Connections on Bundles

Md. Showkat Ali, Md. Mirazul Islam, Farzana Nasrin, Md. Abu Hanif Sarkar and Tanzia Zerin Khan

Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh, Email: msa317@yahoo.com

Received on 25. 05. 2011. Accepted for Publication on 15. 12. 2011

Abstract

This paper is a survey of the basic theory of connection on bundles. A connection on tangent bundle TM, is called an affine connection on an *m*-dimensional smooth manifold M. By the general discussion of affine connection on vector bundles that necessarily exists on M which is compatible with tensors.

I. Introduction

In order to differentiate sections of a vector bundle [5] or vector fields on a manifold we need to introduce a structure called the connection on a vector bundle. For example, an affine connection is a structure attached to a differentiable manifold so that we can differentiate its tensor fields. We first introduce the general theorem of connections on vector bundles. Then we study the tangent bundle. TM is a *m*-dimensional vector bundle determine intrinsically by the differentiable structure [8] of an *m*-dimensional smooth manifold *M*.

II. Connections on Vector Bundles

A connection on a fiber bundle [7] is a device that defines a notion of parallel transport on the bundle, that is, a way to connect or identify fibers over nearby points. If the fiber bundle is a vector bundle, then the notion of parallel transport is required to be linear. Such a connection is equivalently specified by a covariant derivative, which is an operator that can differentiate sections of that bundle along tangent directions in the base manifold [3]. Connections in this sense generalize, to arbitrary vector bundles, the concept of a linear connection on the tangent bundle of a smooth manifold, and are sometimes known as linear connections. Nonlinear connections are connections that are not necessarily linear in this sense.

Definition 1. A connection on a vector bundle *E* is a map

$$D: \Gamma(E) \to \Gamma(T^*M \otimes E)$$
(1)

which satisfies the following conditions:

(i) For any
$$s_1, s_2 \in \Gamma(E)$$
,
 $D(s_1 + s_2) = Ds_1 + Ds_2$
(ii) For $s \in \Gamma(E)$ and any $\alpha \in C^{\infty}(M)$
 $D(\alpha s) = d\alpha \otimes s + \alpha Ds$

Suppose X is a smooth tangent vector fields on M and $s \in \Gamma(E)$. Let

$$D_X s = \langle X, Ds \rangle \tag{2}$$

where \langle , \rangle represents the pairing between *TM* and *T*^{*}*M*. Then $D_X s$ is a section of *E*, called the absolute differential quotient or the covariant derivative of the section *s* along *X*.

Theorem 1. A connection always exists on a vector bundle.

Proof. Choose a coordinate covering $\{U_{\alpha}\}_{\alpha \in A}$ of M. Since vector bundles are trivial locally, we may assume that there is local frame field S_{α} for any U_{α} . By the local structure of connections, we need only construct a $q \times q$ matrix w_{α} on each U_{α} such that the matrices satisfy

$$w' = dA A^{-1} + A w A^{-1}$$
(3)

under a change of the local frame field, which is the transformation formula for a connection, a most important formula in differential geometry.

We may assume that $\{U_{\alpha}\}$ is locally finite, and $\{g_{\alpha}\}$ is a corresponding sub-ordinate partition of unity such that supp $g_{\alpha} \subset U_{\alpha}$. When $U_{\alpha} \cap U_{\beta} \neq \emptyset$, there naturally exists a non-degenerate matrix $A_{\alpha\beta}$ of smooth functions on $U_{\alpha} \cap U_{\beta}$ such that

$$S_{\alpha} = A_{\alpha\beta}.S_{\beta}$$
, $det A_{\alpha\beta} \neq 0$ (4)

For every $\alpha \in A$, choose an arbitrary $q \times q$ matrix ϕ_{α} of differential 1-forms on U_{α} . Let

$$w_{\alpha} = \sum_{\beta \in A} g_{\beta} \cdot \left(dA_{\alpha\beta} \cdot A_{\alpha\beta}^{-1} + A_{\alpha\beta} \cdot \phi_{\beta} \cdot A_{\alpha\beta}^{-1} \right)$$

$$(5)$$

where the terms in the sums over β with $U_{\alpha} \cap U_{\beta} = \emptyset$ are zero. Then w_{α} is a matrix of differential 1-forms on U_{α} . We need only demonstrate the following transformation formula for $U_{\alpha} \cap U_{\beta} \neq \emptyset$:

$$w_{\alpha} = dA_{\alpha\beta} \cdot A_{\alpha\beta}^{-1} + A_{\alpha\beta} \cdot w_{\beta} \cdot A_{\alpha\beta}^{-1} .$$
(6)

