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SUMMARY

Two-stage longitudinal studies are common in the treatment of mental diseases, such as
chronic forms of major depressive disorders. Outcomes in such studies often consist of
repeated measurements of scores, such as the 24-item Hamilton Rating Scale for Depres-
sion, throughout the duration of therapy. Two issues that make the analysis of data from
such two-stage studies different from standard longitudinal data are: (1) the randomization
in the second stage for patients who fail to respond in the first stage; and (2) the drop-out
of patients which sometimes occurs before the second stage. In this article, we show how
the weighted generalized estimating equations can be used to draw inference for treatment
regimes from two-stage studies. Specifically, we show how to construct weights and use
them in the generalized estimating equations to derive consistent estimators of regime ef-
fects, and compare them. Large-sample properties of the proposed estimators are derived
analytically, and examined through simulations. We demonstrate our methods by applying
them to a depression dataset.

Keywords and phrases: Dynamic treatment regime; Generalized estimating equations;
Inverse-probability-weighting; Two-stage design.

1 Introduction

In the past decade, a number of studies have shown the efficacy of pharmacotherapies and psy-
chotherapies in treatment of chronic forms of major depressive disorders. However, nearly 50% of
patients with chronic forms of major depressive disorders fail to respond to the first line pharma-
cotherapies or psychotherapies (Kocsis et al., 2009). Hence, for those who do not respond adequately
to the first line therapy, combining pharmacotherapy and psychotherapy to replace monotherapy is
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becoming more and more frequent in clinical practice. Combination treatment, in general, is rel-
atively more expensive than monotherapy. A practical treatment strategy could be initially giving
patients with chronic forms of major depressive disorders a common medication, which is usually
cheaper, such as an antidepressant, and adding psychotherapy, which is more expensive, if patients
have poor or partial response to the initial medication. Often, multiple stages of treatments may be
necessary to achieve a response. A patient moves to the next stage of therapy in two circumstances:
(1) if a patient achieves response, the patient could continue the same therapy or his/her therapy
could be modified to maintain the response; and (2) if a patient fails to respond in the previous stage,
the patient would be given some alternative therapies to achieve a response.

Between 2002 and 2006, the Research Evaluating the Value of Augmenting Medication with
Psychotherapy (REVAMP) study (Trivedi et al., 2008) enrolled a total of 808 patients to determine
the role of adjunctive psychotherapy in chronically depressed patients who had less than complete
response to an initial medication. The study consisted of two 12-week stages. In stage one, pa-
tients were assigned one of four treatments of antidepressants by the REVAMP physicians based
on a pharmacotherapy algorithm. These antidepressants were Sertaline (SERT), Escitalopram (Ec-
CIT), Bupropion (BUP-SR), and Venlafaxine (VLF-XR). After up to 12 weeks of treatment in stage
one, patients not meeting certain response criteria were randomized to three pharmacotherapies in
stage two. These pharmacotherapies were Cognitive Behavioral Analysis System of Psychotherapy
(CBASP), Brief Supportive Psychotherapy (BSP), and Medication alone (MED). For patients with
full response to their antidepressant in stage one, the same antidepressant was given continuously
in stage two. In both stages, a patient’s 24-item Hamilton Rating Scale for Depression (Hamilton,
1960), was collected at each visit.

The purpose of the REVAMP study was to determine optimal adjunctive psychotherapies with
which chronically depressed patients would benefit most. Since the adjunctive psychotherapies
would be offered only if a chronically depressed patient fails to respond to the pharmacotherapy,
possible choices of treatment regime would be to continue the same pharmacotherapy if a patient
responds to the therapy and to choose a psychotherapy if the patient fails to respond to the pharma-
cotherapy. Because there would be different options of pharmacotherapies and psychotherapies, the
practicing physicians would have to choose from many different treatment regimes. For example, in
the REVAMP study, there were three possible treatment regimes: (1) treat with an antidepressant,
continue the antidepressant if respond, otherwise add CBASP to the antidepressant; (2) treat with an
antidepressant, continue the antidepressant if respond, otherwise add BSP to the antidepressant; and
(3) treat with an antidepressant, continue the antidepressant if respond, otherwise add MED alone
to the antidepressant. The aim of this study was to compare the efficacy of adding CBASP or BSP
to continued treatment of antidepressants with MED alone. One naive way to analyze data from
such designs would be to compare the psychotherapies conditional on the fact that the patients did
not respond in stage one. However, this would be a conditional analysis and would not address the
question of choosing an overall treatment regime to be best among all possible regimes.

The generalized estimating equations approach (Liang and Zeger, 1986; Zeger and Liang, 1986)
is one of the well-known statistical methods to estimate the marginal treatment effect from longi-
tudinal data. In a study with two stages of therapies, such as the REVAMP study, a patient can
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belong to several treatment regimes. For example, patients who had responded to the initial treat-
ment would continue their treatment in stage two in the REVAMP study. These patients were treated
consistently with all three regimes. Therefore, the standard generalized estimating equations may
not be directly applicable. Additionally, patients who become eligible for the second stage treat-
ments receive treatment by randomization and hence, the inverse-probability-weighted generalized
estimating equations (Robins et al., 1995) can be used to account for the randomization. In recent
years, many authors had studied the applications of the inverse-probability-weighted generalized
estimating equations to estimate the effect of dynamic treatment regimes from sequential, multiple
assignment, randomized trials (SMART). In Lu et al. (2016), the authors provided discussions on
several SMART designs and modeling considerations for repeated measures in different degrees of
complexity in SMART designs. In Li (2017), the authors estimated the randomization probabilities
to improve the efficiency of the estimators for SMART designs and discussed various considerations
to model the change of treatment effects over time. In this article, we develop analytical strategies
for estimating treatment effects for dynamic treatment regimes to further consider patients who may
drop out throughout the study. Drop-outs prior to observing the response status in stage one may
be due to lack of efficacy to the first line therapy. Ignoring these patients in estimation might lead
to biased estimates of effects of treatment regimes (Diggle et al., 2002). In this article, we use the
inverse-probability-weighted generalized estimating equations to account for drop-outs. We derive
consistent and asymptotically normal estimators of regime effects, and provide the Wald test for
comparing different regimes.

2 Data, Model, and Assumptions

We consider a design that is more general than the REVAMP study. We assume that each patient
i, i = 1, . . . , n, receives a first line treatment Aj in the first stage, j ∈ {1, . . . , J}. Patients who
respond to Aj are randomized to a maintenance treatment Bk, k ∈ {1, . . . ,K}, and patients who do
not respond to Aj are randomized to an alternative treatment B′l , l ∈ {1, . . . , L}. The objective is to
compare the effects of various treatment regimes arising from a combination of the initial treatment,
intermediate response, and the second stage treatment. A treatment regime, AjBkB′l , is defined as:
treat with Aj followed by Bk if respond, by B′l otherwise. Patients are followed over time, and
for patient i, a continuous outcome Yim (e.g. the 24-item Hamilton Rating Scale for Depression) is
measured at time tim, m = 1, . . . ,Mi.

