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SUMMARY

Dependence in multivariate binary outcomes in longitudinal data is a challenging and an
important issue to address. Numerous studies have been performed to test the dependence
in binary responses either using conditional or marginal probability models. Since the con-
ditional and marginal approach provide inadequate or misleading results, the joint models
based on both are implemented for bivariate correlated binary responses. In the current
paper, we consider a joint modeling approach and a generalized linear model (GLM) for
tri-variate correlated binary responses. The link function of the GLM is used to test the
dependence of response variables. The mobility index with two categories, no difficulty
and difficulty, over the duration of three waves of Health and Retirement Survey (HRS)
is chosen as the binary response variable. Initial analysis with Marshall-Olkin correlation
coefficients and logistic regression coefficients provide moderate correlation in mobility
indices implying dependence in the response variables. We also found statistically signif-
icant dependence among the response variables using the joint modeling approach. The
mobility at current wave not only depends on the previous mobility status, but also depends
on covariates such as age, gender, and race.

Keywords and phrases: Multivariate Correlated Binary Responses, Dependency, General-
ized Linear Models, Mobility Index.

1 Introduction
Dependence in multivariate response variables collected over time in longitudinal studies is both a
challenging and an important issue to address while analyzing the relationship among the correlated
response variables and a set of explanatory variables. In modeling repeated measures outcome vari-
ables, researchers need to incorporate both the dependence among the repeated outcome measures
and the dependence among these measures and a set of explanatory variables. The literature in mod-
eling correlated quantitative response variables that follow multivariate normal distribution is quite
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rich. However, methodologies for modeling discrete repeated measures outcomes are scattered.
Repeated or correlated binary outcome measures are a special case of discrete repeated response
variables that arise commonly in many fields including biomedical sciences, public health, epidemi-
ology, agriculture, business, economics, and social sciences.

The generalized estimating equations (GEE) are the most commonly used methodologies (Liang
and Zeger, 1986; Hardin and Hilbe, 2002; Diggle et al., 2002) for modeling repeated binary out-
come measures and a set of explanatory variables. GEE methods implement marginal models and
a working correlation structure to address the dependence between the outcome measures and a set
of explanatory variables and the dependence among the outcome measures respectively. Marginal
models implemented in GEE are basically population-averaged fixed-effects models where the de-
pendence among the outcome measures are incorporated by assuming some prespecified correlation
structures on them. A second approach that explicitly models the dependence among the repeated
outcome measures, is the generalized linear mixed effects model (GLMM) (Stroup, 2016; Fitz-
maurice et al., 2012) where the random variation among the group of repeated measures is added
explicitly to the systematic part of the model.

In recent literature on repeated measures analysis (Islam et al., 2012, 2013; Islam and Chowd-
hury, 2017) both marginal and conditional models for outcome measures are considered to analyze
a number of non-normal repeated response variables collected over time. In the current paper, we
consider such approaches for repeated binary outcome measures collected from a longitudinal study.
In particular, we consider marginal and conditional models for tri-variate binary outcome measures
on mobility index of elderly people in the USA from a longitudinal household survey on Health and
Retirement Study (HRS). The mobility indices collected over three waves (years) of elderly people
are considered as response variables.

The term mobility is defined as the condition of moving independently. In general, the ability of
moving from one place to another, decreases as people become older. From the public health point
of view it is important to study the dependence structure of mobility over time for elderly people
as well as the dependence of mobility on other associated factors. Mobility issue in elderly people
gained great attention in recent time. Numerous studies have been conducted to identify the factors
that influence mobility. Truong et al. (2011) studied mobility of older people and identified that age,
gender, income, living status (alone or accompanied), and neighborhood characteristics were the
most influential factors that might affect mobility. Schwanen and Páez (2010) identified that factors
such as gender and ethnicity might vary across geographical space in relation to mobility.

The primary objectives of the current paper are: (i) to develop a generalized linear model for
multivariate correlated binary response variables (i.e. mobility indices, in this case), (ii) to establish
a testing procedure to test the strength of dependence among the response variables, and (iii) to
identify the statistically significant factors that affect the mobility index.