This can be done by a direct calculation. First observe that when $U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset$, the following is true in the intersection:

$$A_{\alpha\beta} \cdot A_{\beta\gamma} = A_{\alpha\gamma}$$

Thus on $U_{\alpha} \cap U_{\beta} \neq \emptyset$ we have

$$A_{\alpha\beta} \cdot w_{\beta} \cdot A_{\alpha\beta}^{-1} = \sum_{\substack{\gamma \\ U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset \\ + A_{\beta\gamma} \cdot \phi_{\gamma} \cdot A_{\beta\gamma}^{-1}}} g_{\gamma} \cdot A_{\alpha\beta} \cdot (dA_{\beta\alpha} \cdot A_{\beta\alpha}^{-1})$$
$$= w_{\alpha} - dA_{\alpha\beta} \cdot A_{\alpha\beta}^{-1}$$

This is precisely (6). We see from the above that there is much freedom in the choice of a connection. This completes the proof of the theorem. \Box

Remark 1. In particular, if we let $\phi_{\beta} = 0$ in (6), then we obtain a connection *D* on *E* whose connection matrix on U_{α} is

$$w_{\alpha} = \sum_{\beta} g_{\beta} \cdot \left(dA_{\alpha\beta} \cdot A_{\alpha\beta}^{-1} \right)$$

By the transformation formula (3) for connection matrices, the vanishing of a connection matrix is not an invariant property. In fact, for an arbitrary connection, we can always find a local frame field with respect to which the connection matrix is zero at some point. This fact is useful in calculations involving connections.

Theorem 2. Suppose *D* is a connection on a vector bundle *E*, and $p \in M$. Then there exists a local frame field *S* in a coordinate neighborhood of *p* such that the corresponding connection matrix *w* is zero at *p*.

Proof. Choose a coordinate neighborhood $(U; u^i)$ of p such that $u^i(p) = 0, 1 \le i \le m$. Suppose S' is a local frame field on U with corresponding connection matrix $w^i = (w^{\prime \beta}_{\alpha})$,

where

$$w_{\alpha}^{\prime\beta} = \sum_{i=1}^{m} \Gamma_{\alpha i}^{\prime\beta} u^{i}$$
⁽⁷⁾

and the $\Gamma_{\alpha i}^{\prime\beta}$ are smooth functions on *U*. Let

$$a^{\beta}_{\alpha} = \delta^{\beta}_{\alpha} - \sum_{i=1}^{m} \Gamma^{\prime \beta}_{\alpha i}(p) \cdot u^{i}$$

Then $A = (a_{\alpha}^{\beta})$ is the identity matrix at p. Hence there exists a neighborhood $V \subset U$ of p such that A is non-degenerate in V. Thus

$$S = A.S' \tag{8}$$

is a local frame field on V. Since

$$dA(p) = -w'(p),$$

we can obtain from (3),

$$w(p) = (dA. A^{-1} + A. w'. A^{-1})(p)$$

= -w'(p) + w'(p)
= 0

Thus S is the desired local frame field.

Theorem 3. Suppose X, Y are two arbitrary smooth tangent vector fields on the manifold M. Then

$$R(X,Y) = D_X D_Y - D_Y D_X - D_{[X,Y]}$$
(9)

Proof. Because the absolute differential quotient and the curvature operator are local operators, we need only consider the operations of both sides of (9) on a local section. Suppose $s \in \Gamma(E)$ has the local expression

$$s = \sum_{\alpha=1}^{q} \lambda^{\alpha} s_{\alpha}$$

Then

$$D_X s = \sum_{\alpha=1}^q (X \lambda^{\alpha} + \sum_{\beta=1}^q \lambda^{\beta} < X, w_{\beta}^{\alpha} >) s_{\alpha}, \qquad (10)$$

and
$$D_Y D_X s = \sum_{\alpha=1}^{q} \{ Y(X\lambda^{\alpha}) + \sum_{\beta=1}^{q} (X\lambda^{\beta} < Y, w_{\beta}^{\alpha} > + Y\lambda^{\beta} < X, w_{\beta}^{\alpha} >)$$