In the presence of randomization and drop-out, it is often useful to apply the idea of counter-
factuals to the data analysis (Holland, 1986). For patient i, i = 1, . . . , n, define Ri(Aj) to be the
response status if the patient receives the first line treatment Aj ; let tim1i

be the time when patient i
is declared a responder or non-responder to the first line treatment Aj , at which point randomization
to the second set of treatment occurs, m1i ∈ {1, . . . ,Mi}. Whether observed or not, we define the
following outcomes: Yi(Aj), a m1i × 1 vector of repeated measures of outcome at time points in
stage one if patient i receives treatment Aj in stage one; Yi(AjBk), a (Mi − m1i) × 1 vector of
repeated measures of outcome at each time point in stage two if patient i receives treatment Aj in
stage one andBk in stage two after responding toAj ; Yi(AjB′l), a (Mi−m1i)×1 vector of repeated
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measures of outcome at each time point in stage two if patient i receives treatment Aj in stage one
and B′l in stage two after failing to respond to Aj . For simplicity, let us assume J = K = L = 2.
Thus, for one initial treatmentA1, patient i could be associated with the following random variables:

{Ri(A1), [1−Ri(A1)] , Yi(A1), Yi(A1B1), Yi(A1B2), Yi(A1B
′
1), Yi(A1B

′
2)} . (2.1)

In terms of these counterfactual variables, let the Mi × 1 vector outcome of patient i under
treatment regime A1BkB

′
l for k, l ∈ {1, 2} be Yi(A1BkB

′
l). The m-th element of Yi(A1BkB

′
l)

represents the outcome of patient i at time tim under regime A1BkB
′
l , and it can be expressed as:

Yim(A1BkB
′
l) = I(tim ≤ tim1i)Yim(A1) + I(tim > tim1i)

×
{
Ri(A1)Yi(m−m1i)(A1Bk) + [1−Ri(A1)]Yi(m−m1i)(A1B

′
l)
}
. (2.2)

In a similar fashion, we can define the outcome, Yim(A2BkB
′
l), for patient i at time tim given

A2BkB
′
l . Therefore, without loss of generality, we will consider one treatmentA1 in stage one. Our

interest is to estimate the effect of treatment regime A1BkB
′
l on time, which is formulated as the

coefficient β1,1kl of time in the marginal mean model:

E [Yim(A1BkB
′
l) | tim,Wi] = β0,1kl + β1,1kl × tim + β2,1klW1i + · · ·+ βp+1,1klWpi, (2.3)

where Wi = [W1i, . . . ,Wpi]
T is a p × 1 vector of baseline covariates for patient i. In other words,

we would like to estimate the parameters β1kl = [β0,1kl, . . . , βp+1,1kl]
T . If Yim(A1BkB

′
l) were

observed for each patient in the sample, the generalized estimating equations could have been used
to estimate these coefficients. However, in reality, we cannot observe the outcome Yim(A1BkB

′
l) for

all patients. For example, if a patient receivesA1, responds toA1, and then receivesBk′ where k′ 6=
k, we do not observe Yim(A1BkB

′
l) for that patient. The complete observed data are characterized

as the set of independent and identically distributed random list:

{Ri, RiZki, (1−Ri)Z ′li,Wi, Yi} (k, l ∈ {1, 2}, i = 1, . . . , n),

where Ri = 1, if the patient is a responder, and Ri = 0, if otherwise; Wi = [W1i, . . . ,Wpi]
T is

a p × 1 vector of p baseline covariates; Zki and Z ′li are the assignment indicators for treatment Bk
and B′l , respectively, for k, l ∈ {1, 2}; Z1i = 1(0) if patient i is randomized to B1(B2); Z ′1i = 1(0)

if patient i is randomized to B′1(B′2); Z2i and Z ′2i satisfy Z1i + Z2i = 1 and Z ′1i + Z ′2i = 1; Yi is a
Mi × 1 vector of repeated observed outcome for patient i.

In order to draw inference on Yi(A1BkB
′
l) from observed data, the consistency assumption

is required to connect observed data and counterfactuals (Rubin, 1974; Robins et al., 2000). The
consistency assumption implies that the observed outcome is equal to the counterfactual outcome
under treatment assignment consistent with the counterfactual. In other words, for m = 1, . . . ,Mi,

Yim = I(tim ≤ tim1i
)Yim(A1) + I(tim > tim1i

)

×

{
Ri

2∑
k=1

ZkiYi(m−m1i)(A1Bk) + (1−Ri)
2∑
l=1

Z ′liYi(m−m1i)(A1B
′
l)

}
. (2.4)
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Another frequently made assumption is the sequential randomization assumption which states that
the probabilities of assigning treatmentBk andB′l do not depend on counterfactuals given the history
of information collected prior to the randomization (Rubin, 1974; Robins, 1986):

P {Zki = 1 | Ri = 1,Wi, Yi(A1BkB
′
l)} = P {Zki = 1 | Ri = 1,Wi} ;

P {Z ′li = 1 | Ri = 0,Wi, Yi(A1BkB
′
l)} = P {Z ′li = 1 | Ri = 0,Wi} ;

for k, l ∈ {1, 2}.

 (2.5)

In the REVAMP study, the second stage treatment assignment probabilities were constant. There-
fore, we define P{Zki = 1 | Ri = 1,Wi} = ηk and P{Z ′li = 1 | Ri = 0,Wi} = ζl.

3 Inference from Complete Data (No Drop-out)
If everyone in our sample had followed the same treatment regime, A1BkB

′
l , where k, l ∈ {1, 2},

we could have used the generalized estimating equations method (Liang and Zeger, 1986; Zeger
and Liang, 1986) to estimate the regime effect, i.e. a (p + 2) × 1 vector of parameter β1kl =

[β0,1kl, . . . , βp+1,1kl]
T . The generalized estimating equations in this case would be

n∑
i=1

XT
i V
−1
i,1kl [Yi(A1BkB

′
l)−Xiβ1kl] = 0, (3.1)

whereXT
i = [xi1, . . . , xiMi ], and xTim = [1, tim,W

T
i ] (m = 1, . . . ,Mi); Vi,1kl = φA

1/2
i,1klR(α)A

1/2
i,1kl;

R(α) is an Mi ×Mi working correlation matrix specified by α; Ai,1kl is an Mi ×Mi diagonal ma-
trix with vim(Xi;β1kl) as the m-th element, where vim(Xi, β1kl) is the assumed working variance
function of Yim(A1BkB

′
l) and φ is the dispersion parameter.

However, not all patients followed the treatment regime A1BkB
′
l . Some patients in the study

received treatments inconsistent with A1BkB
′
l , i.e. these patients randomized to receive other sec-

ond stage treatment B3−k or B′3−l, k, l ∈ {1, 2}. The data from these patients can be treated as
missing data while estimating β1kl. Because of randomization, these patients with treatments in-
consistent with A1BkB

′
l are similar to those treated under treatment regime A1BkB

′
l . Thus, the

inverse-probability-weighted method (Horvitz and Thompson, 1952; Rosenbaum and Rubin, 1983)
can be used to account for the data that are missing by randomization. Patients randomized to treat-
mentBk are weighted by 1/ηk and patients randomized to treatmentB′l are weighted by 1/ζl, where
ηk and ζl are the randomization probabilities in the second stage given the observed response status
Ri = 1 and Ri = 0, respectively. This way, a patient randomized to treatment Bk or B′l counts
for the patient as well as for (1/ηk − 1) or (1/ζk − 1) similar patients who have missing data with
respect to treatment regime A1BkB

′
l (i.e. randomized to a second stage treatment other than Bk or

B′l .) This inverse probability of treatment weighting will be applied to create a pseudo-population
from each patient who follows the policy A1BkB

′
l . The weight, Qi,1kl, is thus defined to be a

Mi ×Mi diagonal matrix with each m-th diagonal element, Qim,1kl, defined as[
RiZki
ηk

+
(1−Ri)Z ′li

ζl

]
.
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Note that ηk and ζl are the known second stage randomization probabilities. For an alternative ap-
proach, the two randomization probabilities may be estimated from the data; see Li (2017) for more
details. Given the treatment regime A1BkB

′
l , we use the inverse-probability-weighted generalized

estimating equations method (Robins et al., 1995) with the weight Qi,1kl to estimate the regime
effect β1kl. The weighted estimating equations is then

n∑
i=1

Ui (β1kl) =

n∑
i=1

XT
i V
−1
i,1klQi,1kl (Yi −Xiβ1kl) = 0, (3.2)

where Yi, Xi, and Vi,1kl are defined as in (3.1). The solution of (3.2), β̂1kl, can be obtained through
the iterative algorithm (Liang and Zeger, 1986):

β̂
(r+1)
1kl = β̂

(r)
1kl +

(
n∑
i=1

XT
i V
−1
i,1klQi,1klXi

)−1 n∑
i=1

XT
i V
−1
i,1klQi,1kl

[
Yi −Xiβ̂

(r)
1kl

]
.

