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SUMMARY

In clustered survival analysis applications, researchers frequently fit frailty models using
parametric and nonparametric approaches to obtain the estimates for the parameters asso-
ciated with the survival model covariates and heterogeneity (frailty). Availability of the off-
the-shelve implementations and freely available R software packages makes it convenient
for the practitioners to fit these complicated models easily. Even though there has been a
couple of studies assessing the stability of the older packages (e.g., survival, coxme)
under a variety of scenarios, some of the newer implementations (e.g., frailtySurv,
JM and parfm) have not gone through similar rigorous assessment. It is worth evaluat-
ing these new software implementations, and comparing them with the older packages. In
the current work, via simulations, we will examine the estimates from all of these popu-
larly used software implementations under a variety of scenarios when the corresponding
assumptions related to the baseline hazard and frailty distributions are misspecified. Ad-
ditionally, true heterogeneity parameter, censoring patterns and number of clusters were
varied in the simulations to assess respective impacts on the estimates. From these sim-
ulations, we observed that when there is a large number of clusters and mild censoring,
Cox PH frailty models fitted using a newer semiparametric estimation technique (from the
frailtySurv package) produced regression and heterogeneity parameter estimates that
were associated with unusually large bias and variability. On the other hand, when the true
heterogeneity parameter is substantially large, the Cox PH frailty models fitted using the
coxme package were often producing highly variable estimates of the heterogeneity pa-
rameter. The simulation findings then guided our choice of appropriate frailty model in the
context of determining the birth interval dynamics in Bangladesh.
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1 Introduction
In a general survival analysis scenario, researchers fit time-to-event data accounting for possible cen-
soring. Traditional survival analysis models, such as Weibull regression model and Cox’s propor-
tional hazards (Cox PH) model (Cox, 1972; Zhang, 2016; Fleming and Harrington, 1991; Andersen,
1993) require statistical independence between lifetimes under consideration. Weibull regression is
a parametric regression model that requires baseline hazard function specification, whereas, Cox PH
is a semi-parametric model that allows the hazard function to be unspecified, and models covariates
through a regression model. The assumption of independence is violated when the collected data
consist of clusters. Ignoring correlated nature of the data in Weibull and Cox PH regression mod-
els may lead to incorrect standard errors and consequently misleading inferences (Henderson and
Oman, 1999; Therneau and Grambsch, 2000; Duchateau and Janssen, 2007). To correct for such
cluster-dependency, a cluster-specific random effect is introduced in the survival models to account
for the cluster-specific susceptibility to the new events (Aalen, 1988). The random effect, popularly
known as the ‘frailty’ term in the model, accounts for the unexplained heterogeneity arising from the
clustered event times. If these frailties are known, the survival times are conditionally independent.
A regression parameter (associated with a covariate) in the frailty model is considered a fixed effect,
and interpreted as the effect of changing a covariate on a subject’s average response conditional on
the cluster (Vaupel et al., 1979; Zeger et al., 1988; Albert, 1999; Kelly, 2004).

Over the years, many different approaches of fitting the frailty models are proposed in the lit-
erature. They are generally extensions of Cox PH or Weibull regression models, based on how
researchers want to incorporate the baseline hazards in the analyses (Clayton, 1978; Sahu et al.,
1997). They may also differ with respect to the distribution of frailties as well as estimation meth-
ods. Gamma and log-normal distributions are frequently assumed as frailty distributions, based on
empirical evidence or mathematical convenience (Therneau and Grambsch, 2000; Abbring and Van
Den Berg, 2007; Hougaard, 2012). Once the frailties are generated from either of these distributions,
fitting frailty models requires complicated likelihood integration over these frailties. Using sophisti-
cated statistical and computational techniques, statisticians have developed a number of ways to get
estimates of the heterogeneity parameter (e.g., ✓) as well as the parameters associated with the co-
variates (e.g., �s) from these frailty models (Klein, 1992; Nielsen et al., 1992; Guo and Rodriguez,
1992; Therneau et al., 2003; McGilchrist and Aisbett, 1991; Munda et al., 2012; Duchateau and
Janssen, 2007; Wienke, 2010; Rizopoulos et al., 2008, 2009; Rizopoulos, 2010; Gorfine et al., 2006;
Zucker et al., 2008). However, the performances of various approaches vary to some degree with
respect to various scenarios considered. In the previous literature, various estimation procedures for
frailty models were compared (Cortinas Abrahantes and Burzykowski, 2005), effects of sample size
(Karim, 2008) and cluster size (Abdulkarimova, 2013) were assessed for various frailty models. For-
tunately, empirical researchers do not need to worry about solving such complicated computational
issues due to the availability of numerous freely available software packages.

