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SUMMARY

Certain conditions and illnesses may necessitate multiple stages of treatment and thus re-
quire unique study designs to compare the efficacy of these interventions. Such studies are
characterized by two or more stages of treatment punctuated by decision points where in-
termediate outcomes inform the choice for the next stage of treatment. The algorithm that
dictates what treatments to take based on intermediate outcomes is referred to as a dynamic
regime. This paper describes an efficient method of building double robust estimators of
the treatment effect of different regimes. A double robust estimator utilizes both modeling
of the outcome and weighting based on the modeled probability of receiving treatment in
such a way that the resulting estimator is a consistent estimate of the desired population
parameter under the condition that at least one of those models is correct. This new and
more efficient double robust estimator is compared to another double robust estimator as
well as classical regression and inverse probability weighted estimators. The methods are
applied to estimate the regime effects in the STAR*D anti-depression treatment trial.
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1 Introduction

When comparing two or more treatments in observational or randomized studies, for a given patient,
investigators can only observe the outcome corresponding to the treatment received by the patient.
Thus, investigators are unable to observe the potential outcomes that could have been observed had
a patient received other treatments. These potential outcomes a patient could have experienced are
often referred to as counterfactual outcomes (Holland, 1986).

While counterfactual variables are not always observable, they provide avenues to construct valid
estimates and to assess treatment effects from randomized trials or observational studies. Various
methods have been proposed that produce unbiased and consistent estimates of treatment effects
based on counterfactuals. The standard and most straightforward method is to directly model the
outcome given receiving each treatment. However, modeling an outcome may not be straightforward
because of the uncertainty of the relationship between the observed covariates and the outcome. In
the case of non-randomized studies, there may be unobserved confounders important to the causal
relationship between treatment and outcome. An alternate approach is called inverse probability of
treatment weighting. In this approach each observation is weighted with the inverse of the prob-
ability of receiving the treatment they received. So a patient who received treatment A1 would
have a weight of 1/Pr(ReceivingA1). With this method, a patient counts for herself along with
1/Pr(ReceivingA1)− 1 other patients that have similar covariate values but for whom we did not
see the counterfactual outcome given treatment A1. In classical randomized trials, these probabili-
ties are known and hence it is straightforward to apply inverse probability of treatment weighting. In
observational studies, however, treatment assignment probabilities are not known, and needs to be
estimated from the data. If we model the probability of receiving treatment based on the observed
covariates the analysis may be flawed in the same way as when modeling the outcome incorrectly
in the previous method. In this case, the accuracy of the estimate will depend on the relationship
between the probability of receiving treatment and the included covariates. Incorrect specification
of this relationship could lead to biased and/or inefficient inference. However, there are methods
requiring the specification of both outcome and treatment models, called double-robust methods,
that allow for unbiased or consistent estimates. This continues to be true if at least one of the models
is correctly specified. Double robust estimation will be the focus of this paper.

There has been a wealth of literature published on the subject of double robust estimation since
its introduction by Robins (2000). Carpenter et al. (2006) compares this method to the more common
approach of multiple imputation. Both Bang and Robins (2005) and Tsiatis et al. (2011) utilize
double robust estimators in a longitudinal setting and attempt to improve to this method’s efficiency.
Kang and Schafer (2007) compare various double robust, as well as some non-double robust methods
in different missing data scenarios. Rotnitzky et al. (2012) discuss a double robust estimator derived
by solving outcome regression estimating equations. Bai et al. (2013) examine a double robust
estimator in the survival data setting, with particular emphasis on stratified sampling schemes.

Cao et al. (2009) in particular are concerned with the efficient estimation of the outcome model
coefficients in cross-sectional settings. They observe that even if one correctly specified the treat-
ment model with incorrect specification of the outcome model, the results, while still yielding con-
sistent estimates, will be inefficient. They propose an estimating equation for these coefficients that
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results in more efficient double robust estimates.
Double robust estimators discussed above were mostly derived or implemented for settings

where one treatment is compared to another in cross-sectional or longitudinal settings. But chronic
diseases demand frequent modification of treatments based on individual responses to the treatment
and/or health conditions. Therefore, instead of learning which treatment is immediately better, a
physician may want to know what course of treatments is best overall. These courses of treatments
are called dynamic treatment regimes (DTRs). They are rules of treatment choice based on interme-
diate responses and patient characteristics. For example, a dynamic treatment regime in depression
treatment could be ’treat a patient suffering from clinical depression with a selective serotonin re-
uptake inhibitor (SSRI), if they respond keep them on it, and if not switch them to a drug like
bupropion (a non-SSRI treatment for clinical depression)’.

Comparing dynamic treatment regimes using counterfactual outcomes is generally more com-
plicated than comparing a single set of treatments. For the latter it is enough to consider counter-
factuals related to a group of treatments, but we need to think about all possible combinations of
initial and follow-up treatments a patient could experience in a dynamic treatment regime setting.
Dynamic treatment regimes and related analytical techniques have grown in prominence in the past
two decades. Murphy (2003) discusses the use of backwards induction and Q-learning as a technique
for estimating regime outcomes. Bembom and van der Laan (2007) explore both inverse probability
weighting and g-computation in two stage dynamic treatment regime clinical trials. Lunceford et al.
(2002) discuss an inverse probability of treatment weighted estimator with a correctional constant
chosen to minimize variance across a class of estimators they introduce. Zhang et al. (2013) propose
a double robust estimator in a dynamic treatment regime setting whose efficiency improves through
careful choice of an augmentation term.

Many well known, large studies aim to compare dynamic treatment regimes. The STAR*D
trial (Warden et al., 2007), which motivated this research, is a multistage clinical trial examining
the effects of depression treatments for patients who do not respond to SSRIs. The COG study
A3891 (Matthay et al., 1999) examines the efficacy of chemotherapy followed by bone marrow
transplantation versus a second round of chemotherapy in children with high-risk neuroblastoma.
The REVAMP study (Trivedi et al., 2008) is another multistage study concerned with analyzing
regimes of treatments for chronic depression.

In this paper we examine double robust estimators in a dynamic treatment regime setting. In par-
ticular, we propose a double robust estimator that is more efficient then the existing estimators. We
present a comparative simulation study, and demonstrate the methods by applying them to analyze
STAR*D study data.

