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SUMMARY

In this paper, we consider a class of bathtub-shaped hazard function distribution through
modifying the Kies distribution and investigate some of its important properties by deriving
expressions for its percentile function, raw moments, stress-strength reliability measure etc.
The parameters of the distribution are estimated by the method of maximum likelihood and
discussed some of its reliability applications with the help of certain real life data sets. In
addition, the asymptotic behavior of the maximum likelihood estimators of the parameters
of the distribution is examined by using simulated data sets.

Keywords and phrases: Failure rate; Fisher information matrix; Maximum likelihood esti-
mation; Model selection; Percentile measures; Simulation.

1 Introduction
The Weibull distribution and its extended models have found wide applications in almost all areas of
sciences especially in engineering sciences, hydrological sciences, meteorological sciences, social
sciences etc. For details of some of these applications, see Meekar and Escobar (1998), Murthy et al.
(2004), Rinne (2009) and references therein. Some well-known extended Weibull models studied in
the literature are the beta Weibull distribution (BWD) (see Almalki and Nadarajah, 2014; Cordeiro
et al., 2013; Famoye et al., 2005), the beta generalized Weibull distribution (BGWD) (see Singla et
al., 2012) and the exponentiated Weibull distribution (EWD) (see Mudholkar et al., 1995). All these
families of distributions possess increasing, decreasing and/or bathtub-shaped hazard rate functions.
Kumar and Dharmaja (2014) studied the Kies distribution (KD) as an alternative to these extended
Weibull models and shown that it gives better fit to certain real life data sets compared to both the
BWD and the BGWD.

Consider the the following probability density function (pdf) of Kies distribution, in which 0 ≤
x ≤ α < ∞, λ > 0 and β > 0.

g1(x) = g1(x; α, λ, β) = αλβ xβ−1 exp
{
−λ
(
x/(α− x)

)β}
/(α− x)

β+1 (1.1)

? Corresponding author
c© Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka 1000, Bangladesh.



42 Kumar & Dharmaja

A distribution with pdf (1.1) hereafter we denote as KD(α, λ, β). The cumulative distribution
function (cdf) G1(x) of the KD(α, λ, β) is given by

G1(x) = 1− exp
{
− λ

(
x/(α− x)

)β}
, for x ∈ (0, α).

Recently exponentiated type distributions have received much attention in the literature due to its
flexibility in modelling certain applications. Analogous to the EWD model, through this paper we
propose an exponentiated form of the KD(α, λ, β) as a bathtub-shaped hazard function distribution
and name it as “the modified Kies distribution (MKD)”, which can be viewed as a generalization
of the exponentiated reduced Kies distribution, ERKD(β, δ), of Kumar and Dharmaja (2016). We
study several important properties of the MKD in Section 2 and it is important to note that the MKD
possess increasing or decreasing or bathtub-shaped hazard functions depending on the parameters of
the distribution. The maximum likelihood estimation of the parameters of the distribution have been
discussed in Section 3 and certain real life data applications in reliability studies are considered in
Section 4 for illustrating the usefulness of the proposed class of distributions and also compared the
proposed model with the existing models based on fitted values of the distribution and Weibull prob-
ability plots. Further, in Section 5 we examine the asymptotic behavior of the maximum likelihood
estimators of the parameters of the distribution by using certain simulated data sets.

We need the following integral/series representations in the sequel. For details regarding these
representations see Gradshteyn and Ryhzik (2007). For Re (ν) > 0, Re (µ) > 0,∫ u

0

xν−1 exp(−µx) dx = µ−νγ(ν, µu), (1.2)

in which

γ(a, u) =

∞∑
i=0

(−1)i

i!

ua+i

a+ i
, (1.3)

∫ ∞
0

xν−1 exp(−µx) dx = µ−ν Γ(ν),∫ ∞
u

x−ν exp(−x) dx = u−ν/2 exp (−ν/2)W− ν
2 , ( 1−ν

2 ) (u) , (1.4)

and for | arg(−x) |< 3π/2

Wk1, k2 (x) =
Γ(−2k2)

Γ
(

1
2 − k2 − k1

)Mk1, k2 (x) +
Γ(2k2)

Γ
(

1
2 + k2 − k1

)Mk1,−k2 (x) (1.5)

with

Mk1, k2 (x) = exp(−x/2) xk2+ 1
2

∞∑
n=0

{(
1
2 − k1 + k2

)
n

(1 + 2k2)n
·
xn

n!

