem for both spatial and
spatio-temporal models. Instead of analysing the actual precipitation observations, which are highly
skewed, the data are first transformed using a logarithm function. This ensures that the Gaussian
assumption is approximately satisfied (see details in Section 5.2).

Figure 2(a) shows the semivariogram plot. Observe that, as expected, the semi-variance increases
with distance. It is not straightforward to interpret a variogram; however, we can have an idea on
the spatial range and sill (¢2) from the plot. For example, from Figure 2(a) one can deduce that
the effective range is 250 kms with a sill of about 0.5 and nugget variance of 0.02. Note that there
is a cyclicity in the semivariogram, which may occurred due to underlying geological periodicity
or a limited amount of data (here we only have 30 data points). Clearly the data exhibits spatial
correlation so we can apply Kriging to predict to locations where there are no measurements. For
example, predictions to a regular grid covering the region can be made. Figure 2(b) shows a map of
the spatial prediction based on ordinary kriging (i.e., no covariates are used in the kriging method).
We see that the predictions approximately match the actual data in different locations. However, in
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Figure 2: (a) Semivariogram plot of the temperature data measured in Western Australia. (b) Spatial
prediction at grid points. The actual measurements are superimposed in the plot.

some places the predictions are inaccurate. This can possibly be improved by further modelling,
e.g., the use of covariates.

3 Bayesian Modelling

A Bayesian approach is often preferable to the traditional frequentist approaches since it lets us
deal with uncertainty in the model parameters. In the Bayesian framework prior information of
the parameters (represented by their distribution) is updated using Bayes theorem to obtain their
posterior distribution. Let f(z | @) be the likelihood function of parameters 8 = (61, ...,0,)" based
on the observed data z = (21, . .., 2,) . If we have a prior distribution 7 (@) for the parameters, then
from Bayes theorem the posterior distribution is:

0)m(6
0la) - SO0
Jo f(z]0)n(0)d6
where the denominator of the above equation is the integral over the parameter space ©. This integral
is also known as the marginal likelihood of the data z and it is free of the parameters 6, hence it can

be treated as a constant. That is why the posterior distribution is often written as proportional to the
product of the likelihood and the prior distribution, i.e.,

7(0|2) x f(z|0)r(8).
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Finally, inference is based on the updated information in the posterior distribution.

The choice of the prior distributions is one of the important steps in any Bayesian analysis. The
most attractive choice of prior distributions should be the one that best takes into account any previ-
ous knowledge. These types of priors are known as informative priors. However, there is often no
clear choice of prior distributions for unknown parameters. For various likelihood functions there
exists prior distributions that lead to a posterior distribution from the same distribution family as the
prior. These types of prior distributions are known as the conjugate priors. For example, the prior
distribution conjugate to a Bernoulli likelihood is a Beta distribution, and for a Poisson likelihood
the conjugate prior distribution is a Gamma distribution. Choice of this type of prior distribution is
attractive because of its straightforward computation. However, for many posterior and prior distri-
bution families this type of prior might not be available. To overcome this conjugacy problem, priors
with large variance are often used. These are referred to as noninformative priors. For example, the
inverse-gamma distribution with large variance is often used for the non-negative variance param-
eters in Bayesian models. For the noninformative prior, the uniform distribution is also commonly
used. In many situations Jeffrey’s rule is applied to obtain the noninformative prior distribution (Gel-
man et al., 2014)[p. 36], that is, it is proportional to the square root of the determinant of Fisher’s
information matrix. In this paper, we illustrate the examples in Sections 4.2, 5.2 and 6.1 considering
conjugate proper prior with large variance.

For making posterior inference from a Bayesian model, Markov chain Monte Carlo (MCMC)
methods are popular. The MCMC generates a sequence of samples from the joint probability
distribution of random variables. For example, the MCMC algorithm generates a Markov chain,
{H(j)}’j”:l, from the posterior distribution 7 (@ |z), where m is the number of MCMC samples.
Then, the samples are used to estimate integrals using Monte Carlo methods as:

B(1(0)) = [ 1(0)x(02)ab

where h(@) is a function of 8. Different MCMC simulation techniques are available, for exam-
ple, Metropolis and Metropolis-Hastings algorithm (Hastings, 1970), random walk Metropolis, and
Gibbs sampling (Gelfand and Smith, 1990). Details of these techniques are found in Gelman et al.
(2014, Ch. 11). To check the convergence of the MCMC algorithm several diagnostic methods
exist (Gelman and Rubin, 1992; Roberts et al., 1997); however, a time series plot of the MCMC
samples is a very popular way to check the status of the convergence visually.