Lemma 3.1. Under sequential randomization assumption in (2.5),
E[Qi,1kl | Xi, Yi(A1BkB

′
l)] = IMi .

Proof. For m = 1, . . . ,Mi, this follows since

E [Qim,1kl | Xi, Yi(A1BkB
′
l)]

= E

{
E

[
RiZki
ηk

+
(1−Ri)Z ′li

ζl
| Ri, Xi, Yi(A1BkB

′
l)

]}
= E

{
Ri
ηk
E [Zki | Ri, Xi, Yi(A1BkB

′
l)] +

1−Ri
ζl

E [Z ′li | Ri, Xi, Yi(A1BkB
′
l)]

}
= 1 (by sequential randomization assumption).

Proposition 3.1. Under consistency assumption in (2.4) and sequential randomization assumption
in (2.5), β̂1kl is a consistent estimator of β1kl.

Proof. First, by consistency assumption in (2.4),Qi,1klYi = Qi,1klYi(A1BkB
′
l). Also, β̂1kl satisfies

Equation (3.2), and therefore, to show that β̂1kl is consistent, it suffices to show that E[Ui(β1kl)] =
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0. Now,

E [Ui (β1kl)]

= E
[
XT
i V
−1
i,1klQi,1kl (Yi −Xiβ1kl)

]
= E

{
XT
i V
−1
i,1klQi,1kl [Yi(A1BkB

′
l)−Xiβ1kl]

}
(by consistency assumption in (2.4))

= E
(
E
{
XT
i V
−1
i,1klQi,1kl [Yi(A1BkB

′
l)−Xiβ1kl] | Xi, Yi(A1BkB

′
l)
})

= E
{
XT
i V
−1
i,1kl [Yi(A1BkB

′
l)−Xiβ1kl]

}
(by Lemma 3.1)

= E
(
E
{
XT
i V
−1
i,1kl [Yi(A1BkB

′
l)−Xiβ1kl] | Xi

})
= E

(
XT
i V
−1
i,1kl {E [Yi(A1BkB

′
l) | Xi]−Xiβ1kl}

)
= 0 (by Equation (2.3)).

Proposition 3.2. Under consistency assumption in (2.4) and sequential randomization assumption
in (2.5), β̂1kl is asymptotically normally distributed with mean β1kl and variance Σ/n, where

Σ = C−1(φ, α, β1kl)B(φ, α, β1kl)C
−1(φ, α, β1kl),

C(φ, α, β1kl) = E
(
XT
i V
−1
i,1klXi

)
, and

B(φ, α, β1kl) = E
[
XT
i V
−1
i,1klQi,1kl (Yi −Xiβ1kl) (Yi −Xiβ1kl)

T
Qi,1klV

−1
i,1klXi

]
.

 (3.3)

Proof. First, the estimator β̂1kl satisfies
∑n
i=1X

T
i V
−1
i,1klQi,1kl(Yi − Xiβ̂1kl) = 0. Expanding∑n

i=1X
T
i V
−1
i,1klQi,1kl(Yi − Xiβ̂1kl) around β1kl using Taylor’s expansion and manipulating, we

obtain

n
1
2

(
β̂1kl − β1kl

)
=

(
1

n

n∑
i=1

XT
i V
−1
i,1klQi,1klXi

)−1
n−

1
2

n∑
i=1

XT
i V
−1
i,1klQi,1kl (Yi −Xiβ1kl) + op(1), (3.4)

where op(1) is a term that converges in probability to 0 as n→∞. Note also that(
1

n

n∑
i=1

XT
i V
−1
i,1klQi,1klXi

)
→ E

(
XT
i V
−1
i,1klQi,1klXi

)
= E

(
XT
i V
−1
i,1klXi

)
= C (φ, α, β1kl) .

Therefore, from Equation (3.4), one can write

n
1
2

(
β̂1kl − β1kl

)
= n−

1
2

n∑
i=1

ψi,1kl + op(1), (3.5)
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where ψi,1kl = C−1(φ, α, β1kl)X
T
i V
−1
i,1klQi,1kl(Yi −Xiβ1kl) is known as the influence function of

the estimator β̂1kl, where E(ψi,1kl) = 0 and E(ψi,1klψ
T
i,1kl) is positive definite. From (3.5), we see

that β̂1kl is an asymptotically linear estimator of β1kl. Applying the central limit theorem to (3.5),
we deduce that n1/2(β̂1kl − β1kl)→ MVN(0,Σ), where Σ = E(ψi,1klψ

T
i,1kl) is given in (3.3).

The asymptotic variance-covariance matrix of β̂1kl can be estimated by the empirical estimator

v̂ar
(
β̂1kl

)
=

1

n
Ê
(
ψi,1klψ

T
i,1kl

)
=

1

n2

n∑
i=1

ψ̂i,1klψ̂
T
i,1kl, (3.6)

or by the model-based estimator

v̂ar
(
β̂1kl

)
=

1

n

[
C−1n (φ̂, α̂, β̂1kl)Bn(φ̂, α̂, β̂1kl)C

−1
n (φ̂, α̂, β̂1kl)

]
, (3.7)

where

ψ̂i,1kl = C−1n (φ̂, α̂, β̂1kl)X
T
i V̂
−1
i,1klQi,1kl

(
Yi −Xiβ̂1kl

)
,

Cn(φ̂, α̂, β̂1kl) =
1

n

n∑
i=1

XT
i V̂
−1
i,1klQi,1klXi,

Bn(φ̂, α̂, β̂1kl) =
1

n

n∑
i=1

XT
i V̂
−1
i,1klQi,1kl

(
Yi −Xiβ̂1kl

)(
Yi −Xiβ̂1kl

)T
Qi,1klV̂

−1
i,1klXi,

V̂i,1kl = φ̂Â
1
2

i,1klR(α̂)Â
1
2

i,1kl, Âi,1kl = diag{vim(Xi; β̂1kl),m = 1, . . . ,Mi},

φ̂ =

∑n
i=1

∑Mi

m=1 ê
2
im∑n

i=1

∑Mi

m=1Qim,1kl − (p+ 2)
, and êim =

√
Qim,1kl(Yim − xTimβ̂1kl).

The specific estimator of α depends on the working correlation structure, R(α) (Liang and Zeger,
1986). For example, if corr[Yim(A1BkB

′
l), Yi(m+s)(A1BkB

′
l)] = αs for s = 0, . . . ,Mi −m, i.e.

R(α) has an autoregressive correlation structure (AR(1)), then

α̂ =

∑n
i=1

∑
m<Mi−1 êimêi(m+1)

[N∗ − (p+ 2)]φ̂
,

where N∗ =
∑n
i=1(

∑Mi

m=1Qim,1kl − 1).