}
,

where (c)n = c (c+ 1) · · · (c+ n− 1), forn ≥ 1 and (c)0 = 1.
We need the following series representations in the sequel. For any real valued function A(·, ·),

∞∑
s=0

∞∑
r=0

A (r, s) =

∞∑
s=0

s∑
r=0

A (r, s− r). (1.6)
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(cf. Kumar and Nair, 2012). For |x| < 1, the following expansion of (1− x)
ϑ in which ϑCr =

ϑ!
r! (ϑ−r)! , for any ϑ ≥ r with r = 0, 1, 2, . . . , ϑ and ϑ ∈ N , the set of all positive integers and

[ϑ]j = Γ(ϑ+1)
Γ(ϑ+1−j) , for ϑ ∈ [0,∞)−N, for each j = 0, 1, 2, . . .

(1− x)
ϑ

=

∞∑
j=0

(−1)
j

Γ (ϑ+ 1)

j! Γ (ϑ+ 1− j)
xj =


ϑ∑
j=0

(−1)
j ϑCj x

j , ϑ ∈ N

∞∑
j=0

(−1)j [ϑ+1]j
j! xj , ϑ ∈ R+ − N

Ei(x) =


γ + ln (−x) +

∞∑
k=1

xk

k× k! , for x < 0

γ + ln (x) +
∞∑
k=1

xk

k× k! , for x > 0,

(1.7)

ψ(x) = −γ − 1

x
+ x

∞∑
k=1

1

k (x+ k)
, for x > 0, (1.8)

where ψ(x) is the di-gamma function given by ψ(x) = d {ln [Γ (x)]}/dx, for Re(z) > 1 and
q 6= 0, −1, −2, . . .

ζ (z, q) =

∞∑
n=0

1

(q + n)
z (1.9)

and for Re (z) < 0 and 0 < q ≤ 1,

ζ (z, q) =
2 Γ (1− z)
(2π)

1−z

[
sin
(zπ

2

) ∞∑
n=0

cos (2πqn)

n1−z + cos
(zπ

2

) ∞∑
n=0

sin (2πqn)

n1−z

]
, (1.10)

in which γ ≈ 0.577215 is the Euler’s constant.

2 Definition and Properties
Here we present the definition of the modified Kies distribution and discuss some of its important
properties.

Definition 2.1. A random variable X is said to have a modified Kies distribution with parameters
α, λ, β, δ ∈ R+= (0,∞), written as “MKD(α, λ, β, δ)” if its cdf F (x) is of the following form.
For x ∈ (0, α),

F (x) =
{

1− exp
[
−λ
(
x/(α− x)

)β]}δ
. (2.1)

On differentiating (2.1) with respect to x, we get the pdf f(x) of the MKD(α, λ, β, δ) as in the
following, for x ∈ (0, α).

f(x) =
αλβ δ xβ−1 exp

[
−λ
(
x/(α− x)

)β] {
1− exp

[
−λ
(
x/(α− x)

)β]}δ−1

(α− x)
β+1

(2.2)
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Clearly when δ = 1, the MKD(α, λ, β, δ) reduces to the KD(α, λ, β) with pdf as given in
(1.1). When α = δ = 1, theMKD(α, λ, β, δ) reduces to the exponentiated reduced Kies distribution
of Kumar and Dharmaja (2016). Now, we have the following results.

Result 2.1. For any α, λ, β and δ ∈ R+, if X follows the MKD(α, λ, β, δ), then

(i) Z1 = (X/(α−X))
β follows the generalized exponential distribution of Gupta et al. (1998),

with cdf F1(z) = {1− exp (−λ z)}δ .