4 Bayesian Spatial Modelling

In this section we present Bayesian spatial models and explain how spatial prediction (kriging)
at unobserved locations can be derived from such models. A vast literature on spatial prediction
from a Bayesian perspective can be found in Banerjee et al. (2014)[ch. 5] and Cressie and Wikle
(2011)[ch. 4.1]. In this paper we will restrict attention to univariate linear models. See Banerjee
et al. (2004)[ch, 7] for further details on bivariate and multivariate spatial models, although the
spatio-temporal model described in Section 5 can also be treated as a multivariate spatial model.
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A linear univariate spatial model can be written as:
Z=XB+n+e 4.1

Here, the residual is partitioned into spatial 7(s) and white-noise €(s) components. As defined
earlier 7(s) is a stationary Gaussian process that contains the partial sill (02), smoothness pa-
rameter (v), and spatial decay parameter (¢). White-noise adds the nugget (72) effect. Under
the Bayesian paradigm, setting @ = (3,02,7%,¢,v)’, and defining the prior distribution 7(8),
the posterior is 7(6|z) o« f(z|60)w(@). Typically one chooses independent priors, i.e., 7(0) =
7(8)m(0?)m(72)7(¢p)m(v). Commonly used candidates are the multivariate normal for 3, and in-
verse gamma for o2 and 72. Prior distributions for ¢ and v depend on the choice of the #(.) function
and usually a uniform or discrete prior is assigned. Bayesian models are hierarchical in nature. This
means we can split the univariate spatial model defined in eq. (4.1) into three levels (Cressie and
Wikle, 2011)[p. 21]:

Data Model: Z |9, ~ N (X8 + n, 7°I)
Process Model: i | 02, ¢, v ~ GP(0, 0% k()

Parameter Model: Priors on 0

The marginal posterior 7(€ | z) under the hierarchical setting is f(z |0, n)n(n|0)7(0). However,
Metropolis updates are needed for o2, 12, ¢ and v, because closed distributional forms can not
be obtained for these parameters. The Metropolis MCMC updates often converge faster than full
Gibbs (Gelfand and Smith, 1990) updates for a conditional model; however, precise tuning is re-
quired to obtain rapid convergence.

The model defined in eq. (4.1) can be restructured in a different way. A conjugate prior can be
used for the variance parameters that allows for a full conditional model. Thus,

Z=0+¢ 4.2)
O =X3B+n, (4.3)
where O = (O(s1),...,0(sy))’ is the true process corresponding to Z, and in the second stage

we model the true process as a function of the covariates X. The hierarchical structure for this
restructured model is:

Data Model: Z | 0,80 ~ N (O, 7°T)
Process Model: O | 3,02, ¢, v ~ GP(XB,0°k(-))

Parameter Model: Priors on 6

In this case full conditional distributions of the parameters o2 and 72 can be obtained in closed
form; however, it still requires a Metropolis update for the smoothness v parameter. Estimation of
v is often complex and a popular choice is to replace v with 1/2, which turns the Matérn into an
exponential covariance model. The spatial decay parameter ¢ also requires a Metropolis update.
Alternatively, add-hoc estimated values can be calculated based on the distances between the lo-
cations. The effective distance (of spatial dependency) is computed as [— log(0.05)/dax] (Finley
et al., 2007), where d,,,x is the maximum distance calculated from the model fitting locations.
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4.1 Prediction Details

Suppose we want to predict Z at location sg. The covariates at this location are xo. The posterior
predictive distribution for Z(sg) is obtained by integrating over the parameters with respect to the
joint posterior distribution:

w(Z(s0) |2, X,x0) = /w(Z(so) |z, 0, X,%x0)7(0 |2z, X)do. (4.4)

This integral can be estimated through Monte Carlo simulation using composition with Gibbs sam-
ples. The prediction details for the restructured model in eqs. (4.2) and (4.3) can be written as:

7T(Z(SO) | z, X7 XO) = /ﬂ-(Z(SO) | O(So), 07 z, 0) X7 XO)W(O(SO) | 07 z, 0; X7 XO)
% 7(0, 0| 7, X)dO(s)dOdO 4.5)

According to (4.2),
Z(so) ~ N(O(so),0?2),

where O(sg) is the true prediction values at location sy, and the samples for O(sg) are obtained

O(so) | _ N X(s0)B o2 1 Si2
() XB Sa1 S

where Sio is 1 x n with i'" entry given by, x(s;,s’;¢,.), i = 1,...,n and S12 = S5;. In sum-
mary, we draw samples 0, j > 1, from the full conditional posterior distributions and then draw
0U)(sg) and Z1) (sy).