 $\sum_{\beta=1}^{q} \lambda^{\beta} (Y < X, w_{\beta}^{\alpha} > + \sum_{\gamma=1}^{q} < X, w_{\beta}^{\gamma} > < Y, w_{\gamma}^{\alpha} >) \} s_{\alpha}$.
Hence $D_X D_Y s - D_Y D_X s = \sum_{\alpha=1}^{q} \{ [X, Y]\lambda^{\alpha} + \sum_{\beta=1}^{q} \lambda^{\beta} (< [X, Y], w_{\beta}^{\alpha} > + < X \Lambda Y, dw_{\beta}^{\alpha} > - \sum_{\gamma=1}^{q} w_{\beta}^{\gamma} \Lambda w_{\gamma}^{\alpha} >) \} s_{\alpha} = D_{[X,Y]} s + \sum_{\alpha,\beta=1}^{q} \lambda^{\beta} < X \Lambda Y, \Omega_{\beta}^{\alpha} > s_{\alpha}$ (11)

That is,

$$R(X,Y)s = D_X D_Y s - D_Y D_X s - D_{[X,Y]}s$$

This completes the proof of the theorem.

Theorem 4. The curvature matrix Ω satisfies the Bianchi identity

$$d\Omega = w \Lambda \Omega - \Omega \Lambda w$$

Proof: Apply exterior differentiation [9] to both sides of $\Omega = dw - w \Lambda w \ d\Omega = -dw \Lambda w + w \Lambda dw$

$$= -(\Omega + w \Lambda w) \Lambda w + w \Lambda (\Omega + w \Lambda w)$$

$$= w \Lambda \Omega - \Omega \Lambda w$$

This completes the proof of the theorem.

Remark 2. If a section s of a vector bundle E satisfies the condition Ds = 0, then s is called a parallel section.

III. Affine Connections

Definition 2. Let *M* be a smooth n-dimensional manifold, O_M be the set of smooth functions and $\Gamma(TM)$ be the vector space of smooth vector fields. An affine connection on *M* is a map (denoted by ∇)

$$\nabla : \Gamma(TM) \times \Gamma(TM) \to \Gamma(TM)$$
$$(X, Y) \mapsto \nabla_X Y$$

such that

(i)
$$\nabla_X (Y_1 + Y_2) = \nabla_X Y_1 + \nabla_X Y_2$$

(ii) $\nabla_{X_1+X_2} Y = \nabla_{X_1} Y + \nabla_{X_2} Y$

A

П

Connections on Bundles

(*iii*)
$$\nabla_X (f Y) = X(f) Y + f \nabla_X Y$$

(*iv*) $\nabla_{f X} Y = f \nabla_X Y$; $\forall f \in O_M$ and $X, Y \in \Gamma(TM)$

IV. Affine Connection in Two Coordinates Charts

Let (U, φ) be a coordinate chart on a manifold M, with coordinates $(x^1, x^2, ..., x^n)$. Then the vector fields X and Y can be expressed as

$$X = \sum_{i=1}^{n} X^{i}(x) \frac{\partial}{\partial x^{i}}$$
$$Y = \sum_{j=1}^{n} Y^{j}(x) \frac{\partial}{\partial x^{j}}$$

For some smooth functions $X^i(x)$ and $Y^j(x)$. In U, $\frac{\partial}{\partial x^i}$ are smooth vector fields. $\nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^j}$ is again a smooth vector field. Thus

$$\nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^j} = \sum_{k=1}^n \Gamma_{ij}^k \frac{\partial}{\partial x^k}$$

For some smooth functions $\Gamma_{ij}^k(x)$. Here $\Gamma_{ij}^k(x)$ is a n^3 function.