2 Background

Dependence in categorical variables particularly in binary outcome variables is studied for a long
time in different contexts. There had been many substantial contributions to statistical theory for
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determining the dependence across binary response variables.
For longitudinal data analysis, Liang and Zeger (1986) and Prentice (1988) proposed the method

of moments to analyze binary response variables. The generalized estimating equations (GEE) tech-
nique based on a marginal model was used to estimate the parameters associated with the binary
response variables and the correlation among the repeated outcomes was addressed with a working
correlation structure. Lipsitz et al. (1991) then modified the GEE proposed by Prentice (1988) to
estimate the odds ratio providing more efficient measures of association between binary response
variables. Liang et al. (1992) and Carey et al. (1993) also used the odds ratio to measure the asso-
ciation between binary responses. Different association measures such as odds ratio and tetrachoric
correlation were used by Le Cessie and Van Houwelingen (1994). Introduction to generalized linear
models (Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989) set the stage for analyzing
multivariate binary responses in many applications. To analyze the repeated measures data with
correlated binary outcomes, Darlington and Farewell (1992) showed that the relationship between
response and predictors can be described by the dependence in response as well as the dependence
on the predictors. They focused on marginal probabilities and dependence on predictors. Islam et al.
(2012) extended their model by considering both marginal and conditional probabilities. In their
proposed model, both marginal and conditional probabilities were expressed as a function of pre-
dictors and they suggested a testing procedure to check the dependence of response variables. One
drawback of the model is that without a joint model for the correlated outcomes, models based on
marginal or conditional probabilities alone can not solve the problem of dependence in the outcomes
entirely.

To overcome this problem, Islam et al. (2013) and Islam and Chowdhury (2017) proposed a
joint model which takes both marginal and conditional probabilities of correlated binary response
variables. The application was carried out on a bi-variate binary response. We implemented their
proposed model to tri-variate correlated binary responses in longitudinal data. This approach can be
carried out in a similar manner to multivariate binary response data with time dependent predictors.

3 Methodology

3.1 Terminology and Notations

We begin with the notations and terminologies associated with the methodology for analyzing cor-
related tri-variate binary responses. Let Y1 be the binary response variable at time point 1. For
Y1 = m, m = 0, 1, let Ym2 and Ym3 denote two additional binary response variables at time points
2 and 3 respectively given the mth status of the response variable at time point 1.

The joint probability of Ym2 and Ym3 can be illustrated using a 2 × 2 table (Table 1), where
Pm+0, Pm+1, Pm0+ and Pm1+ represent the marginal probabilities and Pm00, Pm01, Pm10 and
Pm11 are the joint probabilities given the mth status of the response at time point 1. In particular
Pmij , (i, j) = {(0, 0), (0, 1), (1, 1), (1, 0)} denote the joint probabilities of the response variables
at time points 2 and 3 given that the response variable at time point 1 takes value m(m = 0, 1).
Pmi+ and Pm+j denote the marginal probabilities of the response variables at time points 2 and 3
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Table 1: Joint probability distribution

Ym3

0 1 Total

Ym2
0 Pm00 Pm01 Pm0+

1 Pm10 Pm11 Pm1+

Total Pm+0 Pm+1 Pm++

respectively given that the response variable at time point 1 is m(m = 0, 1).
Under this setup we can test the dependence between the response variables at time points 2 and

3 using Marshall-Olkin correlation coefficient (Marshall and Olkin, 1985) which is defined as,

ρM =
Pm00Pm11 − Pm10Pm01√
Pm1+Pm0+Pm+1Pm+0

. (3.1)

If the estimated correlation coefficient ρ̂M is close to zero, then it concludes that there is no correla-
tion between the response variables 2 and 3 given the response at time point 1.