4 Inference from Incomplete Data: Presence of Drop-out
In Section 3, we used the inverse-probability-weighted generalized estimating equations method to
deal with missing data due to randomization in stage two of the therapy. We assumed that there was
no drop-out. However, in longitudinal studies, drop-out is a common phenomenon. The generalized
estimating equations or the inverse-probability-weighted generalized estimating equations can pro-
vide valid estimates of parameters as long as drop-outs are missing completely at random (Robins
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et al., 1995). If drop-outs depend on observed data (e.g. responses from previous visits or baseline
characteristics), they are not missing completely at random but missing at random (Little and Rubin,
2002). Therefore, we need to adjust our estimators from Section 3 to account for missing at random.

In the presence of drop-outs, the observed data from patient i are

{Wi,∆i, Hi} (k, l ∈ {1, 2}, i = 1, . . . , n),

where ∆i = 0 if patient i had dropped out of the study before completion, and ∆i = 1 otherwise.
When ∆i = 1, Hi = {Ri, RiZki, (1−Ri)Z ′li, Yi}. When ∆i = 0, Hi contains post-baseline
information observed prior to drop-out. Thus, when ∆i = 0 and drop-out occurs at time ti(di+1),
Yi is a di × 1 vector, where di < Mi. To account for the data that are missing due to drop-out,
one can extend the idea of inverse-probability-weighting described in section 3. Let us define the
probability of a patient having complete data as πi = P{∆i = 1 | Wi}, where Wi is a vector of
baseline covariates. Had this probability been known, each patient who had complete data would
have been weighted by 1/πi to account for the patients who have incomplete data. We, therefore,
modify the m-th diagonal element of the weight matrix Qi,1kl as follows:

Qim,1kl(πi) =
∆i

πi

[
RiZki
ηk

+
(1−Ri)Z ′li

ζl

]
, (4.1)

and the weight matrix Qi,1kl(πi) = diag{Qi1,1kl(πi), . . . , QiMi,1kl(πi)}. However, πi is unknown
and needs to be estimated. Let πi = Gi(γ;Wi) be the postulated model for drop-out process defined
by a set of parameters γ and γ̂ be a regular and asymptotically linear estimator of γ. For instance,
Gi(γ;Wi) could be the logistic regression model, Gi(γ;Wi) = [1 + exp(−WT

i γ)]−1, and γ̂ could
be the corresponding maximum likelihood estimator. The weight in (4.1) is then re-defined by
replacing πi by Gi(γ̂;Wi), i.e. the m-th diagonal element of Qi,1kl(γ̂) is

∆i

Gi(γ̂;Wi)

[
RiZki
ηk

+
(1−Ri)Z ′li

ζl

]
.

We have slightly abused the notation to denote this weight matrix byQi,1kl(γ̂) instead ofQi,1kl(π̂i).
Given a treatment regime A1BkB

′
l , the estimating equations for the inverse-probability-weighted

generalized estimating equations is then

n∑
i=1

U∗i (β1kl, γ̂) =

n∑
i=1

XT
i V
−1
i,1klQi,1kl(γ̂) (Yi −Xiβ1kl) = 0, (4.2)

where Yi, Xi, and Vi,1kl are defined as in (3.1). Again, as before, the solution of (4.2), β̂∗1kl, can be
obtained through iterative algorithm.

Lemma 4.1. Under sequential randomization assumption in (2.5), and when πi = Gi(γ;Wi) is
known, E[Qi,1kl(γ) | Xi, Yi(A1BkB

′
l)] = IMi

.
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Proof. Using iterated conditioning (m = 1, . . . ,Mi),

E [Qim,1kl(γ) | Xi, Yi(A1BkB
′
l)]

= E

{
E

[
∆i

Gi(γ;Wi)
Qim,1kl | ∆i, Ri, Xi, Yi(A1BkB

′
l)

]}
= E

{
∆i

Gi(γ;Wi)
E [Qim,1kl | ∆i, Ri, Xi, Yi(A1BkB

′
l)]

}
= E

[
∆i

Gi(γ;Wi)
× 1

]
=

1

Gi(γ;Wi)
× πi

= 1.

Lemma 4.2. Under consistency assumption in (2.4), sequential randomization assumption in (2.5),
and when πi = Gi(γ;Wi) is correctly specified, E[U∗i (β1kl, γ)] = 0.

Proof. Under consistency assumption in (2.4), Qi,1kl(γ)Yi = Qi,1kl(γ)Yi(A1BkB
′
l). Thus,

E [U∗i (β1kl, γ)]

= E
[
XT
i V
−1
i,1klQi,1kl(γ) (Yi −Xiβ1kl)

]
= E

{
XT
i V
−1
i,1klQi,1kl(γ) [Yi(A1BkB

′
l)−Xiβ1kl]

}
(by consistency assumption in (2.4))

= E
(
E
{
XT
i V
−1
i,1klQi,1kl(γ) [Yi(A1BkB

′
l)−Xiβ1kl] | Xi, Yi(A1BkB

′
l)
})

= E
{
XT
i V
−1
i,1kl [Yi(A1BkB

′
l)−Xiβ1kl]

}
(by Lemma 4.1)

= E
(
E
{
XT
i V
−1
i,1kl [Yi(A1BkB

′
l)−Xiβ1kl] | Xi

})
= E

(
XT
i V
−1
i,1kl {E [Yi(A1BkB

′
l) | Xi]−Xiβ1kl}

)
= 0 (by Equation (2.3)).

Proposition 4.1. β̂∗1kl is a consistent estimator of β1kl, provided (1) γ̂ is
√
n-consistent, (2)Gi(γ;Wi)

is specified correctly, and (3) the probability of having complete data does not depend on counter-
factuals.

Proof. From (1), we can write
√
n (γ̂ − γ) = n−1/2

∑n
i=1 ϕi(γ) + op(1), where ϕi(γ) is the influ-

ence function of the estimator γ̂ and E[ϕi(γ)] = 0. Since β̂∗1kl satisfies Equation (4.2), the estimator
(β̂∗1kl, γ̂)T is an M-estimator (Stefanski and Boos, 2002) defined by

n∑
i=1

Ψi(β1kl, γ) =

n∑
i=1

 U∗i (β1kl, γ)

ϕi(γ)

 = 0.
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The consistency of β̂∗1kl follows from the fact that E[Ψi(β1kl, γ)] = 0 (by Lemma 4.2).

Proposition 4.2. Under assumptions similar to Proposition 4.1, β̂∗1kl is an asymptotically and nor-
mally distributed with mean β1kl and variance Σ∗/n, where

Σ∗ = C∗
−1

(φ, α, β1kl, γ)B∗ (φ, α, β1kl, γ)C∗
−1

(φ, α, β1kl, γ) ;

C∗ (φ, α, β1kl, γ) = E
(
XT
i V
−1
i,1klXi

)
;

B∗ (φ, α, β1kl, γ)

= E
[
XT
i V
−1
i,1klQi,1kl(γ) (Yi −Xiβ1kl) (Yi −Xiβ1kl)

T
Qi,1kl(γ)V −1i,1klXi

]
−E

[
XT
i V
−1
i,1kl (Yi −Xiβ1kl)ϕ

T
i (γ)

]
D∗

T

(φ, α, β1kl, γ)

−D∗ (φ, α, β1kl, γ)E
[
ϕi(γ) (Yi −Xiβ1kl)

T
V −1i,1klXi

]
+D∗ (φ, α, β1kl, γ)E

[
ϕi(γ)ϕTi (γ)

]
D∗

T

(φ, α, β1kl, γ) ;

D∗ (φ, α, β1kl, γ) =E
[
XT
i V
−1
i,1kl (Yi −Xiβ1kl)G

−1
i (γ;Wi)

∂
∂γT Gi(γ;Wi)

]
.