Availability of the existing routines and a number of new software packages (e.g., freely avail-
able R packages) enables researchers to easily fit frailty models in survival modelling applications
with clustered lifetime data. However, these software implementations of frailty models differ with
respect to types of regression models used (e.g., parametric and semiparametric), the assumed base-
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line hazard and frailty distributions for the estimation of the respective parameters as well as the
optimization technique. In real-life applications, where true baseline hazard and frailty distributions
are generally unknown, the choice of a parametric or a non-parametric baseline hazard function,
as well as the assumed frailty distributions in the frailty model, is rather arbitrary (Khan et al.,
2016; Mahmood et al., 2013). The ramifications of the potential violation of this assumption on the
parameters associated with the survival model covariates (�’s) and frailties (✓) are hard to assess em-
pirically. Two previous studies have compared various statistical properties of a couple of software
implementations (e.g., R packages survival and coxme) that offer to fit various frailty models
(Kelly, 2004; Hirsch and Wienke, 2012).

In this work, using various simulation scenarios, with respect to the mis-specification of baseline
hazard distributions and frailty distributions, we assessed how sensitive the estimates (�’s and ✓) are
from the newer software implementations of these frailty models. For that, we have compared
frailtySurv, JM and parfm as well as the previous packages. Using the same scenarios, we
will also assess the impact of the varying the number of clusters, percentage of censoring, varying
heterogeneity parameter and compare the findings with the existing literature. We will then use
these simulation findings to guide our choice of appropriate frailty model in an empirical context of
determining the birth interval dynamics in Bangladesh (Khan et al., 2016).

2 Methods

Mathematically, to impose a frailty parameter in a Cox model, we need to add a new random effect
(⌫), i.e., an unobserved random variable that is implicitly common for all the observations in the
same cluster and it’s log transformation is assumed to be randomly distributed with mean 0 and
variance ✓. This term acts multiplicatively in the hazard function along with the baseline hazards
and the covariate function (see Web-Appendix 1) (Therneau and Grambsch, 1998). These frailties
are assumed to originate from a frailty distribution f⌫(⌫) belonging to some assumed parametric
family of distributions, say, gamma or log-normal. The role of the frailty is thus to revise the
hazard function for each cluster, so that clusters with higher frailties have a proportionally higher
risk of failure. However, the estimation procedure is substantially different than that of the Cox
or Weibull model fitting, and requires maximizing more challenging likelihoods (Nielsen et al.,
1992; McGilchrist and Aisbett, 1991; Ripatti and Palmgren, 2000; Rizopoulos et al., 2008, 2009;
Rizopoulos, 2010) (see Web-Appendix 2 for a general description of the likelihood under frailty).

Table 1 summarizes the frailty model fitting approaches for estimation of parameters associated
with the covariates and heterogeneity parameter. Web-Appendix 3 includes the software implemen-
tation details of each of these methods. In the application section, for comparison, we will use a
conventional Cox PH approach as well.
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Table 1: Approaches of the frailty model fitting and software implementations considered in the
current study.

Approach Baseline
hazard

Estimation approach Frailty distri-
bution

Software
(R) package

Cox.EM.G Unspecified ⇠ EM1 Gamma survival

Cox.REML.N Unspecified ⇠ REML2 Log-normal survival

Cox.ML.N Unspecified Maximizing likelihood3 Log-normal coxme

Cox.Sp.G Unspecified Semiparametric4 Gamma frailtySurv

Cox.Sp.N Unspecified Same as above4 Log-normal frailtySurv

Weib.JM.G Weibull Maximizing likelihood (joint model)5 Gamma JM

Weib.ML.G Weibull Maximizing marginal likelihood6 Gamma parfm

Weib.ML.N Weibull Same as above6 Log-normal parfm
1 Estimated via penalized methods to approximate EM approach (Klein, 1992; Nielsen et al., 1992; Guo

and Rodriguez, 1992; Therneau et al., 2003).
2 Estimated via penalized methods to approximate REML approach (McGilchrist, 1993).
3 Estimated via maximizing the likelihood (Cortinas Abrahantes and Burzykowski, 2005; Therneau et al.,

2003; Ripatti and Palmgren, 2000)
4 Estimated via Gorfine et al.’s semiparametric estimation technique (Gorfine et al., 2006; Zucker et al.,

2008).
5 Estimated via maximizing the maximum likelihood (closed form) (Rizopoulos et al., 2008, 2009; Ri-

zopoulos, 2010).
6 Estimated via maximizing the marginal likelihood using the Laplace transform of the frailty distribution

(Munda et al., 2012; Duchateau and Janssen, 2007; Wienke, 2010).