Another approach to test the dependence between two correlated binary response variables is to
consider a logistic regression model that can be expressed as follows:

p
(
Ym3|ym2, x

)
=

e(Xβ+αm2ym2)

1 + e(Xβ+αm2ym2)
;m = 0, 1 (3.2)

This representation of a logistic model is a Markov type model since the response variable at time
point 2 (Ym2) is considered as an explanatory variable to model the response variable at time point
3 (Ym3) along with other explanatory variables X . If the regression coefficient αm2 becomes zero
then the response variables Ym2 and Ym3 are said to be independent irrespective of Y1. On the other
hand, if αm2 = 0, for m = 0

αm2 6= 0, for m = 1

then the responses Ym2 and Ym3 are said to be conditionally independent and it is true for reciprocal
condition on αm2.

3.2 Data and Variable Selection

We consider secondary data from the longitudinal household survey on Health and Retirement Study
(HRS). The survey was sponsored by the National Institute on Aging (NIA) and Social Security
Administration (SSA). The HRS was administered by the Institute for Social Research (ISR), Uni-
versity of Michigan. The survey was conducted on individuals aged 50 years and higher and their
spouses. Data were collected on demographics such as health, financial and housing wealth, in-
come, social security, pension, health insurance, family structure, retirement plan, and employment
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history from both the respondent and his/her spouse, if any. The main goal is to provide panel data
that enable research and analysis in support of policies on retirement, health insurance, saving, and
economic well-being.

The data set contains 12 waves (years) denoted as wave 1 (W1:1992), wave 2 (W2:1994) and
so on up to wave 12 (W12:2014). In the current study, we consider last three waves, W10-W12
and rephrased W10, W11, and W12 as waves 1-3. The mobility index among elderly people is
considered as the response variable. The mobility index was calculated based on the five tasks such
as walking several blocks, walking one block, walking across the room, climbing several flights of
stairs and climbing one flight of stairs. The sum of the mobility index ranges from 0 to 5 and the
difficulty level is defined as no difficulty with sum zero and difficulty with sum in one to five. For
the kth (k = 1, 2, 3) wave, the response variable is defined as,

Yk =

0, if no difficulty

1, if difficulty

The mobility index may depend on many factors including age, sex, race and body mass index. For
our analysis we considered time invariant covariates such as age (X1), gender (X2) and race (X3).
The predictors are defined as:

X1 =

0, if age is 50-60 years

1, if age >60
, X2 =

0, if Female

1, if Male
, X3 =

0, if White/Caucasian

1, if Others

The complete data set is separated into two groups. The first group is constructed by taking all
respondents’ information who are at no difficulty status of movement and the other group contains
information who are at difficulty status of movement at wave-1. A sample of size 20295 is selected
for the analysis. The data set is further splitted according to the mobility index status at wave 1.
With no difficulty status at wave 1, the sample has 10416 individuals and with difficulty status at
wave 1, the sample has 10509 individuals. All the missing information in both data sets are assumed
to be missing completely at random and is excluded from further analysis.

3.3 A Generalized Linear Model Approach

Regression techniques based on Markov type models as in (3.2) may fail to identify the correct
relationship between responses and predictors especially when there are more than one response
variable. In order to investigate the correlations among the response variables at multiple time
points and a set of explanatory variables a generalized linear model (GLM) is considered based on
conditional and marginal probability distributions of the response variables in two time points given
the response at a third time point. Thus we are able to address the correlatedness among tri-variate
binary responses and a set of explanatory variables.

For Y1 = m, m = 0, 1 the bi-variate Bernoulli distribution for outcome variables at time points
2 and 3, Ym3 = ym3 and Ym2 = ym2 can be written as

P
(
Ym2 = ym2, Ym3 = ym3

)
= P

(1−ym2)(1−ym3)
m00 P

(1−ym2)ym3

m01 P
ym2(1−ym3)
m10 P ym2ym3

m11 . (3.3)
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The joint probabilities can be expressed in terms of conditional and marginal probabilities as follows:

P (Ym2 = ym2, Ym3 = ym3) = P (Ym3 = ym3|Ym2 = ym2)P (Ym2 = ym2).

In the presence of covariate information, the bi-variate probabilities can be written as a function of
covariates X’s as follows:

P
(
Ym2 = ym2, Ym3 = ym3|X = x

)
= P

(
Ym3 = ym3|Ym2 = ym2;x

)
P
(
Ym2 = ym2|X = x

)
.