(ii) Z2 = X/(α−X) follows the exponentiated Weibull distribution [EWD(λ, β, δ)] of Mud-
holkar and Srivastava (1993) with cdf F2(z) =

{
1− exp

(
−λ zβ

)}δ
, which reduces to the

Weibull distribution WD(λ, β) , when δ = 1.

PROOF. Proof is straight forward and hence omitted

Result 2.2. The survival function S(x) and the hazard function h(x) of the MKD(α, λ, β, δ) are
respectively,

S(x) = 1− F (x) and h(x) = f(x)/S(x)

for any x ∈ (0, α) and α, λ, β, δ ∈ R+.

PROOF. Proof follows from the definition of survival function, hazard rate function and Definition
2.1.

Result 2.3. The hazard function h(x) of the MKD(α, λ, β, δ) is

(i) a bathtub-shaped function in the sense that it is a decreasing function of x for x < x0 and an
increasing function of x for x > x0, in which x0 is the solution of the equation(

(β − 1)α+ 2x
){(

F (x)
)(1/δ) − (F (x)

)(δ+1)/δ
}

− αβ λ (x/(α− x))
β
{

1− δ exp
[
−λ (x/(α− x))

β
]
− F (x)

}
= 0, (2.3)

when (a) β < 1, δ ≤ 1 (b) β < 1, δ ≥ 1 (c) β ≥ 1, δ < 1

(ii) an increasing function of x for β ≥ 1, δ ≥ 1

PROOF. Proof follows by taking the derivative of the hazard rate function with respect to x and on
simplification we get,

h′(x)

h(x)
=

{
1− exp

[
− (x/(α− x))

β
]}−1

x (b− x)

(
1−

{
1− exp

[
− (x/(α− x))

β
]}δ)

×
(

[(β − 1)α+ 2x]

{(
F (x)

) 1
δ −

(
F (x)

) (δ+1)
δ

}
(2.4)

−αβλ
(

x

α− x

)β {
1− δ exp

[
−λ
(

x

α− x

)β]
− F (x)

})
,
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Figure 1: The probability density function plots of the MKD(5, 0.5, 0.75, δ) (Left) and
MKD(5, 1.5, 2.5, δ) (Right).

which leads to the result.
For graphical illustration, we have plotted the pdf f(x) of the MKD(5, 0.5, 0.75, δ) and the

MKD(5, 1.5, 2.5, δ) for particular choices of δ in Figure 1, and the hazard rate function h(x) of the
MKD(5, 0.5, 0.75, δ) and the MKD(5, 1.5, 2.5, δ) for particular choices of δ in Figure 2.

Now we obtain certain percentile measures of the MKD(α, λ, β, δ) through the following re-
sults.

Result 2.4. For any α, λ, β, δ ∈ R+ and for any xP ∈ (0, α) such that P = F (xP ), the percentile
function xP of the MKD(α, λ, β, δ) with cdf (2.1) is xP = αηP (1 + ηP )

−1, in which

ηa =
[
−(1/λ) ln

(
1− a 1

δ

)] 1
β

,

for any a ∈ (0, 1).

PROOF. Proof follows by inverting the cdf F (xP ) = P of MKD(α, λ, β, δ).
Next we obtain the expression for rth raw moment of the MKD(α, λ, β, δ) through the follow-

ing result.

Result 2.5. If X follows the MKD(α, λ, β, δ) with cdf (2.1), then the rth raw moment µ′r of the
MKD(α, λ, β, δ) is the following, in which γ(a, u) is as given in (1.3) and for any i ≥ 0, j ≥ 0,

Λ
(1)
j (k − i, λ, β) =

γ
(
r+k−j+β

β , λ (j + 1)
)

λ
r+k−j
β (j + 1)

r+k−j+β
β

(2.5)

Λ
(2)
j (k − i, λ, β) = λ

k− i
2 β (j + 1)

k−i−2β
2β exp

[
− λ (j + 1)

2

]
W− k−i2β ,

β− (k−i)
2β

(λ (j + 1)) , (2.6)

where Wk1, k2(x) is the Whittaker function as defined in (1.5). For any δ ∈ N ,

µ′r = δ αr
∞∑
k=0

δ−1∑
j=0

(−1)
j+k (δ−1)Cj

k!