3 Simulation Settings
We generated clustered survival data from a specified shared frailty model, with the following ex-
pression of the hazard function:

S(tij |�j ,!j) = ⇤0(tij) exp(X
0
ij�j +Z 0

ij!j),

where ⇤0 is the cumulative baseline hazard, !j , a transformation of ⌫j , is the frailty value of cluster
j, �0

j = (�1,�2) is the regression coefficient vector, and Xij is the covariate vector consisting of
two covariates X1 and X2, for subject i in cluster j.

Table 2 lists 18 different simulation scenarios under consideration varying censoring percentage,
assumed frailty and baseline hazard distributions. We fixed the number of subjects in each cluster
to K = 25 and the number of clusters to N = 15. In these settings, we set heterogeneity parameter,
✓ = 2 and set regression coefficients �0

j = (�1,�2) = (log(2), log(3)). We considered two cen-
soring proportions: 0.15 and 0.85. Frailty values were sampled from gamma, log-normal or inverse
Gaussian distribution respectively (see Web-Table 4.2). Both covariates were generated from nor-
mal distributions, and censoring was generated under log-normal distribution. In these simulations,
the baseline hazard was specified by the cumulative baseline hazard from Weibull or log-logistic
distribution respectively (see Web-Table 4.1 and Web-Figure 4.1 in Web-Appendix 4). For conduct-
ing sensitivity analyses, we have additionally considered 108 other simulation scenarios varying the
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number of clusters from moderate to large (e.g., N = 30 and 60), and varying heterogeneity param-
eters from very small to very large (e.g., ✓ = 0.1, 0.5, 1 and 3). We performed a Monte Carlo study
with 500 iterations in each scenario.

Table 2: List of 18 main simulating scenarios under consideration. In the following settings, we
have considered parameters associated with covariates �0

j = (�1,�2) = (log(2), log(3)) and 25
subjects in each clusters. These two covariates were generated from normal (0,1) distributions, and
censoring was generated from log-normal distribution. For sensitivity analyses, we have considered
additional 108 simulation settings by (I.) varying number of clusters to moderate (30) and large (60),
and by (II.) varying heterogeneity parameters (e.g., 0.1, 0.5, 1 and 3).

Scenario No. of
clusters

% censoring True frailty distri-
bution

True baseline
hazard distribu-
tion

Heterogeneity
parameter ✓

1 15 15 Gamma Weibull 2
2 15 15 Gamma Log-logistic 2
3 15 15 Log-normal Weibull 2
4 15 15 Log-normal Log-logistic 2
5 15 15 Inverse-Gaussian Weibull 2
6 15 15 Inverse-Gaussian Log-logistic 2
7 15 45 Gamma Weibull 2
8 15 45 Gamma Log-logistic 2
9 15 45 Log-normal Weibull 2
10 15 45 Log-normal Log-logistic 2
11 15 45 Inverse-Gaussian Weibull 2
12 15 45 Inverse-Gaussian Log-logistic 2
13 15 85 Gamma Weibull 2
14 15 85 Gamma Log-logistic 2
15 15 85 Log-normal Weibull 2
16 15 85 Log-normal Log-logistic 2
17 15 85 Inverse-Gaussian Weibull 2
18 15 85 Inverse-Gaussian Log-logistic 2

4 Results

4.1 Robustness of ✓ Estimates

The accuracy of the heterogeneity parameter estimates (✓̂) depends on the assumption of the frailty
distribution. Gamma and log-normal distributions are assumed for frailty in most popularly used
frailty models and associated implementations. For example, when gamma distribution is assumed
during the data generation process, and parameter estimation model specifies the same distribution
for frailty, the estimated ✓ parameters are associated with least bias (e.g., see Web-Figure 5.1 and for
the log-normal case, see Web-Figure 5.2: dotted lines represent the true parameter value). Therefore,
it is not surprising that when the inverse-Gaussian distribution is assumed for the data generation
and parameter estimation model uses either gamma or Gaussian distribution for frailty, the estimated
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✓ parameters will be associated with substantial bias (see Figure 1). In this figure, the ✓ estimates
from Gorfine et al.’s semiparametric approach (Gorfine et al., 2006; Zucker et al., 2008) had an
unusually smaller interquartile range (IQR) under gamma frailty assumption when the true frailty
was generated from Inverse Gaussian. We also see almost the same result when the censoring rate
is moderate (45%, see Web-Figure 13.36).