2 Framework

2.1 Estimating Causal Treatment Effect

As mentioned in the section above when comparing treatments within a study, investigators can
only observe the outcome corresponding to the treatment the patient was assigned. So, the potential
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outcome the patient would have experienced had the patient been assigned to the other treatment
is missing. One common approach to dealing with missing data is to replace the missing values
with an approximation based on the observed data. In regression-based imputation, we construct a
model of the outcome regressed on treatment and any relevant covariates, which allows us to esti-
mate the conditional expectation of the outcome given the treatment the patient did not receive using
the resulting model. An unbiased, or at least consistent estimate of the mean outcome conditional
on receiving a particular treatment, µ = E[Yi|A], is then constructed by these conditional expecta-
tions. More specifically, µ̂OR = (1/n)

∑n
i=1m(Xi, β̂), where m(Xi, β) is the postulated ordinary

least squares regression model for E[Yi|Xi], n is the number of subjects in the sample, and β̂ is a
consistent estimator of β, the parameter for the outcome model.

An alternate approach would be to impute the missing outcomes using the outcomes of other,
similar patients. Assume a patient received treatmentAwith the probability of receiving it π(A)(Xi, γ),
where γ are coefficients that describe the relationship between the covariates, Xi, and probability
of receiving treatment. Then, on average, there are [1/π(A)(Xi, γ)− 1] patients with covariates Xi

received a different treatment. Therefore, by weighting this patient by 1/π(A)(Xi, γ) we can use
their outcome to account for themselves as well as those [1/π(A)(Xi, γ) − 1] other patients. Using
this method to estimate the mean outcome conditional on receiving A would result in the Inverse
Probability of Treatment Weighting estimator (Horvitz and Thompson, 1952).

µ̂IPTW =
1

n

n∑
i=1

Z
(A)
i

π(A)(Xi, γ̂)
Yi, (2.1)

where Z(A)
i is the indicator for receiving treatment A, Z(A)

i = 1, if the patient receives A, 0,
otherwise, and Yi is the outcome for the ith subject, i = 1, . . . , n. In the above equation we have
also replaced γ by γ̂ to indicate that when π(A) is unknown, it is estimated from the observed data.

Both of these estimating approaches provide a consistent estimator of the population mean
µ given the correct specification of the models involved, namely, outcome and treatment. Miss-
specification of these models may result in biased and inefficient estimates. However, a third ap-
proach, double robust estimation, allows for consistent estimation as long as at least one of these
models is correctly specified. This double robust estimator is given by

µ̂DR =
1

n

n∑
i=1

{
Z

(A)
i

π(A)(Xi, γ̂)
Yi −

Z
(A)
i − π(A)(Xi, γ̂)

π(A)(Xi, γ̂)
m(Xi, β̂)

}
. (2.2)

For a formal argument for why this estimator is consistent when at least one of the two models
is correctly specified, we refer readers to Robins (2000).

2.2 Inference for Dynamic Treatment Regimes

Now consider the setting of two-stage dynamic treatment regimes where, at the second stage, non-
responders receive subsequent follow-up treatments and responders continue to follow-up. Patients
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will receive up to two levels of treatment. For simplicity, suppose there are only two first stage treat-
ment options, A1 and A2, and two second stage treatment options, B1 and B2, for non-responders
to the first stage treatments A1 or A2. We denote intermediate response with Ri = 1 denoting the
ith patient response and Ri = 0 for their non-response after the first stage of treatment. This set-
ting allows four dynamic treatment regimes, namely, d(Aj , Bk), j, k = 1, 2, where, for example,
in regime d(A1, B1), a patient initially receives treatment A1 and if non-responsive is switched to
treatmentB1. A patient who receivesA1, responds, and stays on that treatment would be considered
to be on this regime, and so would someone that does not respond to A1 and is switched to B1. This
creates an interesting problem when trying to estimate the mean regime outcome in even a random-
ized controlled trial. If there were another second stage treatment that a non-responder could switch
to, B2, then for patients who did not respond to A1 and were switched to B2, we do not observe the
outcome under regime d(A1, B1). However, they were part of that regime up until the second stage
of treatment. This is equivalent to outcome data missing for these patients under regime d(A1, B1)

and hence when estimating the mean outcome under d(A1, B1), we need to account for these miss-
ing data. If we simply take the average outcome of all patients who can be described as following
regime d(A1, B1) then we may get a biased estimate. In this average responders to A1 will count
for more than non-responders because some portion of non-responders to A1, those assigned to B2,
have their outcome missing for our regime of interest.

Let us cast our problem in terms of counterfactual outcomes. Suppose Y [d(Aj , Bk)] denotes
the outcome had the patient been treated with the regime d(Aj , Bk). In terms of this, the goal is
to estimate µ[d(Aj , Bk)] = E{Y [d(Aj , Bk)]}, the mean of a population who were treated with
d(Aj , Bk). However, Yi[d(Aj , Bk)], for all j,k=1,2, is not observed for every individual. Instead we
only observe {

Xi, Z
(A)
ji , Ri, (1−Ri)Z(B)

ki , Yi; i = 1, . . . , n; j, k = 1, 2
}
, (2.3)

where Xi is the patient’s observed covariates, Z(A)
ji is the first stage treatment assignment indicator

for treatment Aj , Ri is the response indicator for the first stage treatment, Z(B)
ki is the second stage

treatment assignment indicator for non-responders receiving treatment Bk, and Yi is the outcome.
The primary assumption required for causal inference is consistency (Robbins et al., 2000),

which in a dynamic treatment regime setting means that the outcome Yi a patient experiences under a
regime d(Aj , Bk) is in fact the counterfactual outcome Yi[d(Aj , Bk)]. In the case of two treatments
at each stage this would be

Yi = Z
(A)
1i

[
Ri + (1−Ri) ∗ Z(B)

1i

]
∗ Yi

[
d(A1, B1)

]
+
(
1− Z(A)

1i

)[
Ri + (1−Ri) ∗ Z(B)

1i

]
∗ Yi

[
d(A2, B1)

]
+ Z

(A)
1i

[
Ri + (1−Ri) ∗ (1− Z(B)

1i )
]
∗ Yi

[
d(A1, B2)

]
+
(
1− Z(A)

1i

)[
Ri + (1−Ri) ∗ (1− Z(B)

1i )
]
∗ Yi

[
d(A2, B2)

]
. (2.4)

Another assumption necessary for making causal inference is positivity. That is, that the probability
of each treatment pathway being experienced by a patient is non-zero. Staying in our two treatment
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per stage example this would mean

1 > P (Z
(A)
ji = 1) > 0, j = 1, 2

1 > P (Ri = 1|Z(A)
ji = 1) > 0, j = 1, 2

1 > P (Z
(B)
ki = 1|Z(A)

ji = 1, Ri = 0) > 0,∀j, k = 1, 2.