[
Λ

(1)
j (k, λ, β) + Λ

(2)
j (k, λ, β)

]
(2.7)
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Figure 2: The hazard rate function plots of the MKD(5, 0.5, 0.75, δ) (Left) and
MKD(5, 1.5, 2.5, δ) (Right).

and for δ ∈ R+ −N

µ′r = δ αr
∞∑
k=0

k∑
j=0

(−1)
j+k (δ−1)Cj

k!

[
Λ

(1)
j (k − j, λ, β) + Λ

(2)
j (k − j, λ, β)

]
(2.8)

PROOF. By definition, the rth raw moment of MKD(α, λ, β, δ) with pdf (2.2) is

µ′
r =

α∫
0

xrαλβ δ xβ−1

(α− x)
β+1

exp

[
−λ

(
x

α− x

)β]{
1− exp

[
−λ

(
x

α− x

)β]}δ−1

dx (2.9)

On substituting u =
(

x
α−x

)β
in (2.9), we get

µ′r = αr λ δ

∞∫
0


 u

1
β

1 + u
1
β

r

exp (−λu) [1− exp (−λu)]
δ−1

 du (2.10)

Now we have the following cases.

Case (i) For δ ∈ N , expanding {1− exp (−λu)}δ−1, we get the following from (2.10).

µ′r = αr λ δ

δ−1∑
j=0

(−1)
j (δ−1)Cj

∞∫
0

u
r
β(

1 + u
1
β

)r exp [−λ (j + 1) u] du


On splitting the integral and expanding (1 + u

1
β )
−r

, we get the following.
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µ′r = αrλδ

∞∑
k=0

δ−1∑
j=0

(−1)
j+k (δ−1)Cj

(r)k
k!


1∫

0

u
r+k
β exp [−λ (j + 1)u] du


+αrλδ

∞∑
k=0

δ−1∑
j=0

(−1)
j+k (δ−1)Cj

(r)k
k!


∞∫

1

exp [−λ (j + 1) u]

u
k
β

du


 (2.11)

On substituting λ(j + 1)u = v in (2.11), we get

µ′r = αr λδ
∞∑
k=0

δ−1∑
j=0

(−1)
j+k

(δ−1)Cj (r)k
k!


λ(j+1)∫

0

v
r+k
β exp (−v)

λ
r+k
β (j + 1)

r+k+β
β

dv




+ αr λδ

∞∑
k=0

δ−1∑
j=0

(−1)
j+k

(δ−1)Cj (r)k
k!

∞∫
λ(j+1)

λ
k
β (j + 1)

k
β−1

exp (−v)

v
k
β

dv

, (2.12)

which leads to (2.7) in the light of (1.2), (1.4), (2.5) and (2.6).

Case (ii) For δ ∈ R+ −N , on expanding {1− exp(−u)
δ−1} in (2.11),

µ′r = αr λ δ

∞∑
j=0

(−1)
j (δ − 1)j

j!

∞∫
0

u
r
β(

1 + u
1
β

)r exp [−λ (j + 1) u] du

 (2.13)

On splitting the integral and expanding (1 + u
1
β )
−r

in (2.13) to get the following.

µ′r = αr δ

∞∑
k=0

∞∑
j=0

(−1)
j+k (δ − 1)j (r)k

j! k!


1∫

0

u
r+k
β exp [−λ (j + 1) u] du




+αr δ

∞∑
k=0

∞∑
j=0

(−1)
j+k (δ − 1)j (r)k

j! k!


∞∫

1

exp [−λ (j + 1) u]

u
k
β

du


 (2.14)

On substituting λ(j + 1)u = v in (2.14),
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Figure 3: The plots of moment measures of skewness (Left) and kurtosis (Right) of
MKD(α, λ, β, δ) for particular values of the parameters.

µ′r = αrδ

∞∑
k=0

∞∑
j=0

(−1)
j+k (δ − 1)j (r)k

j! k!