Figure 1: ✓ estimates when frailty generated from Inverse Gaussian (N = 60, censoring 15%).

4.2 Robustness of � Estimates
4.2.1 Robustness of �1 and �2 Estimates when Censoring is Mild

Estimation of ✓ is not generally of primary interest. One is usually more interested in estimating
regression coefficients in the survival model. When survival times were generated from Weibull dis-
tribution and frailties were generated from gamma or log-normal distribution, in terms of estimating
�1 (associated with the first covariate in the model X1), all the frailty estimation models are fairly
robust to frailty parameter specification in the frailty model (e.g., see left-hand side of Web-Figures
5.1 - 5.2). Interestingly, when survival times were generated from log-logistic distribution (shown in
the right-hand side of Web-Figures 6.1 - 6.2), parametric frailty models were slightly overestimating
�1. This phenomenon was also consistent for parameter �2 estimates (associated with the second



Guidance on the choices of frailty software 7

covariate in the model X2; see Web-Figures 7.1 - 7.2). Again, the most surprising result comes
from the �1 and �2 estimates from Gorfine et al.’s semiparametric approach (Gorfine et al., 2006;
Zucker et al., 2008) when frailty generated from Inverse Gaussian (see Figure 2 and Web-figure 7.3).
The mean of the parameter estimates are further from the truth as well as the empirical variance is
noticeably larger than that of other estimates.

Figure 2: �1 estimates when frailty generated from Inverse Gaussian(N = 60, censoring 15%).

4.2.2 Robustness of �1 and �2 Estimates when Censoring is Severe

Interestingly, when we incorporated more censoring in the data generation process (85% censoring
instead of 15% that was applied earlier), parameters estimates for �1 and �2 are less biased (at the
cost of higher variability) irrespective of survival or frailty distribution assumed (see Web-Figures
8.1-8.3 and Web-Figures 9.1-9.3) as was seen in (Nielsen et al., 1992; Petersen et al., 2006; Hsu
et al., 2007; Hirsch and Wienke, 2012). With severe censoring, ✓ estimates were also associated
with less bias but often more variability irrespective of the frailty distribution chosen (see Web-
Figures 10.1-10.3 compared to Web-Figures 5.1, 5.2 and Figure 1). For moderate censoring, the
variabilities are in between (see Web-Figures 13.28-13.36). Again, estimates of �1 and �2 from
Gorfine et al.’s semiparametric approach (Gorfine et al., 2006; Zucker et al., 2008) were associated
with a large number of outliers when frailty generated from log-normal under moderate censoring
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(see Web-figures 13.31 and 13.32). Moreover, when frailty generated from an inverse Gaussian
distribution under moderate censoring, these estimates were very different than those from the rest
of the approaches (see Web-figures 13.34 and 13.35). For mild censoring, the median and IQR values
of these estimates were similar to those from the rest of the approaches, but were still associated with
a large number of outliers (see Web-figures 13.46 and 13.47).

4.3 Effects of Changing Number of Clusters

When we used a smaller number of clusters (N = 15) with 25 subjects per cluster, the parameter
estimates, we noticed higher empirical variance as expected (compared to N = 60, see Web-Figures
13.10-13.27, even under different censoring patterns). However, the general patterns remained the
same (See Web-Figure 11.1-11.5). We also assessed these patters under different censoring patters
(moderate censoring from Web-Figures 13.10-13.18; severe censoring from Web-Figures 13.19-
13.27), and the patters were consistent (and with higher variability as censoring rate increased). One
noticeable feature was that aberrant behavior of Gorfine et al.’s semiparametric methods (Gorfine
et al., 2006; Zucker et al., 2008) was not visible in scenarios with small number of clusters (See
Web-Figure 11.7-11.8). When we increased the number of clusters to 90, we see patterns similar
to the case of N = 60 clusters (see Figure 3 and Web-Figures 12.1 and 12.2). The ✓ parameter
is estimated with higher precision (judged by empirical IQRs) with larger number of clusters (see
Web-Figures 12.2 and 13.36) when frailty was generated from an inverse Gaussian distribution.