4.2 Example

The R package spBayes (Finley et al., 2015) can be used for the spatial model defined in eq. (4.1),
where Metropolis MCMC updates are applied for the variance parameters in the model. For Gibbs
sampling the spTimer (Bakar and Sahu, 2015) package is useful. In this section spTimer is
used to fit the spatial model described in eqs. (4.2) and (4.3). The precipitation dataset described
in Section 2.2, used for the variogram and kriging problems, are compared here with the Bayesian
model-based fitting and predictions. The dataset is randomly divided into training (33 locations) and
test (5 locations) datasets, and then the Bayesian model is fitted to the training dataset and validated
with the test dataset. The following R output was obtained for when fitting the Gaussian process
spatial model in the spTimer package.

Model: GP

Call: precp ~ 1
Iterations: 5000
nBurn: 1000
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Goodness.of.fit Penalty PMCC

values: 3.41 18.12 21.53
Computation time: 3.28 - Sec.
Parameters:

Mean Median SD Low2.5p Up97.5p
(Intercept) 4.1590 4.1142 0.7522 2.6764 5.7581
sig2eps 0.2293 0.1877 0.1730 0.0781 0.6326
sig2eta 1.0571 0.5397 1.5769 0.2018 4.8904
phi 0.0527 0.0052 0.2622 0.0011 0.5836

Here, we ran 5,000 MCMC iterations and discarded the first 1,000 samples as burn-in. The summary
statistics presented are based on the remaining 4,000 MCMC samples. Observe that the spatial
variance, i.e. the sill, is estimated as 0.54 (median) and the variance for the white noise is estimated
as 0.19 (median). The Bayesian model estimates of the decay parameter is 0.0052, which represents
an effective range of — log(0.05)/0.0052 = 576.1 KM (Finley et al., 2013). The estimate for the
sill approximately matches the initial estimates that we obtained from the semivariogram plot in
Figure 2(a). However, the range and the nugget variance are estimated higher by the Bayesian
model. The predictive model choice criteria (PMCC) (Gelfand and Ghosh, 1998) is automatically
reported by spTimer. It can be used as a model selection criteria: lower values of PMCC indicate
better model fit (see details in Sahu et al., 2015; Crimp et al., 2015).

For validation we predict to the test locations and then calculate statistical validation criteria, e.g.,
mean squared error (MAE), root mean squared error (RMSE), etc. The spTimer package gives the
following results for the validation statistics. Note that the validation statistics were calculated using
the logarithmic value, and in this case the RMSE (of prediction) is 0.33. We can also obtain spatial
predictions to a set of grid points. Figures 3(a) and (b) show the median and standard deviation (sd)
of the predicted surface of the spatial process. Code for this analysis is provided in the Appendix.

S Bayesian Spatio-Temporal Modelling

The spatial process Z(s) can be extended to a spatio-temporal process with the addition of an index,
t, for time. That is:

Z(s,t):s€eSCRUteTCR

is used to denote the spatio-temporal process of interest. If the Z (s, t) process is observed at n spatial
locations sy, .. .,s, at T different time points, then the spatio-temporal process can be written as
Z(s,t) = (Z(s1,t),...,Z(sn,t))’, 1 <t < T. From a mathematical perspective, we can also
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Figure 3: Predicted surface of the spatial process at grid level: (a) median and (b) standard deviation
(sd).

represent the spatio-temporal process as a multivariate spatial process with dimension 7, (see e.g.,
Finley et al., 2015; Dou et al., 2010). They argue that every time point of the spatio-temporal process
can be regarded as a separate spatial random field.