(2.5)

The last of the three assumptions is sequential randomization. This assumption states that the
probability of being assigned to a treatment at a decision point depends only on information observed
up to that time. More explicitly,

P (Z
(A)
ji = 1) = P (Z

(A)
ji = 1|Xi)

P (Z
(B)
ki = 1) = P (Z

(B)
ki = 1|Xi, Z

(A)
ji ).

(2.6)

Bembom and van der Laan (2007) describe a method, known as g-computation, originally de-
scribed by Robins (1986), that uses weighted averages, based on response probability, of conditional
intermediate responses to achieve consistent estimates of mean regime outcomes. Specifically, the
mean outcome under regime d(Aj , Bk), µ[d(Aj , Bk)] = E[Y [d(Aj , Bk)]], is estimated as

µ̂G[d(Aj , Bk)] =
1

n

n∑
i=1

{
Rimj(Xi, β̂j) + (1−Ri)mjk(Xi, β̂jk)

}
, (2.7)

where Ri is the ith patient’s response after the first stage of treatment, Ri = 1, if the responded to
first stage treatment, 0 otherwise,Xi is the ith patient’s covariate information,Xi,mj(Xi, βj) is the
postulated outcome model for the conditional expectation of Y for responders given the covariates
Xi, initial treatment Aj . Likewise, mjk(Xi, βjk) is the postulated outcome model for the condi-
tional expectation of Y for non-responders given the covariates Xi, initial treatment Aj and second
stage treatment Bk. We used hats to indicate that they are now estimated from the observed data.

Following the principle of inverse weighting described in Section 2.1, the inverse probability
of treatment weighted estimator in a two stage dynamic treatment regime setting, as described by
Wahed and Tsiatis (2004), becomes

µ̂IPTW [d(Aj , Bk)] =
1

n

n∑
i=1

{
Z

(A)
ji

π
(A)
j (Xi, γ̂j)

[
Ri +

(1−Ri)Z(B)
ki

π
(B)
jk (Xi, ˆγjk)

] }
Yi , (2.8)

where π(A)
j (Xi, γ̂j) is the modeled probability of receiving treatment Aj based on the covariates

Xi, and π(B)
jk (Xi, ˆγjk) is the modeled probability of receiving treatment Bk based on the covariates

Xi given no response to Z(A)
ji .

Lastly consider a locally efficient double robust estimator for a two-stage dynamic treatment
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regime introduced by Wahed and Tsiatis (2004).

µ̂DR[d(Aj , Bk)] =

n∑
i=1

Z
(A)
ji

{ [
Ri +

(1−Ri)Z(B)
ki

π
(B)
jk (Xi, ˆγjk)

]
Yi

−
Z

(B)
ki − π

(B)
jk (Xi, ˆγjk)

π
(B)
jk (Xi, ˆγjk)

(1−Ri)mjk(Xi, β̂jk)

}
/

n∑
i=1

Z
(A)
ji . (2.9)

This estimator is consistent provided at least one of the two models πjk and mjk are correctly
specified. When both models are correctly specified, this estimator is most efficient, provided βj
and βjk are consistently estimated. An extension of this estimator to include an inverse probability
of treatment weighting component for first stage of treatment Aj this estimator results in

µ̂DR[d(Aj , Bk)] =
1

n

n∑
i=1

{
Z

(A)
ji

π̂
(A)
j

[
Ri +

(1−Ri)Z(B)
ki

π̂
(B)
jk

]
Yi −

Z
(A)
ji − π̂

(A)
j

π̂
(A)
j

Rimj(Xi, β̂j)

−
Z

(A)
ji Z

(B)
ki − π̂

(A)
j π̂

(B)
jk

π̂
(A)
j π̂

(B)
jk

(1−Ri)mjk(Xi, β̂jk)

}
, (2.10)

where mj(Xi, β̂j) and mjk(Xi, β̂jk) are the estimated mean outcomes under treatment pathways
Aj and AjBk respectively.

This estimator incurs large bias when the first stage treatment assignment, Z(A)
ji is not indepen-

dent of response to that treatment, Ri.

3 Proposed Estimators

3.1 The Hybrid Inverse Probability of Treatment Weighted Estimator

From the causal inference point of view, we are interested in the outcome if the study population had
received regime d(Aj , Bk). As discussed earlier, this quantity is Yi[d(Aj , Bk)]. Since all individuals
in the sample did not follow this particular regime, Yi[d(Aj , Bk)] is unobserved for individuals
who are treated inconsistent with this regime, and hence missing data techniques can be applied to
estimate the parameter of interest, µ = µ[d(Aj , Bk)] = E[Yi[d(Aj , Bk)]]. We first define Djki, an
indicator that takes the value 1 when the ith individual in the sample is consistent with the treatment
regime d(Aj , Bk), and 0 otherwise. More specifically,

Djki = Z
(A)
ji [Ri + (1−Ri) ∗ Z(B)

ki ] . (3.1)

The probability of being on the regime d(Aj , Bk), P (Djki = 1) is similarly expressed as a
composite of the probabilities for treatment assignment and intermediate response:

P (Djki = 1) = P (Z
(A)
ji [Ri + (1−Ri) ∗ Z(B)

ki ] = 1)

= P (Z
(A)
ji = 1)[P (Ri = 1|Z(A)

ji = 1)

+ (1− P (Ri = 1|Z(A)
ji = 1)) ∗ P (Z(B)

ki = 1|Ri = 1, Z
(A)
ji = 1)] .