In general, a larger number of clusters and a smaller censoring percentages contribute to smaller
standard errors for the � estimates (see Web-Figures 13.1 - 13.9).

4.4 Effects of Changing the Heterogeneity Parameter ✓

We changed the true ✓ values from 0.1 to 3, and the general patterns were mostly the same (see
Web-Figures 13.67-13.174). When we set the true heterogeneity parameter small (e.g., ✓ = 0.1),
we do not see much difference in ✓ estimates from different approaches. However, as we gradually
increase this parameter (to ✓ = 0.5), we see that the estimates from the Cox frailty maximizing
likelihood estimation approach under normality assumption are associated with more outliers than
those from the other approaches (e.g., Web-Figure 13.96). The estimates from REML approach
are close, but associated with slightly less outliers. When this parameter increases to ✓ = 3, this
phenomenon is more visible (e.g., one extreme example is Web-Figure 13.153). When the number
of clusters was increased to 60 and censoring was mild (15%), all parameter estimates (�̂1, �̂2 and
✓̂) from Gorfine et al.’s semiparametric methods (Gorfine et al., 2006; Zucker et al., 2008) were
associated with substantial bias (see Web-Figures 13.37-13.39).
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Figure 3: �1 estimates when frailty generated from Inverse Gaussian and used very large number of
clusters(N = 90, censoring 15%).

5 Empirical Data Analysis: Determining the Birth Interval Dy-
namics in Bangladesh

A longer spacing between consecutive births (‘birth-interval’) decreases the number of children per
women. This practice has beneficial effects on population size, maternal and child health status of a
country. Bangladesh is a country with excessive population, and understanding the current practice
of birth interval as well as its determinants is imperative for designing evidence-based strategies.
Nationally representative Bangladesh demographic and health survey (BDHS) has been conducted
in Bangladesh since 1993 to provide the demographic and health characteristics of populations with
certain time interval. The 2014 BDHS used a two-stage stratified cluster sampling design, with
average 120 households per cluster. A total of 17, 989 households were selected for survey where
96 percent were successfully interviewed from the sampled households of 2014 BDHS (NIPORT,
Mitra and Associates, and ICF, 2016).

In this study, birth intervals are obtained from the Bangladesh Demographic and Health Surveys
(BDHS) of the year 2014 (NIPORT, Mitra and Associates, and ICF, 2016). Women who have at least
one live birth in preceding five years of the respective survey year, and have more than two children
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were selected from the BDHS 2014 data and all birth intervals corresponding to the selected women
were used in the analysis. The duration between last birth and interview date is considered as open
birth interval (censored time), where the duration between two successive live births is closed birth
interval (event time). That means birth intervals are considered as time-to-event data. Among the
important covariates for modeling birth intervals that were reported in earlier studies (Khan et al.,
2016; Mahmood et al., 2013; Chakraborty et al., 1996), those available in BDHS data were selected
for this study. Web-Table 14.1 describes summary statistics of the covariates under consideration.

Among the few studies on birth interval in Bangladesh, considered birth intervals as indepen-
dent time-to-event data and did not consider heterogeneity (Khan and Raeside, 1998; Islam et al.,
2010). Birth-intervals within a geographical cluster (community) and mother can be considered as
correlated because mothers from the same community could share a certain type of unobserved envi-
ronmental factor, quality care of health facility, cultural practices etc., where children from the same
mother could share certain unobserved characteristics like genetic factors, biological factors, knowl-
edge etc. Therefore, modeling birth intervals without considering within mother or within-cluster
level correlation may lead to incorrect inference when exploring the determinants of the birth spac-
ing. A few recent studies have analyzed birth intervals of women from Bangladesh after adjusting
the heterogeneity (frailty) due to cluster and mother (Khan et al., 2016; Mahmood et al., 2013). The
inclusion of frailty terms was deemed helpful in exploring the between mother and between cluster
variation on the length of birth interval. While fitting frailty models in this application, we were un-
able to obtain estimates from the following approaches Weib.ML.N, Cox.Sp.N and Cox.Sp.G.
It was mostly due to the fact that they caused software to crash. We suspect that handling large
dataset may be an issue for these software implementations. Moreover, performances of the later
two approaches in some of our simulation settings were not encouraging as well.