(4.3)

Proof. We start with the fact that the estimator β̂∗1kl satisfies
∑n
i=1 U

∗
i (β̂1kl, γ̂) = 0. First, expand-

ing
∑n
i=1 U

∗
i (β̂1kl, γ̂) around β1kl by Taylor’s expansion and manipulating, we obtain

n
1
2

(
β̂∗1kl − β1kl

)
=

[
− 1

n

n∑
i=1

∂

∂βT1kl
U∗i (β1kl, γ̂)

]−1
n−

1
2

n∑
i=1

U∗i (β1kl, γ̂) + op(1) (4.4)

Then, applying Taylor’s expansion on (4.4) around γ, it can be rewritten as

n
1
2 (β̂∗1kl − β1kl) =

[
− 1

n

n∑
i=1

∂

∂βT1kl
U∗i (β1kl, γ)

]−1
n−

1
2

n∑
i=1

U∗i (β1kl, γ)

+


[
− 1

n

n∑
i=1

∂2

∂βT1kl∂γ
T
U∗i (β1kl, γ)

]−1
1

n

n∑
i=1

U∗i (β1kl, γ)

+

[
− 1

n

n∑
i=1

∂

∂βT1kl
U∗i (β1kl, γ)

]−1
1

n

n∑
i=1

∂

∂γT
U∗i (β1kl, γ)

× n 1
2 (γ̂ − γ) + op(1). (4.5)

Note the convergence of the following quantities in (4.5) as n→∞:

− 1

n

n∑
i=1

∂

∂βT1kl
U∗i (β1kl, γ)→ E

(
XT
i V
−1
i,1klXi

)
= C∗ (φ, α, β1kl, γ) , (4.6)

1

n

n∑
i=1

U∗i (β1kl, γ)→ 0 (by Lemma 4.2), and (4.7)

1

n

n∑
i=1

∂

∂γT
U∗i (β1kl, γ)→ −E

[
XT
i V
−1
i,1kl (Yi −Xiβ1kl)G

−1
i (γ;Wi)

∂

∂γT
Gi(γ;Wi)

]
. (4.8)
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Using (4.6)–(4.8), we can write (4.5) as n1/2(β̂∗1kl − β1kl) = n−1/2
∑n
i=1 ψ

∗
i,1kl + op(1), where

ψ∗i,1kl is the influence function of the estimator β̂∗1kl and can be expressed as

ψ∗i,1kl = C∗
−1

(φ, α, β1kl, γ)

×
[
XT
i V
−1
i,1klQi,1kl(γ) (Yi −Xiβ1kl)−D∗ (φ, α, β1kl, γ)ϕi(γ)

]
, (4.9)

where D∗(φ, α, β1kl, γ) = E[XT
i V
−1
i,1kl(Yi − Xiβ1kl)G

−1
i (γ;Wi)

∂
∂γT Gi(γ;Wi)]. By the central

limit theorem, we can deduce that n1/2(β̂∗1kl−β1kl)→ MVN (0,Σ∗), where Σ∗ = E(ψ∗i,1klψ
∗T
i,1kl)

and is given in (4.3).

The asymptotic variance-covariance matrix of β̂∗1kl can be estimated by the empirical estimator

v̂ar
(
β̂∗1kl

)
=

1

n
Ê
(
ψ∗i,1klψ

∗T
i,1kl

)
=

1

n2

n∑
i=1

ψ̂∗i,1klψ̂
∗T
i,1kl, (4.10)

or by the model-based estimator

v̂ar
(
β̂∗1kl

)
=

1

n
E
[
C∗
−1

n

(
φ̂, α̂, β̂∗1kl, γ̂

)
B∗n

(
φ̂, α̂, β̂∗1kl, γ̂

)
C∗
−1

n

(
φ̂, α̂, β̂∗1kl, γ̂

)]
, (4.11)

where

ψ̂∗i,1kl = C∗
−1

n (φ̂, α̂, β̂∗1kl, γ̂)
[
XT
i V̂
−1
i,1klQi,1kl(γ̂)

(
Yi −Xiβ̂

∗
1kl

)
−D∗n(φ̂, α̂, β̂∗1kl, γ̂)ϕi(γ̂)

]
,

C∗n(φ̂, α̂, β̂∗1kl, γ̂) =
1

n

n∑
i=1

XT
i V̂
−1
i,1klQi,1kl(γ̂)Xi,

D∗n(φ̂, α̂, β̂∗1kl, γ̂) =
1

n

n∑
i=1

[
XT
i V̂
−1
i,1klQi,1kl(γ̂)

(
Yi −Xiβ̂

∗
1kl

)
G−1i (γ̂;Wi)Ġi(γ̂;Wi)

]
, and

B∗n

(
φ̂, α̂, β̂∗1kl, γ̂

)
=

1

n

n∑
i=1

[
XT
i V̂
−1
i,1klQi,1kl(γ̂)

(
Yi −Xiβ̂

∗
1kl

)(
Yi −Xiβ̂

∗
1kl

)T
Qi,1kl(γ̂)V̂ −1i,1klXi

]

−

{
1

n

n∑
i=1

[
XT
i V̂
−1
i,1klQi,1kl(γ̂)

(
Yi −Xiβ̂

∗
1kl

)
ϕTi (γ̂)

]}
×D∗n

(
φ̂, α̂, β̂∗

T

1kl, γ̂
)

−D∗n
(
φ̂, α̂, β̂∗1kl, γ̂

)
×

{
1

n

n∑
i=1

[
ϕi(γ̂)

(
Yi −Xiβ̂

∗
1kl

)T
Qi,1kl(γ̂)V̂ −1i,1klXi

]}

+D∗n

(
φ̂, α̂, β̂∗1kl, γ̂

)
×

{
1

n

n∑
i=1

[
ϕi(γ̂)ϕTi (γ̂)

]}
×D∗

T

n

(
φ̂, α̂, β̂∗1kl, γ̂

)
.

The estimators of φ, α, Vi,1kl, and Ai,1kl are obtained by replacing β̂1kl with β̂∗1kl and Qi,1kl with
Qi,1kl(γ̂) in (3.6) and (3.7).
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5 Comparison among Treatment Regimes
To compare the effects of various regimes, contrasts of target regime effects can be constructed and
tested via the Wald method. Since a patient can belong to more than one regime, the estimators of
treatment effects among regimes will be correlated. In such situations, the covariance between esti-
mators needs to be estimated. In the case of four treatment regimes, A1BkB

′
l for k, l ∈ {1, 2}, one

can consider six pair-wise comparisons of the estimators of these four treatment regimes. Among
these six pairs of the estimators, the covariance of (β̂∗111, β̂

∗
122) will be zero, since β̂∗111 and β̂∗122 are

estimated using data from two different subgroups of patients. For the same reason, the covariance
of (β̂∗112, β̂

∗
121) will also be zero. However, the estimators β̂∗111 and β̂∗112 are correlated, since both

estimators used the same information from those patients who received A1 and followed with B1

after responding to A1. Hence, the covariance of (β̂∗111, β̂
∗
112) needs to be estimated. Similarly, we

will have to estimate the covariances for the pairs (β̂∗111, β̂
∗
121), (β̂∗112, β̂

∗
122), and (β̂∗121, β̂

∗
122).

To estimate the covariance between two correlated estimators, we use the fact that the large-
sample covariance between two estimators can be obtained through the expectation of the product
of their influence functions. We will demonstrate covariance computation for the pair of estimators
β̂∗111 and β̂∗112. Similar computation follows for other correlated pairs. The covariance of β̂∗111 and
β̂∗112 is n−1E(ψ∗i,111ψ

∗T
i,112), where ψ∗i,111 and ψ∗i,112 are the influence functions of estimators β̂∗111

and β̂∗112, which are obtained from Equation (4.9). Therefore, one can estimate the covariance of
β̂∗111 and β̂∗112 in a manner similar to the estimation of variance-covariance matrix through Equation
(4.10) or (4.11).