Similar to the spatial processes, the spatio-temporal process Z(s,t) is considered to be mean
stationary within its spatio-temporal domain S x T, if its mean process is constant within the spatio-
temporal domain (Bruno et al., 2009). For weak stationary spatio-temporal processes, the mean
function is assumed to be constant and the covariance function is assumed to depend on spatial
and temporal covariances. Note that mean stationary only implies weak stationary if the first two
moments i.e., mean and variance exist, whereas weak stationary only implies strict stationary if the
spatio-temporal random process Z (s, t) is a Gaussian process.

One of the key conceptual aspects of spatio-temporal models is an understanding of the sepa-
rability of the space-time covariance function. The separability of models refers to formation of
the spatio-temporal covariance function as a product of the spatial and temporal covariance func-
tions (Rouhani and Myers, 1990; Diggle et al., 1998). A separable spatio-temporal covariance func-
tion is defined as:

C(Z(s,t); Z(s',t')) = Cs(s,s")Or(t, 1),

where s and s’ are the spatial locations and ¢ and ¢’ are the temporal points, and the terms Cs(s, s’)
and Cr(t,t’) represent the spatial and temporal covariance functions, respectively. A space-time
covariance function is called nonseparable if it cannot be represented as the product of spatial and
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temporal functions. For a separable process, the space and time covariance function can be modelled
separately.

The main advantage of assuming separability is computational convenience, since the spatio-
temporal covariance matrix can be written as the Kronecker product of two smaller dimensional
matrices. However, there are many nonseparable models available. For example, a set of nonsep-
arable stationary covariance functions for spatio-temporal data are discussed in Cressie and Huang
(1999). They used Fourier transforms in their approach to guarantee positive definiteness for the
covariance function. There are also other approaches for constructing non-stationary covariance
function (see for example, Stein, 2005; Schmidt and O’Hagan, 2003; Fuglstad et al., 2015; Cunha
etal., 2017).

We write the spatio-temporal model as:

Z:=X:B+n, +e; m~GP0,%), €~ N(0,7). (5.1

Note that eq. (4.1) and eq. (5.1) are almost the same except for the index ¢. Here, the term 7, is a
spatio-temporal process that can have either separable or nonseparable spatio-temporal covariance.

Another way of including the time-series correlation is by adding dynamic autoregressive param-
eters or processes in the modelling hierarchy. For example, a model can include the autoregressive
dynamics at the spatial error process level 7, (Sahu and Bakar, 2012b):

Zi=XiB+n te (5.2)
M=) Pnep + 0 8~ N(0,05D), (5.3)
k=1

where the term py, is the k" autoregressive parameter. It is also possible to developed a model
where the true process is used as a lagged autoregressive parameter. For example, Sahu et al. (2007)
developed the model:

Zt = Ot + € (54)
Ot = pO¢—1 + XiB + ny, (5.5)

where O (at time ¢ = 0) is an initial value that follows a Gaussian process with zero mean and a
known or unknown variance that may be introduced through prior information in the model. They
used a lag one model; however, the model can be extended for r lags by replacing pO;_; with
22:1 prO¢_k. A simpler version of models in eq. (5.4) and (5.5) can be obtained when p = 0:

Zt = Ot + € (56)
O; = XiB + ny, 6.7

where no autoregression has been used.

5.1 Prediction Details

Prediction for spatio-temporal models are two types: (1) prediction to an unobserved location sy and
(2) prediction to a future time point 7"+ 1. In the rest of this paper time prediction will be referred to
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as a forecast. Spatial prediction for models defined in eq. (5.6) and (5.7) are similar to that defined
in eq. (4.5); however, it will include an index for time-series ¢:

W(Z(S(), t) | z, X, X()) = /’7'1'(Z(S()7 t) | O(S(], t)7 O, z, 07 X, X())’ﬂ'(O(SO7 t) ‘ O, Z, 0, X, X())
(0,8 |z, X, %0)dO (s, t)dOdO (5.8)

Note that the input in the above integral changes for the different models described by egs. (5.1)
to (5.5).