5.1 Mother Level Frailty Model
Results show that effects of the maternal age at birth are significant in all models except Weib.JM.G,
which indicates the likelihood of the subsequent birth decreases as the mother’s age at birth increases
(see Table 3). But the effect size varies across the models, where fixed effect Cox PH (non-frailty)
model and the parametric gamma frailty model show the largest and smallest effects, respectively.
Survival status of the index child has a statistically significant effect on the likelihood of having
the next child in all the considered models. Comparing all the models it has been found that the
mothers with previous children alive are less likely to have next birth compared to the mothers who
lost their previous child, where effect size is comparatively small in the fixed effect Cox PH model.
Family composition is an important predictor for the length of birth intervals (Setty-Venugopal and
Upadhyay, 2002). All models reveal that mothers with one child are more likely to have the next
birth compared to the mothers with a balanced number of children (one girl and one boy). As ex-
pected, mothers with two girls are less likely to wait longer for the next birth. Comparing the models
with and without frailty, the smallest effect size is noticed in the fixed effects Cox PH model, where
semiparametric and parametric frailty models show an increase in effect size for family composition.
Birth interval tends to be significantly shorter for mothers from rural region compared to that of from
urban region, which is true for all the models considered. In all of models under consideration, the
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distribution of birth intervals changes according to the administrative division. Results reveal earlier
that women from Chittagong and Sylhet divisions are more likely to have the next birth compared
to women from Barisal division, whereas women from the Khulna, Rajshahi and Rangpur divisions
show relatively lower likelihood of the next birth. Interestingly, there is no significant difference
found in the distribution of birth interval among the maternal education categories in fixed effects
Cox PH and semiparametric frailty model. However, consistent with the literature (Setty-Venugopal
and Upadhyay, 2002; Tulasidhar, 1993), the duration of birth interval in the current analysis is shorter
among the mothers with primary and no formal educated in parametric frailty models. Estimates of
the frailty variance indicate that the lengths of birth intervals varies with mother.

Comparing all models, the parametric gamma frailty models estimate a higher unobserved het-
erogeneity component (roughly twice) than semi-parametric gamma frailty models. Model with
log-normal frailty assumption is also giving smaller heterogeneity than the parametric gamma frailty
model. Associated computational times are reported in Web-Appendix 14.2.

5.2 Estimates from the Empirical Data Analysis: Community Level Frailty
Model

Results show that effects of all variables are identical with mother level frailty model, although the
effect sizes are decreased in community level frailty model (see Web-Table 14.2 in Section 14). In
this dataset, considering the community levels, we had small number of clusters, but cluster sizes
were large, which was the opposite for the mother level. Consequently, comparing to all models
with mother level frailty models, the size of the unobserved heterogeneity is much smaller in com-
munity level than the mother level. Comparing all community level frailty models, the parametric
gamma frailty models estimate a higher unobserved heterogeneity component than semi-parametric
gamma frailty models. Model with log-normal frailty is also giving smaller heterogeneity than the
parametric gamma frailty model.

6 Discussion
Frailty models are used for analyzing correlated survival-time data (Duchateau and Janssen, 2007).
Availability of software routines has made it easier for the researchers to fit this rather compli-
cated model in practical data analysis applications. In the literature, we have found two studies
that have compared a number of statistical properties of two software implementations (survival
and coxme) (Kelly, 2004; Hirsch and Wienke, 2012). Since then, additional software packages
have emerged that offers fitting of these frailty models. In this current work, we have assessed the
robustness the estimates from these newer packages (frailtySurv, JM and parfm), and com-
pared with the previous packages. Using extensive simulation scenarios, we showed that, Cox frailty
models are more robust than the parametric Weibull models when the baseline hazard distribution is
misspecified.