To test the effects of treatment regimes A1BkB
′
l for k, l ∈ {1, 2}, β = [βT111, β

T
112, β

T
121, β

T
122]T

via the Wald method, one can establish the null hypothesis of Aβ = 0, where each β1kl is a (p+ 2)-
dimensional vector and A is a matrix with [4(p+ 2)] columns such that rank(A) < [4(p+ 2)]. The
test statistic will be

T = (Aβ̂)T (AΣ̂AT )−1(Aβ̂) ∼ χ2
rank(A),

where β̂ = [β̂∗
T

111, β̂
∗T
112, β̂

∗T
121, β̂

∗T
122]T and Σ̂ is the estimated covariance matrix of β̂. Each element of

Σ̂ can be obtained by calculating the covariances of all pairs of estimators.

6 Simulation Study
To evaluate the performance of the estimators in small samples, we conducted several simulation
studies. We simulated data from a population which has similar design to the REVAMP study. Each
patient will have repeated measurements at each visit so that ti = [0, 2, 4, 6, 8, 10, 12]T for all i. We
considered one initial treatment A1, two second stage treatments, B1 and B2, for responders, and
two second stage treatments, B′1 and B′2, for non-responders. All patients received initial treatment
A1 at ti1 = 0. For each patient i, we generated counterfactual random variables listed in (2.1). At
ti3 = 4 and ti4 = 6, patients were assessed to see if they had responded to the initial treatment
A1. Thus, the index of the time of response in this case is m1i = 3 or 4. The response status,
Ri, was drawn from a Bernoulli(θ) distribution. We assume that of these responders, 100 × θ1%

responded at time ti3 and the rest at time ti4. Thus each responder was assigned randomly to respond
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at time ti3 with probability θ1. We considered two sets of parameters, (θ, θ1) = (0.5, 0.25) and
(0.3, 0.15) meaning 50% (30%) of the patients would respond of which 25% (15%) would respond
at time ti3 and the rest at time ti4. We also generated a baseline covariate, age, which follows a
normal distribution with mean µage = 45 and standard deviation σage = 11. For each patient
i, counterfactual outcome vectors Yi(A1), Yi(A1B1), Yi(A1B2), Yi(A2B1), and Yi(A2B

′
2), were

generated as follows:

Yi(A1) ∼ MVNm1i((θ1,A1 + θ2,A1 × agei)× 1m1i + θ3,A1 × t0i,Σ0),

Yi(A1B1) ∼ MVN7−m1i
((θ1,A1B1

+ θ2,A1B1
× agei)× 1(7−m1i) + θ3,A1B1

× t1i,Σ1),

Yi(A1B2) ∼ MVN7−m1i
((θ1,A1B2

+ θ2,A1B2
× agei)× 1(7−m1i) + θ3,A1B2

× t1i,Σ1),

Yi(A1B
′
1) ∼ MVN7−m1i((θ1,A1B′1

+ θ2,A1B′1
× agei)× 1(7−m1i) + θ3,A1B′1

× t1i,Σ1), and

Yi(A1B
′
2) ∼ MVN7−m1i

((θ1,A1B′2
+ θ2,A1B′2

× agei)× 1(7−m1i) + θ3,A1B′2
× t1i,Σ1),

where m1i equals to either 3 or 4; t0i is a m1i × 1 vector which indicates weeks of measurements
in stage one and t1i is a (7−m1i)× 1 vector which indicates weeks of measurements in stage two;
Σ0(σ0, ρ0) is a m1i ×m1i covariance matrix defined by standard deviation σ0 and autoregressive
correlation ρ0; Σ1(σ1, ρ1) is a (7−m1i)×(7−m1i) covariance matrix defined by standard deviation
σ1 and autoregressive correlation ρ1. The values of σ0, σ1, ρ0, and ρ1 were set to be 5, 3, 0.8, and
0.8, respectively; the parameters of correlations and standard deviations were estimated based on the
choice of a correlation structure in the standard GEE procedure. For each patient i, the m-th element
of the counterfactual outcome under a treatment regime A1BkB

′
l for k, l ∈ {1, 2} and m = 1, . . . , 7

is generated using Equation (2.2). The estimation of parameters β1kl = [β0,1kl, β1,1kl, β2,1kl]
T in

Equation (2.3) of the model E[Yim(A1BkB
′
l) | xim] = xTimβ1kl was the main focus in this article,

where xim = [1, tim, agei]
T .

We considered the following parameter values for each counterfactual vector: θ1,A1
= 25, θ2,A1

=
0.5, θ3,A1= -0.5, θ1,A1B1= 27, θ2,A1B1= 0.6, θ3,A1B1= -1.5, θ1,A1B2= 38, θ2,A1B2= 0.4, θ3,A1B2= -2,
θ1,A1B′1

= 36, θ2,A1B′1
= 0.7, θ3,A1B′1

= -3, θ1,A1B′2
= 68, θ2,A1B′2

= 0.3, and θ3,A1B′2
= -5. For this pop-

ulation, the true parameter values are βT111 = [23.09,−1.13, 0.57], βT112 = [27.94,−1.53, 0.48],
βT121 = [25.45,−1.30, 0.52], and βT122 = [30.38,−1.69, 0.43] for 50% response, and βT111 =

[22.88,−1.20, 0.58], βT112 = [29.65,−1.77, 0.45], βT121 = [24.28,−1.31, 0.55] and βT122 = [31.10,−1.86, 0.42]

for 30% response.
We simulated 2000 Monte Carlo samples of sizes 250 and 400 observations from the populations

described above with the following characteristics. For responders (i.e. Ri = 1), the assignment
indicator for treatment B1, Z1i, was drawn from a Bernoulli distribution with probability η1; the
assignment indicator for treatment B2 was defined as Z2i = 1 − Z1i. For non-responders, i.e.
Ri = 0, the assignment indicator for treatment B′1, Z ′1i was drawn from a Bernoulli distribution
with probability ζ1; the assignment indicator for treatment B′2 was defined as Z ′2i = 1 − Z ′1i. We
defined the observed outcome for patient i at tim as in (2.4).

Additionally, a number of patients were allowed to drop out for the purpose of illustration based
on the following logistic regression model: πi = Gi(γ; age, Yi1) = Pr(∆i = 1 | age, Yi1) =

[1 + exp(−γ0 − γ1 × age − γ2 × Yi1)]−1, where γ = [γ0, γ1, γ2]T ; Yi1 is the outcome at ti1 = 0

for patient i. Given this setting, the timing of individuals dropping out from the study would be
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uniformly across the study period. Choices of values of parameters γ = [5.4,−0.02,−0.07]T and
γ = [5.1,−0.03,−0.08]T gave us approximate drop-out rates of 25% and 50%, respectively. For
sample sizes of 250 and 400 and response rates of 50% and 30%, we considered the following drop-
out rates and analysis strategies: (1) no drop-out with weighting for randomization, Q; (2) 25%
drop-out rate with weighting for randomization only. Q; (3) 25% drop-out rate with weighting for
randomization and drop-out, Q(γ); (4) 50% drop-out rate with weighting for randomization only,
Q; (5) 50% drop-out rate with weighting for randomization and drop-out, Q(γ).