The exponential family representation of the joint probability mass function of the response variables
at time points 2 and 3 in equation (3.3) can be written as follows:

P (Ym2 = ym2, Ym3 = ym3) = exp

[
ym2 log

(Pm10

Pm00

)
+ ym3 log

(Pm01

Pm00

)
+ ym2ym3 log

(Pm00Pm11

Pm01Pm10

)
+ logPm00

]
, (3.4)

where (Ym2, Ym3) = {(0, 0), (0, 1), (1, 0), (1, 1)},
∑
i,j Pmij = 1, m = 0, 1. The log likelihood

function is then expressed as follows:

l =

n∑
i=1

[
y2mi log

(Pm10i

Pm00i

)
+ y3mi log

(Pm01i

Pm00i

)
+ y2miy3mi log

(Pm00iPm11i

Pm01iPm10i

)
+ logPm00i

]
. (3.5)

The components of the link function for the generalized model are composed from the exponen-
tial representation of the joint mass function in equation (3.4) as follows:

ηm0 = log
(
Pm00

)
, ηm1 = log

(Pm01

Pm00

)
, ηm2 = log

(Pm10

Pm00

)
, ηm3 = log

(Pm00Pm11

Pm01Pm10

)
,

where ηm0 is the baseline link function, ηm2 is the link function for Ym2, ηm1 is the link function
for Ym3 and ηm3 is the link function for the dependence between Ym2 and Ym3. To write the
systematic components for generalized linear model via three link functions we require to write the
joint probabilities in terms of conditional and marginal probabilities.

LetX = (X1, . . . , Xp)
′ be the covariate vector with x representing the realized covariate vector.

Then conditional probabilities for response Ym3 at time point 3 given the response Ym2 at time point
2 can be expressed as function of covariates as follows:

P (Ym3 = 1|Ym2 = 0;x) =
exβm01

1 + exβm01
= πm01(x),

P (Ym3 = 1|Ym2 = 1;x) =
exβm11

1 + exβm11
= πm11(x),

P (Ym3 = 0|Ym2 = 0;x) =
1

1 + exβm01
= πm00(x),

P (Ym3 = 0|Ym2 = 1;x) =
1

1 + exβm11
= πm10(x),

(3.6)
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where βm01 =
(
βm010, βm011, βm012, . . . , βm01p

)′
and βm11 =

(
βm110, βm111, βm112, . . . , βm11p

)′
.

Next we need the marginal probabilities for the response Ym2 at time point 2:

P (Y2m = 1|X = x) = πm2(x) =
exβm1

1 + exβm1

and

P (Y2m = 0|X = x) = 1− πm2(x) =
1

1 + exβm1
,

where βm1 =
(
βm10, βm11, βm12, . . . , βm1p

)′
. Now combining the conditional and marginal prob-

abilities, the joint probabilities can be written as:

Pm01(x) = P (Ym3 = 1|Ym2 = 0, X = x)P (Ym2 = 0|X = x) =
exβm01

1 + exβm01
· 1

1 + exβm1

Pm00(x) = P (Ym3 = 0|Ym2 = 0, X = x)P (Ym2 = 0|X = x) =
1

1 + exβm01
· 1

1 + exβm1

Pm11(x) = P (Ym3 = 1|Ym2 = 1, X = x)P (Ym2 = 0|X = x) =
exβm11

1 + exβm11
· exβm1

1 + exβm1

Pm10(x) = P (Ym3 = 0|Ym2 = 1, X = x)P (Ym2 = 1|X = x) =
1

1 + exβm11
· exβm1

1 + exβm1
.

(3.7)

Using the joint probabilities in (3.7), the components of the link function are expressed as follows:

ηm0 = logPm00(x) = − log
[
1 + exβm01

]
− log

[
1 + exβm1

]
,

ηm1 = log
(Pm01

Pm00

)
= xβm01,

ηm2 = log
(Pm10

Pm00

)
= xβm1 + log

[
1 + exβm01 ]− log

[
1 + exβm11 ],

ηm3 = log
(Pm00Pm11

Pm01Pm10

)
= x(βm11 − βm01).