98 Topp et al.

If we were to utilize the probability of being on the regime of interest as a unique weight for
each patient we could then

π
(D)
jk (Xi, γ̂jk) = π

(A)
j (Xi, γ̂Aj )[π

(R)

j|Z(A)
ji =1

(Xi, γ̂R)

+ (1− π(R)

j|Z(A)
ji =1

(Xi, γ̂R)) ∗ π(B)

k|Z(A)
ji =1,R=1

(Xi, γ̂Bjk
)] . (3.2)

The terms π(A)
j (Xi, γ̂Aj ), π

(B)

k|Z(A)
ji =1,R=1

(Xi, γ̂Bjk
), and π(R)

j|Z(A)
ji =1

(Xi, γ̂R) can be estimated using

logistic regression or similar models. An inverse probability of treatment weighted estimator can
then be defined as

µ̂HIPTW [d(Aj , Bk)] =
1

n

n∑
i=1

{
Djki

π̂
(D)
jk (Xi, ˆγjk)

}
Yi . (3.3)

We will call this new estimator the hybrid inverse probability of treatment weighted (HIPTW) es-
timator. We call it a hybrid estimator because now we are modeling both treatment and intermediate
response, which is a hybrid of G-Computation and IPTW

3.2 The Hybrid Double Robust Estimator

The extension of the HIPTW estimator, (3.3), to a double robust variant is straightforward and
analogous to the extension in the single stage setting. The IPTW term is augmented with a model
based estimation term that only comes in to play when the probability of being on the regime of
interest is incorrectly modeled. We call this the Hybrid Double Robust Estimator and define it as

µ̂HDR[d(Aj , Bk)] =
1

n

n∑
i=1

{
Djki

π̂
(D)
jk (Xi, ˆγjk)

Yi −
Djki − π̂(D)

jk (Xi, ˆγjk)

π̂
(D)
jk (Xi, ˆγjk)

µ̂Djk(Xi, β̂)

}
, (3.4)

where µDjk(Xi, β) is the mean of the counterfactual outcome corresponding to being treated with
the regime d(Aj , Bk). This new, hybrid two stage double robust estimator has the advantage of
being more efficient than the existing two-stage double robust estimator. Additionally it does not
require the previously discussed unreasonable assumption of first stage treatment assignment being
independent of the outcome of that treatment. Moreover, (3.4) can be viewed as the solution to the
estimating equations

ψi(θ) =



ψjiA(Xi, Z
(A)
ji ; γAj

)

ψiR(Xi, Z
(A)
ji , Ri; γR)

ψjkiB(Xi, Z
(A)
ji , Z

(B)
ki ; γBjk

)

ψiD(Xi, Djki, Yi;β)

ψiHDR(Xi, Djki, Yi;µHDR)


(3.5)
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where the ψ functions inside the parenthesis are individual estimating equations for the components
of the combined parameter vector,

θ = (γAj , γR, γBjk
, β, µHDR)

′ , (3.6)

used in the estimation of µHDR[d(Aj , Bk)]. For simplicity we write µ[d(Aj , Bk)] as µ The first
three correspond to logistic regression models for probabilities of first stage treatment assignment
and intermediate response while the fourth is the estimating equation for a linear regression model
for complete cases. More explicitly,

ψjiA(Xi, Z
(A)
ji ; γAj ) = Xi

(
Z

(A)
ji −

1

1 + e−X
T
i γAj

)
ψiR(Xi, Z

(A)
ji , Ri; γR) = Xi

(
Ri −

1

1 + e−(X
T
i ,Z

(A)
ji )γR

)

ψjkiB(Xi, Z
(A)
ji , Z

(B)
ki ; γBjk

) = (1−Ri)Xi

(
Z

(B)
jki −

1

1 + e−(X
T
i ,Z

(A)
ji )γBjk

)
ψiD(Xi, Djki, Yi;β) = R∗jki(Yi − µDjk(Xi, β̂)) .

The final equation is the estimating equation corresponding to the hybrid double robust estimator
itself, namely,

ψiµ(Xi, Djki, Yi;µHDR) =
Djki Yi

π
(D)
jk (Xi, γjk)

−
Djki − π(D)

jk (Xi, γjk)

π
(D)
jk (Xi, γjk)

µDjk(Xi, β)− µ[d(Aj , Bk)] .

Defining the hybrid double robust estimator as a solution to the above set of estimating equa-
tions allows us to classify it as an M-estimator. It follows then that it is asymptotically nor-
mal, as well as consistent (Stefanski and Boos, 2002). An estimator of the variance of the Hy-
brid Double Robust estimator can be found with the sandwich estimator of the variance Vn =

An(θ̂)
−1Bn(θ̂)An(θ̂)

−1T /n, where

An(θ) =
1

n

n∑
i=1

−δψi(θ)
δθ

=
1

n

n∑
i=1



−δψjiA
δγAj

0 0 0 0

0 −δψiR
δγR

0 0 0

0 0 −δψjkiB
δγBjk

0 0

0 0 0 −1 0

− δψiµ
δγAj

−δψiµ
δγR

− δψiµ
δγBjk

−δψiµ
δβ

−1


and

Bn(θ) =
1

n

n∑
i=1

ψi(θ)ψi(θ)
T ,
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where the derivatives in the matrix An(θ) are defined as

δψjiA
δγAj

= Xie
−XT

i γAj

(
1

1 + e−X
T
i γAj

)2

XT
i

δψjkiB
δγBjk

= Xie
−XT

i γBjk

(
1

1 + e−X
T
i γBk

)2

XT
i

δψiR
δγR

= Xie
−XT

i γR

(
1

1 + e−X
T
i γR

)2

XT
i

δψiµ
δγAj

=
πDγAj

Ri ∗ (Yi − µDjk)
(πD)2

δψiµ
δγBjk

=
πDγBjk

Ri ∗ (Yi − µDjk)
(πD)2

πDγBjk
=
δπ

(D)
jk (Xi, γjk)

δγBjk

δψiµ
δγR

=
πDγRRi ∗ (Yi − µ

D
jk)

(πD)2
πDγAj

=
δπ

(D)
jk (Xi, γjk)

δγAj

δψiµ
δβ

=
Ri − πD
πD

πDγR =
δπ

(D)
jk (Xi, γjk)

δγR
.

A similar approach can be used to find an estimator of the variance for the hybrid inverse proba-
bility of treatment weighted estimator, the difference being that the An(θ) and Bn(θ) matrices have
smaller dimensions.

4 Simulations
We based our simulation on the one found in Kang and Schafer (2007) with a few notable excep-
tions. For each subject we generate 8 independent identically distributed standard normal random
variables, which we will call Xa, Xb, Xc, Xd, Xe, Xf , Xg , and Xh. We assume a two stage de-
sign, with non-responders from the first stage being rerandomized to the second stage. Without loss
of generality we will be dropping the j and k subscript, concerning ourselves only with the regime
where Z(A)

ji = 1 and Z(B)
ki = 1. The treatment probabilities for each stage are

π
(A)
j = expit(γ10 + γ11 ∗Xe + γ12 ∗Xf + γ13 ∗Xg + γ14 ∗Xh) (4.1)

and

π
(B)
jk = expit(γ20 + γ21 ∗Xe + γ22 ∗Xf + γ23 ∗Xg + γ24 ∗Xh + γ25 ∗ Z(A)

ji ) , (4.2)

where expit is the inverse logit function.
With probability of response to the first stage being defined as

R ∼ BERNOULLI(τ0 + τ1 ∗ Z(A)
ji ) . (4.3)

The outcome variable, Y , is then written as

Y = β0 + β1 ∗ ZA + β2 ∗ ZB + β3 ∗Xa + β4 ∗Xb

+ β5 ∗Xc + β6 ∗Xd + β7 ∗R+ β8 ∗ Z(A)
ji ∗ Z

(B)
ki + e , (4.4)
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where e ∼ N(0, 1) are normally distributed error terms. Now the observed covariates are

X1 = e
Xa
2 , X2 =

Xb

1 + eXa
+ 10, X3 =

(Xa ×Xc

25
+ .6

)3
X4 = (Xb +Xd + 20)2, X5 = e

Xe
2 , X6 =

Xf

1 + eXe
+ 10

X7 =
(Xe ×Xg

25
+ .6

)3
, X8 = (Xf +Xh + 20)2 .