Table 1 shows the simulation results of estimation for samples of size 250. When the missing
was due to randomization only, i.e. no drop-out, the inverse-probability-weighted generalized esti-
mating equations estimators with Q as weight matrix were approximately unbiased for all regimes
regardless of the response rates. The maximum relative bias observed was 0.8%. The standard de-
viations of the estimators were consistent with the Monte-Carlo standard deviations. The coverage
probabilities for the 95% Wald confidence intervals for the parameters were between 92.4% and
95.7%. For the 25% drop-out rate, the estimators were biased when the drop-out were ignored, i.e.
used Q as weight matrix in the inverse-probability-weighted generalized estimating equations. The
relative biases ranged from 0.8 to 3.4%. When the analysis accounted for drop-outs using Q(γ) as
weight matrix in the inverse-probability-weighted generalized estimating equations, the estimators
were approximately unbiased. For example, the estimator weighted by Q for regime A1B2B

′
2 with

30% response rate had relative bias 3.2%, however, the estimator weighted by Q(γ) for the same
had near zero bias. The standard deviations of estimators weighted by Q(γ) were consistent with
corresponding Monte-Carlo standard deviations. The Wald confidence intervals achieved coverage
close to their nominal confidence levels. When the drop-out rate was raised from 25% to 50%,
similar results were observed. The estimators weighted by Q(γ) remained approximately unbiased
for all regimes under both 50% and 30% response rates. Standard errors of estimators were slightly
higher for higher drop-out rate.

For n = 400 (data are shown in Table 2), the estimators with proper weighting were approxi-
mately unbiased regardless of response and drop-out rates. The standard errors of estimators were, as
expected, smaller than those for n = 250. The coverage probabilities for the 95% Wald confidence
intervals ranged from 92.4% to 95.2%.

7 Analysis of the REVAMP Data

A total of 808 patients with chronic forms of major depressive disorders were enrolled in the RE-
VAMP study (Trivedi et al., 2008). Patients were evaluated in two 12-week stages for a maximum
of 24 weeks. In stage one, patients were treated with one of four antidepressants: Sertaline (SERT),
Escitalopram (EcCIT), Bupropion (BUP-SR), and Venlafaxine (VLF-XR). The choice of antidepres-
sants was based on a pharmacotherapy algorithm (see Trivedi et al. (2008) for more details.) During
week 8 through 12 in stage one, each patient was evaluated to assess the response. Patients with full
response continued their antidepressant in stage two. Patients who did not meet the criteria of full
response were randomized to three groups to additionally receive one of the following: Cognitive
Behavioral Analysis System of Psychotherapy (CBASP), Brief Supportive Psychotherapy (BSP), or
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Table 1: Simulation results of estimation of β1,1kl based on 2000 Monte Carlo samples of size 250.
EST is Monte Carlo mean of estimates, SE is Monte Carlo mean of estimated standard errors, MCSE
is standard error of Monte Carlo estimates, and CP is empirical coverage probability.

Drop-out Response Regime True EST (SE) MCSE CP% EST (SE) MCSE CP%
Rate Rate Value

Weighted by Q Weighted by Q(γ)

0% 50% A1B1B
′
1 -1.13 -1.13 (0.050) 0.050 95.7 Not applicable

A1B1B
′
2 -1.53 -1.53 (0.070) 0.075 94.1 Not applicable

A1B2B
′
1 -1.30 -1.30 (0.047) 0.049 92.8 Not applicable

A1B2B
′
2 -1.69 -1.70 (0.060) 0.065 92.4 Not applicable

30% A1B1B
′
1 -1.20 -1.20 (0.050) 0.051 93.8 Not applicable

A1B1B
′
2 -1.77 -1.76 (0.067) 0.069 94.3 Not applicable

A1B2B
′
1 -1.31 -1.30 (0.047) 0.047 95.2 Not applicable

A1B2B
′
2 -1.86 -1.86 (0.058) 0.060 94.6 Not applicable

25% 50% A1B1B
′
1 -1.13 -1.12 (0.058) 0.060 92.6 -1.13 (0.056) 0.054 96.2

A1B1B
′
2 -1.53 -1.49 (0.079) 0.084 89.9 -1.53 (0.082) 0.088 95.9

A1B2B
′
1 -1.30 -1.27 (0.054) 0.057 90.6 -1.31 (0.053) 0.056 92.1

A1B2B
′
2 -1.69 -1.64 (0.068) 0.072 86.1 -1.71 (0.068) 0.070 94.4

30% A1B1B
′
1 -1.20 -1.19 (0.058) 0.058 93.9 -1.21 (0.056) 0.057 94.0

A1B1B
′
2 -1.77 -1.71 (0.075) 0.079 87.4 -1.76 (0.079) 0.084 93.4

A1B2B
′
1 -1.31 -1.28 (0.055) 0.056 91.7 -1.30 (0.054) 0.053 94.3

A1B2B
′
2 -1.86 -1.80 (0.066) 0.069 82.2 -1.86 (0.067) 0.072 93.4

50% 50% A1B1B
′
1 -1.13 -1.10 (0.071) 0.070 91.8 -1.13 (0.069) 0.076 92.2

A1B1B
′
2 -1.53 -1.44 (0.093) 0.093 86.2 -1.53 (0.110) 0.117 92.4

A1B2B
′
1 -1.30 -1.24 (0.067) 0.072 83.4 -1.29 (0.068) 0.079 93.1

A1B2B
′
2 -1.69 -1.58 (0.081) 0.087 66.8 -1.69 (0.090) 0.100 92.6

30% A1B1B
′
1 -1.20 -1.18 (0.072) 0.073 93.4 -1.20 (0.070) 0.075 93.5

A1B1B
′
2 -1.77 -1.65 (0.090) 0.091 75.3 -1.76 (0.105) 0.110 92.6

A1B2B
′
1 -1.31 -1.26 (0.068) 0.068 90.1 -1.30 (0.068) 0.070 94.0

A1B2B
′
2 -1.86 -1.73 (0.080) 0.083 58.2 -1.86 (0.088) 0.095 92.8
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Table 2: Simulation results of estimation of β1,1kl based on 2000 Monte Carlo samples of size 400.
EST is Monte Carlo mean of estimates, SE is Monte Carlo mean of estimated standard errors, MCSE
is standard error of Monte Carlo estimates, and CP is empirical coverage probability.

Drop-out Response Regime True EST (SE) MCSE CP% EST (SE) MCSE CP%
Rate Rate Value

Weighted by Q Weighted by Q(γ)