$$\Rightarrow \nabla_{e_i} e_j = \sum_{k=1}^n \Gamma_{ij}^k e_k \text{ ; where } e_i = \frac{\partial}{\partial x^i} e_j = \frac{\partial}{\partial x^j}$$

and $e_k = \frac{\partial}{\partial x^k}$

Let us compute $\nabla_X Y$

$$\begin{aligned} \nabla_X Y &= \nabla_{\sum_{i=1}^n X^i e_i} \sum_{j=1}^n Y^j e_j \\ &= \sum_{j=1}^n \left(\nabla_{\sum_{i=1}^n X^i e_i} Y^j e_j \right) \qquad \text{[By axiom (i)]} \\ &= \sum_{i=1}^n \sum_{j=1}^n \left(\nabla_{X^i e_i} Y^j e_j \right) \qquad \text{[By axiom (ii)]} \end{aligned}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (X^{i} \nabla_{e_{i}} Y^{j} e_{j}) \qquad [By axiom (i\nu)]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} X^{i} (e_{i}(Y^{j})e_{j} + Y^{j} \nabla_{e_{i}} e_{j}) [By axiom (iii)]$$

$$\nabla_X Y = \sum_{i=1}^n \sum_{j=1}^n X^i \left(\frac{\partial}{\partial x^i} (Y^j) e_j + \sum_{k=1}^n \Gamma_{ij}^k e_k Y^j \right)$$

The functions $\Gamma_{ij}^k(x)$ are called coordinate symbols of the affine connection ∇ . The vector field $\nabla_X Y$ is often called covariant derivative of vector field Y along the vector field X.

Definition 3. If the torsion tensor of an affine connection ∇ is zero, then the connection is said to be torsion free.

A torsion-free affine connection always exists. In fact, if the coefficients of a connection ∇ are Γ_{jk}^{i} , then the set

$$\widetilde{\Gamma}^i_{jk} = \frac{1}{2} \Big(\Gamma^j_{ik} + \Gamma^j_{ki} \Big).$$

Obviously, $\tilde{\Gamma}^i_{jk}$ is symmetric with respect to the lower indices and satisfies

$$\Gamma_{ik}^{\prime j} = {}^{q}_{pr} \frac{\partial w^{j}}{\partial u^{q}} \frac{\partial u^{p}}{\partial w^{i}} \frac{\partial u^{r}}{\partial w^{k}} + \frac{\partial^{2} u^{p}}{\partial w^{i} \partial w^{k}} \cdot \frac{\partial w^{j}}{\partial u^{p}}$$
(12)

under a local change of coordinates. Therefore the $\tilde{\Gamma}_{ik}^{j}$ are the coefficients of some connection \tilde{V} and \tilde{V} is torsion-free.

Theorem 5. Suppose ∇ is a torsion-free affine connection on M. Then for any point $p \in M$ there exists a local coordinate system u^i such that the corresponding connection coefficients Γ^j_{ik} vanish at p.

Proof. Suppose $(W; w^i)$ is a local coordinating system at pwith connection coefficients $\tilde{\Gamma}_{ik}^{\prime j}$. Let $u^i = w^i + \frac{1}{2} \Gamma_{jk}^{\prime i}(p)(w^j - w^j(p)) (w^k - w^k(p))$ (13)

Then,
$$\frac{\partial u^{i}}{\partial w^{j}}\Big|_{p} = \delta_{j}^{i}$$
, $\frac{\partial^{2} u^{i}}{\partial w^{i} \partial w^{k}}\Big|_{p} = \Gamma_{jk}^{\prime i}(p)$ (14)

Thus the matrix $\left(\frac{\partial u^i}{\partial w^j}\right)$ is non-degenerate near p, and (13) provides for a change of local coordinates in a neighborhood of p. From (12) we see that the connection coefficients Γ_{ik}^j in the new coordinate system u^i satisfy

$$\Gamma_{ik}^{j}(p) = 0 \quad ; \quad 1 \leq i, j, k \leq m$$

This completes the proof of the theorem.

Theorem 6. Suppose ∇ is a torsion-free affine connection on *M*. Then we have the Bianchi identity:

$$R^{j}_{ikl,h} + R^{j}_{ilh,k} + R^{j}_{ihk,l} = 0 \; .$$

Proof. From Theorem 4, we have

$$d\Omega_i^j = w_i^k \Lambda \Omega_k^j - \Omega_i^k \Lambda w_k^j$$

that is,

$$\frac{\partial R_{ikl}^{j}}{\partial u^{h}} du^{h} \Lambda du^{k} \Lambda du^{l} = \left(\Gamma_{ih}^{p} R_{pkl}^{j} - \Gamma_{ph}^{j} R_{ikl}^{p} \right) du^{h} \Lambda du^{k} \Lambda du^{l}.$$