(4.5)

Since it would be unreasonably difficult for any investigator to correctly identify the correct re-
lationship between observed covariates and either outcome or treatment we assume the following
incorrect models could be specified:

Y = ξ10 + ξ11 ∗X1 + ξ12 ∗X2 + ξ13 ∗X3 + ξ14 ∗X4 + ξ15 ∗ Z(A)
ji + e , (4.6)

which is the outcome model for those who did respond to the initial treatment.

Y = ξ20 + ξ21 ∗X1 + ξ22 ∗X2 + ξ23 ∗X3

+ ξ24 ∗X4 + ξ25 ∗ Z(A)
ji + ξ26 ∗ Z(B)

ki + ξ27 ∗ Z(A)
ji ∗ Z

(B)
ki + e , (4.7)

which is the outcome model for those who did not respond to the initial treatment and were reran-
domized to a second stage treatment.

π
(A)
j = η11 ∗X5 + η12 ∗X6 + η13 ∗X7 + η̂14 ∗X8 (4.8)

and

π
(B)
jk = η21 ∗X5 + η22 ∗X6 + η23 ∗X7 + η̂24 ∗X8 + η̂25 ∗ Z(A)

ji , (4.9)

which are logistic regressions of the treatment assignments on the covariates with ξ and η as their
estimated coefficients.

We perform a series of 10,000 Monte Carlo simulations in order to asses the validity of our
estimator under circumstances where one or both of the types of models are miss-specified. For the
first simulation the true value of the estimand, the mean counterfactual outcome

µ{d(A1, B1)} = E{Y [d(A1, B1)]} = 142.4,

β = (110, 24.7, 13.7, 124.7, 73.7, 23.7, 50.7, 20.2,−10.7)′

τ = (.2,−.7)′

γ = (γ10, γ11, γ12, γ13, γ14, γ20, γ21, γ22, γ23, γ24, γ25)
′

= (−.3,−.75,−.2, .5, 1, .2,−.2,−.3, .4,−.5,−.7)′.

In the second simulation, created to more closely mimic the STAR*D data, the true value of the
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estimand is

µ{Y [d(A,B)]} = E{d(A,B)} = 7.4

β = (−0.932,−0.137, 1.51, 0.045, 0.313, 0, 0, 5.09,−0.951)′

τ = (−0.559, 0.711)′

γ = (0,−0.457,−0.135, 0, 0, 0,−0.074,−0.041, 0, 0, .500)′.

We also varied sample size in both simulations, at n = 200 and n = 500 for the first simulation
and n = 2000 for the second, as well as examining the estimators under both standard normal
and t-distribution error structures in the first simulation and standard normal error structures in the
second.

4.1 Simulation Results

Table 1: Simulation results for n=200 and n=500, Standard Normal Errors, µ{d(A1, B1)} = 142.4,
G-Comp = G-Computation, IPTW = Inverse Probability of Treatment Weighted, DR = Double Ro-
bust, HIPTW = Hybrid IPTW, HDR = Hybrid DR, MCSE = Monte Carlo Standard Error, MSE =
Mean-Squared Error.

Model n=200 n=500

Treatment Method Bias MCSE Relative Bias MCSE Relative
Outcome (%) Efficiency Efficiency

Correct
Correct

G-Comp 0.4 21.4 3.2 0.7 13.3 2.8
IPTW -0.5 38.1 9.9 0.6 24.6 9.2
DR 4.2 20.2 3.1 3.0 12.5 2.7
HIPTW -2.9 31.5 3.9 -2.4 19.2 5.9
HDR -2.6 11.2 1 -2.4 7.1 1

Incorrect
Correct

G-Comp 0.4 21.4 3.2 0.7 13.3 2.29
IPTW 4.4 63.6 27.4 8.8 144.0 252.7
DR 0.9 20.1 2.8 -1.9 15.7 3.2
HIPTW 2.1 66.6 29.9 6.1 156.0 294.6
HDR -2.5 11.3 1 -2.3 8.1 1

Correct
Incorrect

G-Comp 0.4 21.4 2.3 0.7 13.30 2.2
IPTW 0.5 38.1 7.2 0.6 24.6 7.1
DR 4.2 20.2 2.2 3.0 12.5 2.1
HIPTW -2.9 31.5 5.0 -2.4 19.2 4.5
HDR -1.6 13.7 1 -1.9 8.5 1

Incorrect
Incorrect

G-Comp 0.4 21.4 478 0.7 13.3 0.2
IPTW 4.4 63.6 13.1 8.8 144.0 17.9
DR 3.3 36.9 4.5 -0.5 17.4 0.3
HIPTW 2.1 66.6 14.3 6.1 156.0 20.9
HDR -1.6 17.1 1 -1.5 33.9 1
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Table 2: Simulation results for n=200 and n=500, t-Distribution with df=5 Errors, µ{d(A1, B1)} =
142.4, G-Comp = G-Computation, IPTW = Inverse Probability of Treatment Weighted, DR = Dou-
ble Robust, HIPTW = Hybrid IPTW, HDR = Hybrid DR, MCSE = Monte Carlo Standard Error,
MSE = Mean-Squared Error.