0% 50% A1B1B
′
1 -1.13 -1.13 (0.042) 0.042 95.5 Not applicable

A1B1B
′
2 -1.53 -1.53 (0.060) 0.062 94.4 Not applicable

A1B2B
′
1 -1.30 -1.30 (0.040) 0.041 93.9 Not applicable

A1B2B
′
2 -1.69 -1.70 (0.051) 0.053 94.7 Not applicable

30% A1B1B
′
1 -1.20 -1.20 (0.039) 0.040 94.5 Not applicable

A1B1B
′
2 -1.77 -1.76 (0.053) 0.055 94.1 Not applicable

A1B2B
′
1 -1.31 -1.30 (0.038) 0.039 93.1 Not applicable

A1B2B
′
2 -1.86 -1.86 (0.046) 0.048 94.6 Not applicable

25% 50% A1B1B
′
1 -1.13 -1.12 (0.045) 0.046 94.2 -1.13 (0.044) 0.045 92.4

A1B1B
′
2 -1.53 -1.49 (0.062) 0.064 89.0 -1.53 (0.065) 0.065 95.2

A1B2B
′
1 -1.30 -1.27 (0.043) 0.042 90.0 -1.30 (0.042) 0.044 94.5

A1B2B
′
2 -1.69 -1.64 (0.054) 0.054 80.7 -1.69 (0.055) 0.057 94.6

30% A1B1B
′
1 -1.20 -1.19 (0.046) 0.046 94.3 -1.20 (0.044) 0.044 94.2

A1B1B
′
2 -1.77 -1.71 (0.060) 0.062 83.0 -1.76 (0.063) 0.064 94.6

A1B2B
′
1 -1.31 -1.29 (0.043) 0.044 91.4 -1.30 (0.042) 0.042 94.6

A1B2B
′
2 -1.86 -1.80 (0.052) 0.056 76.6 -1.86 (0.053) 0.053 95.0

50% 50% A1B1B
′
1 -1.13 -1.11 (0.056) 0.057 92.5 -1.13 (0.055) 0.058 93.5

A1B1B
′
2 -1.53 -1.44 (0.074) 0.074 77.6 -1.53 (0.088) 0.093 93.6

A1B2B
′
1 -1.30 -1.24 (0.052) 0.056 79.1 -1.30 (0.054) 0.059 93.4

A1B2B
′
2 -1.69 -1.57 (0.065) 0.066 48.8 -1.70 (0.073) 0.076 93.9

30% A1B1B
′
1 -1.20 -1.18 (0.056) 0.058 93.1 -1.20 (0.056) 0.056 94.8

A1B1B
′
2 -1.77 -1.65 (0.071) 0.072 60.8 -1.76 (0.084) 0.089 94.5

A1B2B
′
1 -1.31 -1.27 (0.053) 0.054 87.8 -1.30 (0.054) 0.056 93.3

A1B2B
′
2 -1.86 -1.73 (0.063) 0.063 39.7 -1.86 (0.070) 0.073 93.8
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Figure 1: Patient flow in the REVAMP study

Medication alone (MED). The randomization was done with unequal probabilities of 0.4, 0.4, and
0.2, respectively, to CBASP, BSP, and MED. For the purpose of illustration, we considered only
patients treated with SERT in this article. Hence, we were interested in comparing three treatment
regimes: (1) treat with SERT, continue SERT if respond, otherwise add CBASP to SERT; (2) treat
with SERT, continue SERT if respond, otherwise add BSP to SERT; and (3) treat with SERT, con-
tinue SERT if respond, otherwise add MED to SERT. These three regimes are denoted by SSC, SSB,
and SSM, respectively. The response to therapy was measured by the 24-item Hamilton Rating Scale
for Depression (HRSD24) scores at each visit. A reduction of HRSD24 score from baseline would
indicate that the patient was recovering from depression. Figure 1 shows the design and patient flow
of 618 patients in the REVAMP study who received SERT. The responses of 136 patients could not
be assessed since they dropped out from the study in stage one. For 482 patients entering the second
stage, about 65% of patients completed the study. To show a snapshot of the data, we have presented
HRSD24 scores of eight selected patients in Figure 2. The left panel of Figure 2 represents HRSD24

scores for patients who had their response status confirmed at various time points and went on to
complete the study. The right panel of Figure 2 represents HRSD24 scores for patients who dropped
out from the study (their response statuses may or may not have been confirmed). Figure 2 illustrates
how information collected in a two-stage longitudinal study can vary across patients due to response
and drop-out. Because of the presence of drop-outs, we applied the inverse-probability-weighted
generalized estimating equations method described in Section 4 to estimate the effects of three treat-
ment regimes in the REVAMP study. The effect of the jth treatment regime was formulated as the
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Figure 2: HRSD24 scores of eight selected patients in the REVAMP study. Patients A, B, C, and D
had complete data and patients E, F, G, and H did not. Patients A and B are non-responders whose
response status was confirmed at weeks 10 and 8, respectively. Patients C and D are responders
whose response status was confirmed at weeks 12 and 8, respectively. Patient E dropped out at
week 4 without response information. Patient F dropped out at week 20 after failing to respond by
week 12. Patients G and H dropped out at weeks 16 and 20 after responding to initial treatment
at weeks 8 and 12, respectively. The solid lines represent responders, the dashed lines represent
non-responders, and the dotted line represents patient who dropped out before the randomization
and his/her response status could not be ascertained. The closed circles show when HRSD24 scores
were measured, the open squares show when the response status was confirmed.

coefficient βt,j in the marginal mean model:

E [Yim(j) | tim, genderi, racei] = β0,j + βt,j × tim + βgender,j × genderi + βrace,j × racei,

where j ∈ {SSC, SSB, SSM}; genderi=1 (0) if male (female); racei=1 (0) if Caucasian (non-
Caucasian). To account for incompleteness through the inverse-probability-weighted generalized
estimating equations, the probability of having complete data for patient i, πi, was estimated from
the data. We postulated a logistic model for πi with covariates gender, race, and the baseline ob-
served HRSD24 score. Specifically, π̂i = Gi (γ̂; genderi, racei, Yi1) = [1 + exp(−γ̂0 − γ̂1 ×
genderi − γ̂2 × racei − γ̂3 × Yi1)]−1. Additionally, the exchangeable working correlation structure
was used in the inverse-probability-weighted generalized estimating equations where the correlation
and dispersion parameters were estimated by the standard GEE procedure.

The results of the REVAMP data analysis are shown in Table 3. The regime SSM had the
highest reduction of 0.690 per week in HRSD24 scores from baseline, followed by the regimes SSB
(0.684/week) and SSC (0.683/week). While the effect of each treatment regime was statistically
significant (p<0.0001), the magnitude of the effect was similar across three regimes. A Wald Chi-
square test (H0 : βt,SSC = βt,SSB = βt,SSM ) with 2 degrees of freedom resulted in a p-value
of 0.99, implying that there was no evidence that the effects of these three treatment regimes were
significantly different from each other.
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Table 3: The estimated effects of treatment regimes adjusting for gender and race in the REVAMP
study

Treatment Estimated Standard 95% Confidence Wald test
Regime Effect Error Limits p-value p-value df = 2

SSC1 -0.683 0.027 -0.736 -0.630 <0.0001

SSB2 -0.684 0.029 -0.741 -0.626 <0.0001 0.99

SSM3 -0.690 0.041 -0.770 -0.610 <0.0001

1 Treat with SERT, continue SERT if respond, otherwise add CBASP to SERT
2 Treat with SERT, continue SERT if respond, otherwise add BSP to SERT
3 Treat with SERT, continue SERT if respond, otherwise add MED to SERT

8 Discussion
In a two-stage longitudinal study, such as the one presented here, drop-out is a common phe-
nomenon. If the drop-out occurs prior to the second randomization, a patient’s response status will
be unknown. Additionally, in the second stage of the study, patients randomized to one treatment can
not receive other competing treatments, hence the fundamental problem of causal inference (Hol-
land, 1986) applies. We have used the inverse-probability-weighted generalized estimating equa-
tions method (Robins et al., 1995) to take into account the missing data due to randomization and
drop-out and have provided evidence of the bias incurred when appropriate weighting is not applied.
The weights are formed by inversely weighting the probability of randomization to the treatment dic-
tated by the regime and the probability of having complete data. The probability of having complete
data is estimated through a logit model. We showed that under certain assumptions, the inverse-
probability-weighted generalized estimating equations estimators are consistent and asymptotically
normal. We also showed how to compare treatment regimes via the Wald test, which required com-
putation of covariance between two estimated regime effects. We have demonstrated our methods
using a dataset from a depression study.

Our methods account for missing data due to randomization and drop-out. However, they ignore
the time to response and the time to drop-out in the second stage. It is possible to increase precision
of the estimators by incorporating these two phenomenons into the estimation process. We are
currently working on this generalization.
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