Now, the one-step ahead forecast distribution of Z(sg, T + 1) at any unobserved location at time
T + 1 for the model defined in eq. (5.6) and (5.7) is:

w(Z(so, T+ 1) |2, X, X0141) = /W(Z(So,T—f— 1)|O(s0, T +1),0,2,0,X,%x017+41)

W(O(So, T + 1) ‘ Ov z, 07 X7 XO,T+1)7T(07 (7] | z, X7 XO,T+1)
dO(so, T + 1)dOd8 (5.9)

Similar to spatial prediction, the one-step ahead forecast distribution is constructed by combining
samples from the joint posterior MCMC samples. Note that the marginal distribution for the forecast
distribution is used instead of the conditional distribution because we have already obtained the
conditional distribution given the observed information up to time 7" at the locations s, ..., Sy.
In this case, at the future time point 7" + 1 no further information is needed except the covariates
x(sg, T + 1). It is also possible to obtain forecast distributions at any observed location s; at time
T+1 by iterative sampling from the conditional distribution O(s;, T+1) |. ~ N (x/(s;, T+1)3, 02)
and then Z(s;, T + 1) |. ~ N(O(s;, T + 1), 7%).

5.2 Example

To explore the applications of the spatio-temporal models we use the same precipitation data from
WA. However, unlike having only one time point (i.e., 2009) the dataset now consists of average
yearly precipitation measurements from 1960 to 2009. In this example we also use two climatic
covariates in the model. These are: (i) Indian Ocean Dipole (IOD) and (ii) El Nino-Southern Oscil-
lation (ENSO) anomaly (Anom3.4). It is well established that these indices have influence on the
onshore climatic measurements in Australia (Crimp et al., 2015).

Figure 4(a) shows a scatter plot of the precipitation measurements by years for all climate moni-
toring locations. We also superimposed the trends in precipitations, which show a decreasing pattern
over time. The histogram of the precipitation measurements in transformed scale (logarithm) is pre-
sented in Figure 4(b), which show a symmetric bell shape distribution compared to the distribution
of precipitation without any scale transformation.

The full precipitation dataset is divided into three parts, one for model fitting, and the other two
for validation using spatial and temporal predictions. The spTimer package is used in this context
and the models described in eq. (5.6) and (5.7) are fitted. We randomly selected 5 locations and the
last 5 years data are set aside as a validation dataset. The model was fitted to 33 locations and 45
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Figure 4: (a) Trends in precipitation measurements. (b) Distribution of precipitation in logarithmic
scale.

years of data. Hence, the data we use for model fitting contains 33 x 45 = 1485 observations. From
R the following summary statistics of the model parameters were obtained.

Model: GP

Call: precp -~ IOD + Anom3.4

Iterations: 5000

nBurn: 1000

Acceptance rate for phi (%): 27.78
Goodness.of.fit Penalty PMCC

values: 185.36 269.94 455.3

Computation time: 10.43 - Sec.

Parameters:

Mean Median SD Low2.5p Up97.5p
(Intercept) 4.2695 4.2589 0.0811 4.1393 4.4552
IOD -0.0251 -0.0249 0.0675 -0.1602 0.1125

Anom3.4 -0.0488 -0.0472 0.1181 -0.2954 0.1931
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Figure 5: (a) Scatterplot of the predicted versus observed precipitation data in transformed scale. (b)
5-year ahead forecast in original scale.

sig2eps 0.0075 0.0072 0.0013 0.0063 0.0103
sig2eta 0.4165 0.2566 0.5098 0.1362 1.5758
phi 0.0032 0.0030 0.0013 0.0011 0.0060

Note that the covariates IOD and Anom3.4 are not statistically significant as the 95% credible in-
terval contains zero. A possible explanation for this is that the covariates are observed globally, for
example, the IOD observations are measured from Indian Ocean sea surface temperature and ENSO
anomaly (Anom3.4) is measured from the mid-Pacific sea surface temperature. Hence, these values
are same for each monitoring location. This situation actually introduces a spatial misalignment
between the observed precipitation and the covariates, which will be discussed further in Section 6.
To validate the model we predict and compare with the test validation datasets that were created for
both spatial prediction and forecast (temporal prediction) at the unobserved spatial locations. Fig-
ure 5(a) shows a plot of the actual and predicted values in transformed scale. It can be seen that the
predictions match with the actual observations. The forecast values with credible 95% and 50% in-
tervals are given in Figure 5(b). As expected, the forecast intervals are wider compared to the spatial
prediction intervals. Also, the RMSE validation statistic was 0.29 for spatial prediction and 0.26 for
temporal prediction at the unobserved locations. It is also possible to obtain temporal predictions at
the spatial locations where data has already been observed. Detailed code to reproduce the results
are given in the Appendix.
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6 Dynamic Models

The models so far discussed in this paper are almost linear in nature. On the other hand the dynamic
models that will be described in this section are non-linear. Spatial models can be dynamic in form
by introducing spatially varying coefficients. Similarly a spatio-temporal dynamic model can have
both space and time varying coefficients.