λ(j+1)∫

0

v
r+k
β exp (−v)

λ
r+k
β (j + 1)

r+k+β
β

dv




+ αrδ

∞∑
k=0

∞∑
j=0

(−1)
j+k (δ − 1)j (r)k

j! k!


∞∫

λ(j+1)

λ
k
β exp (−v)

(j + 1)
(β−k)
β v

k
β

dv




µ′r = αr δ

∞∑
k=0

∞∑
j=0

{
(−1)

j+k (δ − 1)j (r)k
j! k!

[
Λ

(1)
j (k, λ, β) + Λ

(2)
j (k, λ, β)

]}

which leads to (2.8) in the light of (1.2), (1.4), (1.6), (2.5) and (2.6).
By using Result 2.5, we have computed the values of the moment measure of skewness γ1(=

µ3/µ
3/2
2 , in which µ3 is the third central moment) and the moment measure of kurtosis γ2(=

(µ4/µ
2
2) − 3, in which µ4 is the fourth central moment) for particular values of its parameters

and obtained the graphs in Figure 3.

Result 2.6. Let X be the strength of a system which is subjected to a stress Y , and if X follows
MKD(α, λ, β, δ1) and Y follows MKD(α, λ, β, δ2), provided X and Y are statistically indepen-
dent random variables , then R = P (Y < X), the measure of system performance (stress-strength
reliability measure) is

R = δ1/(δ1 + δ2) (2.15)

PROOF. Let f1(x) denote the pdf of X and f2(x) denote the pdf of Y , then

P (Y < X) =

∫ α

0

[(∫ x

0

f2 (y) dy

)
f1(x)

]
dx (2.16)
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By using (2.1), we obtain the following from (2.16).

P (Y < X) =

α∫
0

αβ δ1 x
β−1

{
1− exp

[
−λ (x/(α− x))

β
]}δ1+ δ2−1

(α− x)
β+1

exp
[
λ (x/(α− x))

β
] dx

On substituting u = 1−exp
[
−λ (x/(α− x))

β
]

in (2.17), we getP (Y < x) = δ1
1∫
0

u δ1 + δ2−1 du

which gives (2.15).
Analogous to certain characteristic property enjoyed by Weibull distribution, we obtain similar

characteristic property of MKD(α, λ, β, δ) through the following theorems.

Theorem 1. IfX followsMKD(α, λ, β, δ) with cdf F (x) as given in (2.1), then for any y ∈ [0, α),
and for every 0 ≤ x ≤ α <∞, λ > 0, β > 0, and δ > 0,

(i) E
{(

1− F (x)
)
| X > y

}
=
(
1− F (x)

)
/2, (2.17)

(ii) E
{

ln
(
1− F (x)

)
| X > y

}
= ln [1− F (x)] − 1 (2.18)

(iii) E
{
δ−1 ln [1− F (x)] | X ≤ y

}
= δ−1 ln [1− F (x)]− δ−1. (2.19)

PROOF. Since the cdf F (x) of MKD(α, λ, β, δ) given in (2.1) has the form

F (x) =


0 for x < 0{

1− exp
[
−λ (x/(α− x))

β
]}δ

for x ∈ [0, α)

1 for x ≥ α

and φ1 (x) = 1 − F (x) is real valued, continuous and differentiable function on [0, α) with
E [φ1 (X)] = 1/2, g(k) = 0, ψ (k) = 1/2 and by Theorem 7 on Page 260 of Rinne (2009),
we obtain (2.17).

Since the cdf F (x) of the the MKD(α, λ, β, δ) given in (2.1) has the form

F (x) =


0 for x < 0

1− exp

[
ln

(
1−

{
1− exp

[
−λ (x/(α− x))

β
]}δ)]

for x ∈ [0, α)

1 for x ≥ α

and φ2 (x) = ln (1− F (x)) is real valued, continuous and differentiable function on (0, α) with
limx ↑αφ2(x) = −∞ and d = −1, by Theorem 8 on Page 262 of Rinne (2009), we obtain (2.18).