Model n=200 n=500

Treatment Method Bias MCSE MSE Bias MCSE MSE
Outcome (%) (%)

Correct
Correct

G-Comp 0.5 21.4 3.3 0.7 13.4 2.9
IPTW -0.1 46.4 15.0 0.311 23.5 8.5
DR 4.6 37.6 10.2 3.0 12.4 2.7
HIPTW -3.0 31.5 7.1 -2.6 18.8 5.7
HDR -2.4 11.1 1 -2.4 7.0 1

Incorrect
Correct

G-Comp 0.5 21.4 2.9 0.7 13.4 0.03
IPTW 5.3 136.0 114.1 -9.5 2390.0 747.7
DR 0.6 37.2 8.7 -1.7 15.3 0.03
HIPTW 2.5 75.5 35.4 -17.1 3050.0 121.9
HDR -2.3 11.8 1 -2.9 86.7 1

Correct
Incorrect

G-Comp 0.5 21.4 2.3 0.7 13.4 2.2
IPTW -0.1 46.4 10.7 0.3 23.5 6.4
DR 4.6 37.6 7.3 3.0 12.4 2.1
HIPTW -3.0 31.5 5.1 -2.6 18.8 4.3
HDR -1.5 13.7 1 -2.0 8.5 1

Incorrect
Incorrect

G-Comp 0.5 21.4 0.8 0.7 13.4 <0.01
IPTW 5.3 136.0 30.6 -9.5 2390.0 14.8
DR 3.7 50.9 4.4 -0.3 16.8 <0.01
HIPTW 2.5 75.5 9.5 -17.1 3050.0 24.1
HDR -1.4 24.1 1 -6.1 620.0 1

Results from Scenario 1 are presented in Table 1. When both treatment and outcome models
are correct, all the estimators except for the existing DR estimator are approximately unbiased with
relative biases below 3%. For the existing DR estimator, this bias is 4.2% versus a bias of -2.6%
for the HDR estimator. The G-Comp and IPTW estimators, as expected, have the smaller biases
compared to others (since both models are correct), 0.4% and -0.5% respectively, while the HIPTW
estimator has a larger bias (-2.9%). Likewise, all of the estimators except for the IPTW and HIPTW
have Monte Carlo standard errors under 30. For this scenario, the IPTW estimator has a MCSE of
38.1 compared to the HIPTW’s MCSE of 31.5. The HDR estimator performs the best with a MCSE
of 11.2 versus 20.2 for the existing DR estimator and 21.4 for the G-Computation estimator. As in
the case of the MCSE, the MSE of the existing IPTW and HIPTW estimators is much larger than the
other estimators, at 9.9 and 3.9 times higher than the HDR estimator’s MSE respectively. The HDR
estimator, with an MSE of 150, also outperforms the existing DR and G-Comp estimators, who
are 3.1 and 3.2 times higher than that respectively. When only the outcome models are incorrectly
specified the estimators maintain their relationships to one another in terms of bias, Monte Carlo
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Table 3: Performance of the sandwich variance estimator and corresponding confidence intervals for
the HDR estimator with X8, n=200 and n= 500, Standard Normal Errors, µ[d(A1, B1)] = 142.4

Model n=200 n=500

Treatment Sandwich MCSE Coverage Sandwich MCSE Coverage
Outcome Est. SE (%) Est. SE (%)

Correct 11.1 11.2 93.7 7.0 7.1 92.0
Correct

Incorrect 128.1 11.3 99.8 63.5 8.1 99.8
Correct

Correct 13.5 13.7 95.8 8.5 8.5 93.1
Incorrect

Incorrect 610.2 17.1 100 310.0 33.9 100
Incorrect

standard error, and mean squared error.
However, we see some of these relationships change when only the treatment models are incor-

rectly specified. The DR estimator in this case has a lower bias than the HDR estimator at 0.9% and
-2.5% respectively. The HIPTW estimator also has lower bias, at 2.1%, than both the HDR estima-
tor and the existing IPTW estimator, which has a bias of 4.4%. Also, in this case, the relationship
between the existing IPTW and HIPTW estimators is reversed in terms of both MCSE and MSE.
The IPTW estimator has a lower MCSE and MSE, 5.6 and 27.4 times higher than the HDR estimator
respectively. While the HIPTW estimator has an MCSE of 66.6 and an MSE 29.9 times higher than
that of the HDR estimator. The other estimators keep their relationships to one another and maintain
Monte Carlo standard errors under 30 and mean squared errors around 3 times higher than that of
the HDR estimator.

When both treatment and outcome models are incorrectly specified the relationships between
these estimators change slightly from when only the treatment models were incorrectly specified.
In terms of relative bias the IPTW and DR estimators are now both over 3% with 4.4% and 3.1%
respectively. In this case, the HIPTW estimator is less biased, at 2.1%, than both the IPTW and DR
estimators. Additionally the DR estimator has an MCSE over 30, at 36.9, and an MSE 4.5 times that
of the HDR. G-Comp estimator has a lower MSE, at only 1.5 times that of the HDR estimator. In
this case, only the HDR estimator has a lower MSE than the G-Comp estimator.

In summary, Table 1 shows us some interesting dynamics between the estimators. When the
treatment models are correctly specified, the IPTW estimator is less biased, has a higher Monte
Carlo standard error, and a lower MSE than the new Hybrid IPTW estimator. This result, however,
is reversed when the treatment model is miss-specified. The Hybrid Double Robust estimator has the
lowest Monte Carlo standard errors and MSE of any estimator regardless of model miss-specification
at this sample size of n = 200. The DR estimator has lower bias than the HDR estimator only when
the treatment models are incorrectly specified but the outcome models are not. G-comp has the
lowest bias of any of the methods but it is important to note that only the outcome models for
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Table 4: Performance of the sandwich variance estimator and corresponding confidence intervals for
the HDR estimator with X8, n=200 and n= 500, t-Distribution with df=5 Errors, µ[d(A1, B1)] =
142.4

Model n=200 n=500

Treatment Sandwich MCSE Coverage Sandwich MCSE Coverage
Outcome Est. SE (%) Est. SE (%)

Correct 11.1 11.2 93.7 7.0 7.1 92.5
Correct

Incorrect 12.0 11.2 95.5 7.4 8.1 93.4
Correct

Correct 13.5 13.7 95.8 8.5 8.5 93.1
Incorrect

Incorrect 20.5 14.2 98.0 10.8 9.19 96.9
Incorrect

pathway endpoints are incorrectly specified, not the models for intermediate response. G-comp
and IPTW produce estimators with biases of similar magnitudes when both treatment and outcome
models are correctly specified. In Table 1, where n = 500 and when both the outcome and treatment
models are incorrectly specified the HDR estimator performs worse than the DR estimator in terms
of bias (-1.5% versus -.05%), MCSE (33.9 versus 17.4), and with an MSE 0.3 times that of the HDR
estimator.