Often it is necessary to understand the spatial effects of the parameters of the covariates. For
example, the influence of the covariates may vary across locations. In particular, these models are
useful when the covariate measurements are fixed over space, which is a common situation in en-
vironmental applications. For example, environmental indices such as IOD and ENSO anomaly
(Anom3.4) used in Section 5.2 for the precipitation example vary over time only, and their impact
may vary across space. These models can also be used to downscale (Berrocal et al., 2010; Kang
etal., 2012), where output from gridded numerical deterministic models is calibrated with point level
observational data. This type of calibration is also known as a change of support problem (Cressie
and Wikle, 2011). Among the popular approaches for solving the point-to-area problem are block
kriging (Gotway and Young, 2007), Bayesian melding (Fuentes and Raftery, 2005), fusion mod-
elling (Gelfand and Sahu, 2009) and the use of spatially varying coefficients (Berrocal et al., 2010;
Gelfand et al., 2003). Sometimes covariates are spatially misaligned with the predictand (Lopiano
et al., 2011; Szpiro et al., 2011) and dynamic models are also beneficial for this situation (Bakar
etal., 2015; Cai et al., 2013).

A spatially varying dynamic model can be written as:

Z(s) = chj(swj(s) +n(s) + €(s), (6.1)

where X;(s) is an n x n diagonal matrix of the j™ covariate and 3;(s) is the n x 1 vector of
corresponding parameters. Note that the difference between eq. (4.1) and (6.1) lies only in the
formation of the dynamic coefficient 3;(s). We assume that 3,(s) ~ GP(0,¥s,), where X5, =
0123] k(.;.). Similar to eq. (5.6) and (5.7), we can write the spatio-temporal version of the model as:

Z(s,t) = O(s,t) + €(s, 1) (6.2)
O(s,t) = Z %;(s,1)B;(s) + n(s,t) 6.3)

It is also possible to develop a model using temporal dynamics, where instead of the spatially vary-
ing parameter we include temporal dynamics with one or more lags for the covariate coefficients.
These models are also known as the dynamic linear models (West and Harrison, 1997; Dou et al.,
2010). Such models are popular for modelling data with seasonal variations and are mainly used
for time-series analysis. A spatio-temporal version of the DLMs incorporating seasonal effects was
introduced by Stroud et al. (2001)and Huerta et al. (2004). A number of practical applications have
been undertaken using different versions of the spatio-temporal DLMs, e.g., Gamerman et al. (2007);
Ghosh et al. (2010); Sahu and Bakar (2012a); Sigrist et al. (2013). This type of model can be written
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as:
Z(Si, t) = O(Si, t) + G(Si, t) (64)
p
O(si,t) =Y wj(si, )¢ (t) + m(sirt) (6.5)
j=1
G(t) = Z pikGs(t — k) +6;(t)  6;(t) ~ N(0,075) (6.6)
k=1

The models can also include the dynamics in the spatio-temporal process 7(s;, t) (Gelfand et al.,
2005), similar to the way they are defined in eq. (5.3). In this case an additional equation can be
added after eq. (6.6) as:

n(s,t) = Zpkn(s,t — k) +w(s,t); w(s,t) ~GP(0,02k(.;.)) 6.7)
k=1

For further reading see Banerjee et al. (2014)[ch. 10] and Cressie and Wikle (2011)[ch. 7]. Pre-
dictive distributions from the dynamic models discussed above can also be obtained by integrating

the joint distributions and by composite sampling from the joint posterior distribution (Bakar et al.,
2015, 2016).

6.1 Example

For dynamic model fitting, and spatial and temporal predictions the R package spTDyn (Bakar
et al., 2016) can be used. The package uses the spatio-temporal dynamics as an additive term for the
covariates in the model. Hence the model is of the form:

Z(s,t) = O(s,t) + €(s, t) (6.8)
p
O(s,t) = D _%;(5,1)B,(5) + x(5, )¢ (¢) + (s 1) (69)
j=1
¢(t) = GC(t — k) + 8(1), (6.10)
where x(s, t) is an n x p design matrix of covariates and ~y(¢) is the p x 1 parameter vector at time
t. The term G is a diagonal matrix of order p x p with elements p;, j = 1,...,p. Considering

p; = 1 leads to a spatio-temporal random-walk model (West and Harrison, 1997). Note that it is
also possible to construct a dynamic model that only consists of either spatial or temporal dynamic
parameters.