Further, since the cdf F (x) of the MKD(α, λ, β, δ) given in (2.1) takes the form

F (x) =


0 for x < 0

exp
[
δ ln

{
1− exp

[
−λ (x/(α− x))

β
]}]

for x ∈ [0, α)

1 for x ≥ α
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and φ3(x) = (1/δ) ln [F (x)] for 0 ≤ x ≤ α <∞ is a real-valued monotone function continuously
differentiable on (0, α] with limx ↓ a φ3(x) = −∞ with E [φ3(X)] = −1/δ, d = −1/δ and by
Theorem 9 on Page 264 of Rinne (2009) , we obtain (2.19).

Theorem 2. Let X1, . . . , Xn be n independent and identically distributed (i.i.d.) random vari-
ables following the MKD(α, λ, β, δ) with cdf (2.1) and let Y = max(X1, . . . , Xn). Then Y fol-
lows the MKD(α, λ, β, nδ). Conversely, if Y follows the MKD(a, b, η, ω), then each Xi follows
MKD(a, b, η, ω n−1), i = 1, 2, . . . , n.

PROOF. If X1, . . . , Xn are i.i.d. MKD(α, λ, β, δ) variates each with pdf (2.2), the pdf fn(y) of
Y = max(X1, . . . , Xn) is the following, for any α > 0, λ > 0, δ > 0 and β > 0.

fn(y) =
αλβnδyβ−1

(α− y)
β+1

exp
[
−λ (y/(α− y))

β
]{

1− exp
[
−λ (y/(α− y))

β
]}nδ−1

Since the pdf gn(z) of maximum of n i.i.d. random variates each with pdf g(z) and cdf G(z) is
gn(z) = ng(z)[G(z)]

n−1. Thus Y follows the MKD(α, λ, β, nδ).
Conversely, assume that Y = max(X1, . . . , Xn) follows the MKD(a, b, η, ω), then the cdf

Fn(y) of Y is
Fn(y) =

{
1− exp

[
−b
(
y/(a− y)

)η]}ω
(2.20)

in the light of (2.1). For any i.i.d. random variates Z1, . . . , Zn each with cdf G(z), the cdf Gn(z) of
Z = max(Z1, . . . , Zn) is

Gn(z) = [G(z)]
n
. (2.21)

Now we obtain the following from (2.20) in the light of (2.21).

[F (y)]
n

=

{
1− exp

[
−b
(

y

a− y

)η]}ω
.

Thus the pdf of X1 is

f(y) = F ′ (y) = abη
ω

n

yη−1

(a− y)
η+1 exp

[
−b
(

y

a− y

)η]{
1− exp

[
−b
(

y

a− y

)η]}ω
n−1

.

3 Estimation
Here we discuss the maximum likelihood estimation of the parameters of the MKD(α, λ, β, δ).
Consider the following log-likelihood function ` of a random sample X1, . . . , Xn taken from a
population following the MKD(α, λ, β, δ) with pdf (2.2).

` = n ln (δ) + n ln (β) + n ln (λ) + n ln (α) + (β − 1)

n∑
i=1

ln (xi)− λ
n∑
i=1

(
xi

α− xi

)β
− (β + 1)

n∑
i=1

ln (α− xi) + (δ − 1)

n∑
i=1

ln

{
1− exp

[
−λ
(

x

α− x

)β]}
(3.1)
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On differentiating the log-likelihood function (3.1) with respect to the respective parameters and
equating to zero, we can obtain the likelihood equations. On solving these likelihood equations
one can obtain the maximum likelihood estimates (MLE)of the parameters of MKD(α, λ, β, δ).
These likelihood equations do not always have a unique solution because the MKD(α, λ, β, δ) is
not a regular model. By using the package ‘maxLik’-R (cf. Henningsen and Toomet , 2011), we
observed that the second order partial derivatives of the log-likelihood function with respect to the
parameters gives negative values for α > 0, λ > 0, β > 0 and δ > 0. The expressions of elements
of the corresponding Fisher information matrix I(θ) are given in Appendix.