(3.8)

If the value of ηm3 equals to 0 for m = 0, 1, then the responses at time points 2 and 3 are
independent. This implies that, the test of uncorrelatedness between Ym2 and Ym3 can be carried
out by setting βm11 = βm01.

The method of maximum likelihood estimation is used to estimate the parameters of the model
presented in (3.8). Due to lack of analytical solutions, numerical methods based on quasi-Newton
method (BFGS algorithm) is used to find numerical approximations to maximum likelihood esti-
mates of the parameters. The optim() function of R software (R Core Team, 2018) is applied to
perform the computations.

In order to test the dependence structure among the response variables across two time points
given the status of the response at the third time point, we proceed as follows: the response variables
at time points 2 and 3 are said to be independent if ηm3 = 0 for m = 0, 1. Equivalently, we can test
whether H0 : βm01 = βm11. The hypothesis can be tested using the following test statistic:

χ2 = (β̂m01 − β̂m11)
′[var(β̂m01 − β̂m11)]

−1(β̂m01 − β̂m11), (3.9)
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which is distributed as chi-squared with (p+ 1) degrees of freedom asymptotically.

4 Data Analysis and Results

4.1 Exploratory Data Analysis

As discussed in Data and Variable Selection section, we consider the last three waves, W10-W12
from the Health and Retirement Study (HRS) in the current paper. The mobility indices (redefined
as 0: no difficulty, and 1: difficulty) of elderly people at waves 10, 11, and 12 are considered as the
response variables at time points 1, 2, and 3 denoted by Y1 − Y3 respectively. Table 2 shows the
frequency distribution of the responses at last two waves (Y2, Y3) given the mobility status of the
subjects at wave 1. About eighty percent of the respondents had no difficulty whereas about twenty
percent had difficulty with mobility at wave 2 when the mobility status at wave 1 was no difficulty.
For the same mobility status at wave 1, the percentage of respondents with no difficulty decreased
to about seventy three percent and the percentage of respondents with difficulty status increased to
twenty seven percent at wave 3.

Table 2: Frequency distributions of responses at wave 2 and 3

Y02 Y03 Y12 Y13

Freq % Freq % Freq % Freq %

no difficulty 7060 80.4 6424 73.1 1443 18.6 1261 16.27
difficulty 1721 19.5 2357 26.8 6307 81.3 6489 83.7

From Table 2 we see that when the mobility status of the respondents at wave 1 was difficulty,
the above scenario changes drastically. Only little over eighteen percent of the respondents are at
no difficulty status at wave 2 and reduces to about sixteen percent at wave 3. Thus about eighty two
and eighty four percent of the respondents are at difficulty status at waves 2 and 3 respectively.

Table 3: Transition counts and probabilities from Y2 and Y3 given Y1; probabilities are in parenthesis

Y03 Y13

Y02

0 1 Total

Y12

0 1 Total

0 5796 (0.821) 1264 (0.179) 7060 (1.0) 0 718 (0.498) 725 (0.502) 1443 (1.0)
1 628 (0.365) 1093 (0.635) 1721 (1.0) 1 543 (0.086) 5764 (0.914) 6307 (1.0)

Table 3 shows the transition counts and probabilities of mobility status from wave 2 to wave 3 for
people who had difficulty and no difficulty at wave 1. The probability that people with no difficulty
at waves 1 and 2 tend to be at the same state at wave 3 is 82% while the probability that people with
difficulty at wave 1 will be at the same state at waves 2 and 3 is about 64%. However, the probability
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that the people having difficulty with mobility at wave 1 will have no difficulty at waves 2 and 3 is
about 50% while the probability that they will have difficulty at waves 2 and 3 is higher than 91%.
In what follows, we explore the interdependence of the response variables (mobility indices) at the
three time points (W10-W12).