Table 2 are the results for running the simulation at n = 200 and n = 500 with error terms being
generated from a student’s t-distribution with 5 degrees of freedom. It is similar to Table 1 with the
exception that in this case when both outcome and treatment models are incorrectly specified the
HDR estimator is inferior to the G-comp estimator in terms of MCSE (24.1 versus 21.4) with an
MSE that is 1.25 times higher. One of the Monte Carlo simulation runs for n = 500 contained a
single observation that, under the incorrectly specified model for estimating probability of receiving
treatment A, received a very small probability of receiving its actual treatment assignment. This in
turn caused that observation to receive an abnormally high weight. The estimators utilizing inverse
probability weighting for this run suffered from increased estimated biases, Monte Carlo standard
errors, and MSEs as a result of this single run.

Table 3 shows a comparison between the standard error computed using the sandwich estimator
of the variance and the Monte Carlo standard error at n = 200. The table shows that when the
treatment models are correctly specified the sandwich estimator produces close but slightly under
estimated estimators of the standard error. When both models are correctly specified the average of
the sandwich variance estimator is 11.1 versus the MCSE of 11.2, and when only the outcome is
incorrectly specified the these values are respectively 13.5 and 13.7. When the treatment models are
incorrectly specified then the sandwich estimator of the variance appears not to be very accurate at
all. With only the treatment models incorrectly specified the sandwich estimator is 128.1 versus the
MCSE of 11.3. When both models are incorrectly specified the sandwich estimator becomes even
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Table 5: Simulation results for n=2000, Standard Normal Errors, µ{d(A1, B1)} = 7.4, G-Comp =
G-Computation, IPTW = Inverse Probability of Treatment Weighted, DR = Double Robust, HIPTW
= Hybrid IPTW, HDR = Hybrid DR, MCSE = Monte Carlo Standard Error, MSE = Mean-Squared
Error.

Treatment Model Method Bias MCSE Relative
Outcome Model Efficiency

Correct
Correct

G-Comp -0.002 0.135 0.291
IPTW 0.007 0.146 0.317
DR 9.78 0.116 1.24
HIPTW -8.00 0.158 1.01
HDR -8.04 0.150 1

Incorrect
Correct

G-Comp -0.002 0.135 0.283
IPTW -0.06 0.158 0.339
DR 8.10 0.157 1.001
HIPTW -6.56 0.191 0.857
HDR -8.04 0.161 1

Correct
Incorrect

G-Comp -0.002 0.135 0.290
IPTW 0.007 0.146 0.317
DR 9.78 0.116 1.24
HIPTW -8.00 0.158 1.01
HDR -8.03 0.151 1

Incorrect
Incorrect

G-Comp -0.00213 0.135 0.283
IPTW -0.006 0.158 0.338
DR 8.10 0.157 0.998
HIPTW -6.56 0.191 0.856
HDR -8.04 0.161 1

less accurate with 610.2 versus the MCSE of 17.1. Table 3 corroborates this by showing similar
discrepancies under treatment model miss-specification at n = 500. The coverage at both sample
sizes are suboptimal when the treatment model is correctly specified, and highly conservative when
incorrect. A close examination of the simulations revealed that the elements of the matrix An(θ̂)
corresponding to X8, a variable in the miss-specified treatment models, were abnormally large and
were contributing the majority of the estimated error.

Table 4 shows the results of the simulation with X8 removed from the miss-specified treatment
models at n = 200 and n = 500. When the treatment models are incorrectly specified and the
outcome models are not, the sandwich estimator is slightly over-estimating the variance at n = 200,
with a value of 12.0 versus the MCSE of 11.2, and slightly under-estimating at n = 500, with a
value of 7.4 versus the MCSE of 8.1. When both the treatment models and the outcome models are
incorrectly specified the standard error derived from the sandwich estimator of the variance slightly
over-estimates the standard error. The over-estimation is more severe at the smaller sample size
with the average sandwich estimator value of 20.5 versus the MCSE of 14.2. At n = 500 this is
less concerning with corresponding values 10.8 and 9.19 respectively. At n = 200 the coverage
probabilities when at least one model is correctly specified are close to 95% while at n = 500 they



Variants of double robust estimators. . . 107

Table 6: Performance of sandwich variance estimator n=2000, Standard Normal Errors,
µ{d(A1, B1)} = 7.4, HDR = Hybrid Double Robust Estimator

Treatment Model Method Sandwich Est. SE MCSE Coverage (%)
Outcome Model

Correct HDR 0.146 0.150 85.0
Correct

Incorrect HDR 0.138 0.161 80.1
Correct

Correct HDR 0.146 0.151 83.8
Incorrect

Incorrect HDR 0.156 0.161 85.8
Incorrect

become slightly suboptimal. When both models are miss-specified the coverage at both sample sizes
are larger then 95%.

Finally, in Tables 5 and 6 we see that in the second simulation the HDR estimator performs
worse than the other estimators. There is an increase in bias, likely caused by the smaller ratio of
intercept to treatment effect coefficients in the outcome model. The stronger dependence of first
stage treatment on outcome is problematic with the Hybrid estimators in such a scenario. The lower
coverage for HDR in the the second simulation is due to the higher bias of the estimator.

4.2 Summary of the Simulation Results

In this simulation study we have examined several current methods for estimating the mean outcome
under a dynamic treatment regime along with the two newly introduced hybrid estimators. First, the
new Hybrid estimators are more efficient than their non-hybrid counterparts. Also at low sample
sizes, with the exception of when only the outcome is correctly specified, the new hybrid double
robust estimator is both less biased and has a smaller mean squared error then the classic double
robust estimator. The hybrid inverse probability of treatment weighted estimator is more biased
than its non-hybrid counterpart under correct model specification but considerably less biased when
the treatment model is incorrectly specified. The hybrid inverse probability weighted estimator
has a lower mean squared than its non-hybrid counterpart regardless of correct treatment model
specification.

At larger sample sizes, the hybrid double robust estimator is less biased, more efficient, and
has a lower mean squared error than the non-hybrid double robust estimator but only when the
treatment model is correctly specified. Under correct treatment model specification, the hybrid
inverse probability of treatment weighted estimator is more efficient and has a lower mean squared
standard error than its counterpart but does not maintain that advantage under treatment model miss-
specification at higher sample sizes.

With non-standard error terms generated using the student’s t-distribution with 5 degrees of
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freedom, all of the advantages of the hybrid estimators at low sample sizes are still present but at
larger sample sizes the hybrid methods faults are magnified in the case of treatment model miss-
specification. This is the result of the t-distribution being very tail heavy in terms of its distribution
producing extreme weights when the estimated treatment probability is poorly constructed and lead
to unstable estimates. One solution to this would be to truncate very high or very low weights, which
is a common practice in inverse probability of treatment weighting.