4 Applications
In this section we discuss certain applications of theMKD(α, λ, β, δ) with the help of the following
data sets.

Data set 1 The data set on 30 “times of failure and running times” for a sample of devices from a
field-tracking study of a larger system taken from Meekar and Escobar (1998) is:

275, 13, 147, 23, 181, 30, 65, 10, 300, 173, 106, 300, 300, 212, 300, 300, 300, 2, 261, 293,

88, 247, 28, 143, 300, 23, 300, 80, 245, 266

Data set 2 The data set on 23 “time between failures of secondary reactor pumps” taken from
Bebbington et al. (2007) is:

2.160, 0.150, 4.082, 0.746, 0.358, 0.199, 0.402, 0.101, 0.605, 0.954, 1.359, 0.273, 0.491,

3.465, 0.070, 6.560, 1.060, 0.062, 4.992, 0.614, 5.320, 0.347, 1.921

Data set 3 This data set is taken from Aarset (1987) which is “on lifetimes of 50 components” and
they are given as follows:

0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45,

46, 47, 50, 55, 60, 63, 63, 67, 67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85,

85, 85, 85, 85, 86, 86

Data set 4 The data set on 19 “initial remission times of leukemia patients” taken from Lee and
Wang (2003) is:

8, 10, 10, 12, 14, 20, 48, 70, 75, 99, 103, 161, 162, 169, 195, 199, 217, 220, 245

We have fitted theMKD(α, λ, β, δ) to the data sets with the help of the package ‘maxLik’-R
(cf. Henningsen and Toomet, 2011). We have fitted the following models to the four data sets for
comparison
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(a) the KD(α, λ, β), in which 0 ≤ x ≤ α < ∞, λ > 0 and β > 0 (cf. Kumar and Dharmaja,
2014),

(b) the BGWD(µ, θ, σ, τ, ρ), in which x > 0, µ, θ, σ, τ and ρ > 0. (cf. Singla et al., 2012),

(c) the BWD(µ, θ, σ, ρ), in which x > 0, µ, θ, σ and ρ > 0 (cf. Famoye et al., 2005) and

(d) the EWD(µ, σ, ρ), in which x > 0, µ, θ, σ and ρ > 0. (cf. Mudholkar et al., 1995).

Then we compared the fitted model theMKD(α, λ, β, δ) with that of fitted models-theKD(α, λ, β),
theBGWD(µ, θ, σ, ρ, τ), theBWD(µ, θ, σ, ρ) and theEWD(µ, σ, ρ). For model comparison, we
have computed the values of log-likelihood, the Akaike information criterion (AIC), Bayesian in-
formation criterion (BIC) and the second order Akaike information criterion (AICc) and included in
Table 1. It is seen that the values of the AIC, the BIC and the AICc of each data set in the case of
the MKD(α, λ, β, δ) model is the lowest. Hence the MKD(α, λ, β, δ) can be viewed as the best
model compared to other existing models considered in this section. Further, we have plotted the
cdf of these fitted models against the corresponding empirical distribution in Figure 4. Figure 4 also
supports the above conclusion that the MKD(α, λ, β, δ) gives a better fit to each data set compared
to other generalized Weibull models considered in this paper. Moreover, using these fitted models,
we have obtained the Weibull Probability Plots (WPP plots) as in Figure 5 corresponding to the two
data sets for comparing the models. These plots also indicate that the MKD(α, λ, β, δ) as the best
model to the data sets considered in the paper compared to other existing models.

5 Simulation
In order to assess the performance of the maximum likelihood estimators of the parameters of the
MKD(α, λ, β, δ), we have carried out a brief simulation study. We, simulated datasets by adapting
probability integral transform method based on the following sets of of parameters according to the
nature of the skewness.

(i) α=5, λ=1.5, β= 2.5 and δ= 0.2 (positively skewed)

(ii) α=20.28, λ=27.13, β= 10.51 and δ= 0.16 (negatively skewed).