4.2 Test of Dependence

One of the main goals of the study is to test the dependence of binary response variables at waves 2
and 3 given the values of the response variable at wave 1. Since both response variables are binary,
Marshall-Olkin correlation coefficient is used to test the dependence in mobility at waves 2 and 3.
The Marshall-Olkin correlation coefficients of the dependence between Y2 and Y3 is 0.406 when
Y1 = 0 and is 0.4356 for Y1 = 1. The correlation coefficients indicate that the association between
the mobility indices for both models are moderately positive.

The Markov model analysis with logistic regression where the mobility index at wave 2 is con-
sidered as an explanatory variable in addition to all explanatory variables also provides the evidence
of dependence between the mobility indices at waves 2 and 3 given the mobility status at wave 1.
The predicted logistic regression model for Y1 = 0 is written as:

p
(
Y03 = 1|y02, x, y1 = 0

)
=

e−2.0259+0.55x1+0.24x2+0.26x3+2.01y02

1 + e−2.0259+0.55x1+0.24x2+0.26x3+2.01y02
. (4.1)

The equation in (4.1) gives the probability of having difficulty in movement at wave 3 for the given
value of predictors, when a respondent does not face any difficulty in movement at waves 1 and 2.
The logistic regression for Y1 = 1 is expressed as,

p
(
Y13 = 1|y12, x, y1 = 1

)
=

e−0.40+0.41x1+0.19x2+0.14x3+2.32y12

1 + e−0.40+0.41x1+0.19x2+0.14x3+2.32y12
. (4.2)

The equation in (4.2) is the probability of having difficulty in movement at wave 3 for the given
values of predictors when a respondent does have difficulty in movement at waves 1 and 2. The
regression coefficients of y02 and y12 indicate that there is large amount of evidence for dependence
between the mobility indices at waves 2 and 3 for given the mobility status at wave 1.

4.3 Results from the Generalized Linear Model

The parameter estimates from the generalized linear models based on the conditional and marginal
probability models given that the respondents had no difficulties at wave 1 (i.e. Y1 = 0) are presented
in Table 4.

The p-value of the dependence test when the respondents had no difficulties in movement at
wave 1 (i.e. Y1 = 0) indicates that their mobility states at waves 2 and 3 are dependent. In other
words, there is statistically significant dependence between the mobility indices at waves 2 and 3
when the respondents had no difficulty at wave 1. We also see from Table 4 that all the covariates
are significant in both conditional and marginal models when mobility states were no difficulty and
difficulty at waves 2 and 3 given no difficulty at wave 1. When mobility is at difficulty at both
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Table 4: Parameter estimation of the proposed model for Y1 = 0 (χ2
0 = 292.131, p-value=0.000)

conditional model β001 conditional model β011 marginal model β01
Predictors Estimate SE p-value Estimate SE p-value Estimate SE p-value

Const. −2.077 0.0664 0.000 0.135 0.112 0.222 −2.038 0.0596 0.000

Age 0.615 0.0653 0.000 0.391 0.1071 0.000 0.569 0.0571 0.000

Gender 0.262 0.0627 0.000 0.217 0.1020 0.033 0.417 0.0548 0.000

Race 0.298 0.0723 0.000 0.167 0.1169 0.152 0.274 0.062 0.000

waves 2 and 3 given no difficulty wave 1 then the covariate race becomes insignificant. That is,
the odds of having difficulty at wave 3 is not affected by race given that a subject had difficulty in
the previous year. However, in the absence of difficulty in the prior year, race may be a significant
factor of mobility status. Thus when the respondents had no difficulty in movement at wave 1, age
and gender were the two factors that affected movement status consistently for the respondents at
wave 2 to wave 3. These results are consistent with respect to the risk factors in the progression of
difficulty in movement for the elderly people.

Table 5 presents the regression parameter estimates from the generalized linear models based on
conditional and marginal probability models given that the respondents had difficulties at wave 1
(i.e. Y1 = 1).