Our simulation study shows that estimates of the heterogeneity parameter are highly sensitive to
the misspeficication of the frailty distribution, which may lead to noticeable bias. However, the
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effects of frailty distribution misspeficication on the regression coefficient estimations are generally
minimal. This is especially true for Cox PH frailties. These findings are coherent with the previous
literature (Hsu et al., 2007). We also found that the heterogeneity parameter estimates are generally
insensitive to the choice of baseline hazard function. However, not all frailty estimation technique
implementations based on Cox PH are the same. In terms of the software implementations of these
frailty models, most of these packages resulted in consistent estimates under most simulation scenar-
ios we have considered. Interestingly, we had two new observations from the results of our extensive
simulations. The first one is that the heterogeneity parameter (✓) estimates from the coxme package
were associated with unusual variability when the true heterogeneity parameter was large. Secondly,
and most notably, when Cox PH frailty models are fitted using the Gorfine et al.’s semiparametric
estimation technique (Gorfine et al., 2006; Zucker et al., 2008) (e.g., Cox.Sp.G and Cox.Sp.N
from package frailtySurv), the regression parameter estimates are sometimes associated with
unusually large variability when dealing with a large number of clusters and mild censoring. If the
practitioners are dealing with such scenarios (i.e., when the estimate of ✓ is unusually high or low, or
when there is a large number of clusters and mild censoring present), we would advise them to con-
sider refitting the models using other approaches as sensitivity analyses, and look for inconsistency,
if any.

For the empirical data analysis, all the approaches considered show that different socioeco-
nomic and demographic variables are useful in explaining women’s birth spacing distribution in
Bangladesh. The size of the effects is relatively high in parametric models compared to the semi-
parametric models. This is consistent with our findings when the survival data were not generated
from Weibull distribution and the estimates of regression parameters were overestimated. Based
on our simulation experience, we prefer Cox PH frailty estimates for our data analysis. A sizable
mother to mother variation is also noticed among the all frailty models, which indicates the impor-
tance of frailty effect in birth interval modeling. However, the sizes of the estimates of heterogeneity
parameter were generally smaller for Cox frailty approaches compared to those from Weibull frailty
approaches. In addition, a more uniform sized community to community variation is also noticed,
although the size is much smaller than mother to mother variation. Comparing the estimates of
regression coefficients, we notice that the effects of covariates are smaller when frailty effects are
ignored. In general, frailty models seem to account for unobserved heterogeneity; regression esti-
mates and their standard errors increase when frailty is introduced into the model. These findings
are consistent with the previous literature (Khan et al., 2016; Mahmood et al., 2013).

In summary, most of the popular frailty implementations we have considered in this work were
able to produce reasonable estimates (e.g., packages JM (fastest in our application), parfm (slow-
est), survival and coxme). In general, Cox frailties were found to be more robust compared
to parametric approaches and the corresponding software implementations (e.g., survival and
coxme) were found to be more stable than the others. In our application, we found the frailty model
fitting function in coxme package to be much faster than those in survival (see Web-Appendix
14.2). However, overall, in the same application, the frailty model fitting function in JM package
was the fastest, while that in parfm was much slower in fitting the model. Most notably, in this
research, we have identified that the implementation of a relatively newer method, such as Gorfine et
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al.’s semiparametric estimation technique (Gorfine et al., 2006; Zucker et al., 2008) (e.g., in package
frailtySurv) produced some unexpected results in some specific settings. Future research needs
to identify whether these issues could be mitigated by more careful implementation of the approach
in the software package.

This work has some limitations and potential to extend in future research endeavours. In this
work, we did not explore hypothesis testing either of the regression coefficients or the heterogeneity
parameter of the frailty models. There are other software implementations of frailty approaches
proposed in the literature. The versions we considered are freely available and the most popularly
used by practitioners, but the list is not exhaustive (Rondeau et al., 2012; Do Ha et al., 2012). We
also did not consider commercial software implementations or approaches that consider variable
selection via shrinkage, AIC or BIC approaches to choose parsimonious models (Abdulkarimova,
2013; Munda et al., 2012; Androulakis et al., 2012). In our simulation, we have considered only two
continuous covariates, and both were normally distributed. In practice, data analysis may involve
a wide variety of variables (e.g., of categorical and continuous nature). Future simulations could
explore more complex covariate settings.

Our simulation study findings highlights the consequences of violating the assumptions required
by different types of frailty model implementations. Based on our simulation findings and implica-
tions of these results in the subsequent data analysis context, practitioners can make informed de-
cision about which type of frailty models and associated software implementations would be likely
useful in different situations. Researchers should consider comparing various existing and new
frailty model fits on their dataset to identify if any of them produce unusual results. We considered
the default settings offered by off-the-shelf software packages that are freely available. Hopefully
this will facilitate appropriate use of these frailty approaches by practitioners.
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