We considered 200 bootstrap samples of sizes n = 10, 25, 50 and 100 for comparison and computed
average bias and mean squared errors (MSEs) in each case. The results obtained are summarized in
Table 2. From Table 2, it can be observed that both the average bias and MSEs of the estimators are
in decreasing order, as sample size increases.
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Table 2: Average bias and mean squared errors (in brackets) of the MLEs of the GKD(α, λ, β, ρ)
based on simulated data sets for the parameter sets (i)α = 5, λ = 1.5, β = 2.5, ρ = 0.2 and (ii)
α = 20.28, λ = 27.13, β = 10.51, ρ = 0.16.

Sample size

Parameter 10 25 50 100

Parameter α -0.8596 0.1329 -0.1162 -0.0939

Set (i) (1.1689) (1.1459) (0.2776) (0.0308)

λ -0.8880 0.3561 -0.2148 0.0072

(3.0252) (2.3675) (0.2435) (0.0563)

β 1.8214 -0.1367 -0.0718 0.0653

(4.4569) (1.2201) (0.0668) (0.0286)

ρ 0.2563 0.1565 0.0597 0.0287

(2.9952) (0.1266) (0.0047) (0.0011)

Parameter α -2.6349 -0.2522 -0.1579 0.1011

Set (ii) (7.9427) (0.0538) (0.0368) (0.0112)

λ -0.1548 -0.0677 0.0488 0.0226

(0.0439) (0.0068) (0.0054) (7.90E-04)

β 7.2212 0.6093 -0.1937 -0.1008

(68.3939) (0.3713) (0.0379) (0.0125)

ρ -0.0833 -0.0490 0.0107 0.0053

(0.0069) (0.0024) (8.00E-04) (2.89E-05)

6 Conclusion

In this paper, an exponentiated version of the Kies distribution namely “the modified Kies distri-
bution MKD(α, λ, β, δ)” is introduced as a generalization of the exponentiated reduced Kies dis-
tribution ERKD(β, δ) of Kumar and Dharmaja (2016) and investigated several properties of the
distribution. It can be noted that the support of the ERKD is over the range (0,1) while that of the
MKD(α, λ, β, δ), is over the range (0, α), for α > 0. So, in certain practical situations, the data
need to be transformed while fitting the ERKD(β, δ), and this drawback is investigated in the case
of MKD(α, λ, β, δ). Further the inclusion of scale parameter λ helps to create more flexibility in
practical point of view and thus the practical relevance of the model is quite obvious from the fitting
of the model to various data sets considered in Section 4 of the paper. Further a brief simulation
study is carried out for examining the asymptotic behavior of the maximum likelihood estimates of
the parameters of the distribution.
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Figure 4: Empirical and Fitted distribution function plots for the Data set 1 ( Top Left), Data set 2
(Top Right) and Data set 3 (Bottom Left) and Data set 4 (Bottom Right).

Figure 5: Weibull Probability Plots for Data set 1 ( Top Left ), Data set 2 (Top Right), Data set 3
(Bottom Left) and Data set 4 (Bottom Right).
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I ′13 = I ′31 = −λδ
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1
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1
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j
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2 +

Γ
(

1
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)
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1
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
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(−1)
j
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{ψ (2) − ln [λ (j + 2)]}
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1
β + 3
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ψ
(

1
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λδ (δ − 1)

β
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j
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{
ψ (2) − ln [λ (j + 2)]
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2

}
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β
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(−1)
j

(δ − 3)j
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{
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3

}
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{
(−1)

j
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j! [λ (j + 2)]
2

}
,

I ′33 = − 1

β2
− 1λ2δ

β2
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j=0

(−1)
j

(δ − 1)j
j!

{
{ψ (2) − ln [λ (j + 1)]}2 + ζ (2, 2)
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2

}

+
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(−1)
j
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{
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2

}
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∞∑
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(−1)
j

(δ − 3)j
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{
{ψ (3) − ln [λ (j + 2)]}2 + ζ (2, 3)
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3

}

I ′34 = I ′43 =
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β

∞∑
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(−1)
j
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{
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2

}
,
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in which Ei(x), ψ(x) and ζ(x, q) are as given in (1.7), (1.8), (1.9) and (1.10).
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