The sandwich estimator of the variance appears to be unbiased but unstable when the treatment
model is miss-specified.

5 The STAR*D Trial

Figure 1: STAR*D Stages of Treatment (Warden et al., 2007)

The Sequenced Treatment Alternatives to Relieve Depression, or STAR*D, Trial was a 7 year
multistage trial designed to test different regimes of depression treatments. The trial contained
4,041 patients between the ages of 18 and 75 who had received a clinical diagnosis of non-psychotic
major depressive disorder under the DSM-IV checklist. A patient that is considered to respond to
treatment will continue taking that treatment, while those that do not respond are re-randomized
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Table 7: STAR*D Dynamic Treatment Regimes

Regime n Mean (QIDS-16) 95% Confidence Interval

d(BUP,MIRT) 95 7.4 (7.3, 7.5)
d(BUP,NTP) 93 7.8 (7.7, 7.9)
d(BUP,BUP+LI) 85 7.7 (7.6, 7.9)
d(BUP,BUP+THY) 73 6.2 (5.9, 6.5)

d(SER,MIRT) 117 7.4 (7.4, 7.5)
d(SER,NTP) 108 6.7 (6.6, 6.8)
d(SER,SER+LI) 97 6.3 (6.2, 6.4)
d(SER,SER+THY) 96 6.1 (6.0, 6.2)

d(VEN,MIRT) 120 7.4 (7.3, 7.5)
d(VEN,NTP) 119 6.7 (6.6, 6.7)
d(VEN,VEN+LI) 108 6.9 (6.8, 7.0)
d(VEN,VEN+THY) 113 6.2 (6.2, 6.3)

d(CIT+BUP,MIRT) 157 6.4 (6.3, 6.5)
d(CIT+BUP,NTP) 163 6.7 (6.7, 6.8)
d(CIT+BUP,CIT+LI) 161 6.5 (6.4, 6.6)
d(CIT+BUP,CIT+THY) 167 5.9 (5.9, 6.0)

d(CIT+BUS,MIRT) 153 7.7 (7.7, 7.8)
d(CIT+BUS,NTP) 160 7.2 (7.1, 7.3)
d(CIT+BUS,CIT+LI) 145 8.1 (8.0, 8.2)
d(CIT+BUS,CIT+THY) 151 6.7 (6.7, 6.8)

to a treatment within a treatment-grouping of their own choice. Although the trial was designed
with four and a half stages, we will only be looking at the 2nd and 3rd stage treatments. This is
because everyone received the same treatment in the first stage, an SSRI called citalopram, and if
we included the 4th stage into our analysis our regime sample sizes would be too small to make
any reasonable inferences. We will also be excluding patients that received cognitive therapy in the
second stage. They have the possibility of being assigned to an extra half stage, which would make
analysis difficult in ways similar to if we had included the 4th stage in our analysis. So our analysis
will center on comparing regimes for follow up medications for patients with depression that are
non-responsive to SSRIs. For that reason stage 2 and 3 treatments will be henceforth be represented
by 1st and 2nd stage notations under our conventions. So a response to Stage 2 would be indicated
by R1, the outcome model for Stage 3 would be denoted mjk, and so on. A visual representation
of the trial can be seen in Figure 1. Thus there would be a total of 20 dynamic treatment regimes
to compare, namely, d(a, b), where b ∈ (MIRT, NTP, a+LI, a+THY), with a ∈ (BUP, SER, VEN,
CIT+BUP, CIT+BUS).

Response is defined as either a 50% reduction in QIDS-16 (Quick Inventory of Depressive Symp-
tomatology) self reported score, which the investigators call response, or a QIDS-16 score lower
than 5, which the investigators call remission, at the end of the stage. The QIDS-16 score is also
the outcome measure we will be looking at in our analysis, rather than the HRSD-17 (Hamilton
Rating Scale of Depression) score which the original investigators used. This is because QIDS-16
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was recorded at every visit while HRSD-17 was recorded upon exiting or finishing the trial, QIDS-
16 scores would be available for more patients than the HRSD-17 was for. It should be noted that
the QIDS-16 remission rates were generally higher than HRSD-17 rates, mainly because the study
counted not having an exit HRSD-17 score as non-response. We will also differ from the study in that
we will keep our overall outcome continuous rather than transform it to being binary. Transforming
a continuous measure into a binary one is always accompanied by a loss of information(Altman
and Royston, 2006). As with the original analysis by the investigators we assume, one could argue
wrongly, that dropout from the study represents non-response and we use last observation carried
forward as the final outcome.

The treatment probabilities for each stage were estimated using logistic regression modeling
probability of receiving treatment of interest on the covariates Burden of Side Effects Rating (Wis-
niewski et al., 2006) and change in QIDS-16 score that were measured during the previous stage.
The outcomes were linearly modeled using our previously described β estimating technique with
the covariates being age and QIDS-16 score at the beginning of Stage 2.

Applying our new, more efficient double robust estimator to the data yields the estimated mean
QIDS-16 scores under various treatment regimes depicted in Table 7 and Figure 2.

By this analysis, the best follow up treatment if citalopram is not effective is found to be either
sertraline or citalopram combined with bupropion sustained release. Additionally the best regimes
involve the third stage treatment of supplementing the second stage treatment with triiodothyronine.
The best overall regime appears to be ’If non-response to citalopram augment it with bupropion sus-
tained release and if non-response to that switch to supplementing citalopram with triiodothyronine.’

6 Discussion

In this paper, we have introduced a new way of constructing estimators for two-stage dynamic
treatment regimes, creating both a hybrid inverse probability of treatment weighted estimator and a
hybrid double robust estimator. Through simulations we have shown that these estimators generally
perform better than their non-hybrid counterparts by the metrics of bias, standard error, and mean
standard error. Finally we have applied the new hybrid double robust estimator to the STAR*D data
set in order to estimate the treatment effects of different two stage dynamic treatment regimes for
patients with non-psychotic major depressive disorder who do not respond to SSRIs.

One limitation of the methodology described in this paper is that it discards data for whom the
outcome data or treatment data are missing. This may result in bias, or efficiency loss as patients
in trials can drop out for various reasons. Future work could potentially include an estimator that,
in addition to dealing with the missing data problem of not seeing the outcome under the regime of
interest for all patients, addresses missing data due to dropout.
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