Table 5: Parameter estimation of the proposed model for Y1 = 1 (χ2
1 = 92, p-value=0.000)

conditional model β101 conditional model β111 marginal model β11
Predictors Estimate SE p-Value Estimate SE p-value Estimate SE p-value

Const. −0.395 0.120 0.001 1.9131 0.105 0.000 0.968 0.067 0.000

Age 0.3828 0.112 0.000 0.4369 0.096 0.000 0.373 0.062 0.000

Gender 0.1885 0.108 0.081 0.1993 0.094 0.034 0.354 0.0603 0.000

Race 0.1923 0.120 0.109 0.1042 0.102 0.307 0.118 0.066 0.076

Similar to the case presented in Table 4, the p-value of the dependence test with respondents
having difficulty in movement at wave 1 (i.e. Y1 = 1) indicates that the responses at waves 2 and 3
are dependent. Thus we conclude that regardless of the mobility status at wave 1 there is statistically
significant dependence in mobility indices at waves 2 and 3. From Table 5 we see that only age
is significant in both conditional and marginal models. Gender is not significant in the conditional
model and race is not significant in conditional and marginal models. Thus when the respondents
had difficulty in movement at wave 1, only age affected consistently the difficulty in movement
status for the respondents at waves 2 and 3.
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5 Conclusion

Dependency in multiple correlated categorical response variables is challenging to explore. A num-
ber of studies are conducted to test the dependence in multiple categorical response variables using
various forms of correlation coefficients and regression analysis. In recent years, generalized esti-
mating equations and logistic regression models are considered for testing dependency among binary
response variables at multiple time points. Other methodological development includes generalized
linear models based on marginal or conditional probability models. However, these techniques do
not provide true nature of dependency since they use a single probability model. In this paper, we
consider a generalized linear model technique based on both conditional and marginal probabili-
ties. The model is applied to practical data which provides adequate information for testing the
dependence for tri-variate binary outcomes at three time points.

Our initial approach for testing dependency among the response variables was to implement
Marshall- Olkin correlation coefficient. Next we considered the logistic regression technique based
on Markov model. Although both of these approaches indicate dependence in response variables,
the results are not adequate to describe the true relation since these approaches demonstrate only
conditional dependence. In order to study the dependence in tri-variate binary responses we adopted
a generalized linear model based on joint models of responses at the last two waves conditional on
the response at the first wave.

The response variable at wave 1, Y1 is categorized into two categories with labels of no difficulty
(Y1 = 0) and difficulty (Y1 = 1). Conditional to Y1 = m,m = 0, 1 we tested dependency among
the response variables at waves 2 and 3. The results from the generalized linear model demonstrate
that the mobility status in two consecutive years depends on the mobility status in the previous year.
In addition, the test of dependence indicates strong correlation among the status of mobility at waves
2 and 3 conditional to the mobility status at wave 1. Our results are comparable to those presented
by Islam and Chowdhury (2017).

In brief, the proposed analysis is performed under two conditions, testing the dependency of
mobility indices at last two waves when the movement of elderly people is at (i) not difficult and (ii)
difficult at the first wave. Under both scenarios, the mobility of elderly people depend primarily on
respondent’s age and gender in addition to the prior mobility status. Although prior studies found
race to affect mobility status significantly, results from the current study do not support this evidence.
One explanation could be a large number of missing values for this covariate.

Due to the longitudinal nature of the responses, conditional and joint probability models for the
mobility status at waves 2 and 3 conditioning on wave 1 are considered. The mobility status of a
respondent at wave 3 can only depend on mobility at waves 2 and 1. As such, the following cases
are not considered in our analysis: i) conditional and joint probability models for the mobility status
at waves 1 and 2 conditioning on wave 3 and ii) conditional and joint probability models for the
mobility status at waves 1 and 3 conditioning on wave 2.

One of the drawbacks of the research is that we considered only time invariant covariates due
to lack of sufficient data. Time variant covariates may provide further insight to the dependency
nature of bi-, tri-, and in general multi-variate responses as suggested in the literature. Nontheless,
a general algorithm can be proposed to test the dependence in multi-variate binary outcomes of
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longitudinal data by simple implementation of this approach to responses collected at more than
three time points. As in any bio-medical or public health research, missing values are common in
both response and covariate variables. Time variant covariates and incorporation of missing values
are left as future research.
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