The training precipitation data is fitted and estimates of the dynamic parameters are obtained.
Figures 6(a) and (b) represent the estimates for the IOD and Anom3.4 for each spatial locations.
As expected, the estimates vary over the space. Similar results can be obtained for the dynamic
temporal parameters (¢). Figure 7 shows the yearly dynamic estimates for 1960 to 2004. In this
paper we fitted a random-walk model by assuming p = 1; however, one can also estimate p using
the package spTDyn. One can also obtain spatial and temporal predictions and validate it with the
validation datasets. See details of the code used in the Appendix.
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7 Conclusion

In this paper, we described some popular Bayesian spatial and spatio-temporal models to analyse
geographically point-referenced data. The assumptions of the Bayesian models were discussed and
predictions to locations where no data has been observed and forecasts to future time points were
obtained. The inclusion of spatial and temporal correlations in the model improves the accuracy
of such predictions. We discussed different ways of defining models and explained their relative
advantages and disadvantages. The average aggregated yearly precipitation data measured in WA
over 50 years from 1960 to 2009 was used as a practical application of the models. The global
climatic indices IOD and ENSO anomaly were also used in the analysis as predictor variables. Note
that models discussed in this paper are for Gaussian data, however in real-life the data may not
always follow a normal distribution. For example, precipitation data is highly skewed even at the
monthly level. One quick approach to resolve the issue is known as the scale transformation. Hence
as discussed in the example (see Section 5.2) we use a logarithmic transformation of the precipitation
observations.

It can be worthwhile, although sometimes more challenging, to implement efficient algorithms
to achieve rapid MCMC chain convergence. The dynamic models discussed in Section 6 are non-
linear and have autoregressive dependence in both spatial and time-series structure. Thus, besides
the Metropolis-within-Gibbs algorithm, it can be worthwhile implementing algorithms such as se-
quential Monte Carlo (Liu and Chen, 1998; Del Moral et al., 2006), its adaptive version (Zhou et al.,
2016), particle MCMC (Andrieu et al., 2010) or forward filtering-backward smoothing (Friihwirth-
Schnatter, 1994; Briers et al., 2010) to estimate the dynamic model parameters. These algorithms are
not only more efficient, but they can perform better with highly correlated data leading to improved
predictive performance of the model. Another approach known as the integrated nested Laplace
approximation (INLA) is often popular to obtain inference quickly (Rue et al., 2009). This method
is sometimes attractive to solve spatial problems; however, uses a computational approximation of
the marginal posterior rather than the MCMC techniques.

In addition to the models discussed in this paper, one important problem that often occurs in
spatial and spatio-temporal modelling is due to the presence of a large number of spatial data points.
This creates computational complexity when inverting the large n dimensional variance-covariance
matrix and is also known as the big-n problem (Banerjee et al., 2008; Cressie and Johannesson,
2008; Finley et al., 2009; Rue et al., 2009; Cressie et al., 2010; Guhaniyogi et al., 2011). In this
situation, the exact likelihood based inference becomes unstable and infeasible. A detail discussion
is given in Lasinio et al. (2013); Sahu and Bakar (2012b) and Sahu et al. (2015).

The models and applications used in this paper were for point-referenced data; however, spatial
data also come in the form of point-pattern (e.g., distribution of trees in a sampling region) and areal
(mortality rate in districts) structure, see Figures 1(b) and (c). The book by Diggle (2013) provides
methods for analysing point processes and also spatio-temporal point processes. It also provides
applications to real-life data examples including spatial epidemiology (Hossain and Lawson, 2009).
For areal data modelling, a discrete space conditional auto-regressive (CAR) specification is often
used for defining the area level spatial correlation (Lee, 2011; Lawson et al., 2012; Banerjee et al.,
2014, Ch. 3). The CAR approach considers a neighbourhood weight matrix determined with binary



36 Bakar & Kokic
specification that forces correlation between geographically adjacent areas.
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