Therefore

$$\begin{aligned} R^{j}_{ikl,h} \ du^{h}\Lambda \ du^{k}\Lambda \ du^{l} &= \\ - \left(\Gamma^{p}_{kh} \ R^{j}_{ipl} - \Gamma^{p}_{lh} \ R^{j}_{ikp}\right) \ du^{h}\Lambda \ du^{k}\Lambda \ du^{l} &= 0 \end{aligned}$$

where in the last equality we have used the torsion-free property of the connection. Hence

$$(R_{ikl,h}^{j} + R_{ilh,k}^{j} + R_{ihk,l}^{j}) du^{h} \Lambda du^{k} \Lambda du^{l} = 0$$
(15)

Now since the coefficients of (15) are skew-symmetric with respect to k, l, h, we have

$$R_{ikl,h}^j + R_{ilh,k}^j + R_{ihk,l}^j = 0$$

This completes the proof of the theorem.

П

Md. Showkat Ali et.al

П

V. Connection Compatible with Tensors

Let *M* be a smooth manifold and τ be any tensor in *M*. Mostly this can be interested in the case when $\tau = g$ is a semi-Riemannian metric tensor on *M*, i.e., τ is a non-degenerate [1] symmetric (2, 0)- tensor, or when $\tau = \omega$ is symplectic form on *M*, i.e., τ is a non-degenerate closed 2-form [7], [9]. If ∇ is a connection in *M*, i.e., a connection on the tangent bundle *TM*, then we have naturally induced connections on all tensor bundles on *M*, all of which is denoted by the same symbol ∇ .

Definition 4. The torsion of ∇ is the anti-symmetric tensor

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y],$$

where [X, Y] denotes the Lie brackets of the vector fields *X* and *Y*; ∇ is called symmetric if *T* = 0.

The connection ∇ is said to be compatible with τ is ∇ - - parallel, i.e., when $\nabla \tau = 0$.

Establishing whether a given tensor τ admits compatible connections is a local problem. Namely, one can use partition of unity to extend locally defined connections and observe that a convex combination of compatible connections is a compatible connection. In local coordinates, finding a connection compatible with a given tensor reduces to determining the existence of solutions for a non homogeneous linear system for the Christoffel symbols of the connection.

It is well known that semi-Riemannian metric tensors admit a unique compatible symmetric connection, called the Levi-Civita connection of the metric tensor, which can be given explicitly in [4]. Uniqueness of the Levi-Civita connection can be obtained by a curious combinatorial argument, as follows.

Suppose that ∇ and $\widetilde{\nabla}$ are connections on *M*; their difference $\nabla - \widetilde{\nabla}$ is a tensor, that is denoted by *t*

$$t(X,Y) = \nabla_X Y - \nabla_X Y,$$

where *X* and *Y* are smooth vector fields on *M*. If both ∇ and $\tilde{\nabla}$ are symmetric connection, then *t* is symmetric

$$\begin{split} t(X,Y) - t(Y,X) &= \widetilde{\nabla}_X Y - \nabla_X Y - \widetilde{\nabla}_Y X + \nabla_Y X \\ &= [X,Y] + [Y,X] = 0. \end{split}$$

Lemma 1. Let *U* be a set and $\rho: U \times U \times U \to \nabla$ be a map that is symmetric in its first two variables and anti-symmetric in its last two variables. Then ρ is identically zero.

Proof. Let $u_1, u_2, u_3 \in U$ be fixed. We have

$$\rho(u_1, u_2, u_3) = \rho(u_2, u_1, u_3) = -\rho(u_2, u_3, u_1) = -\rho(u_3, u_2, u_1),$$

so that ρ is anti-symmetric in the first and the third variables. On the other hand

$$\rho(u_1, u_2, u_3) = -\rho(u_3, u_2, u_1) = -\rho(u_2, u_3, u_1)$$

= $\rho(u_1, u_3, u_2)$,

so that ρ is symmetric in the second and the third variables. This concludes the proof.

Theorem 7. There exists at most one symmetric connection which is compatible with a semi Riemannian metric.

Proof. Assume that g is a semi-Riemannian metric on *M*, and let ∇ and $\widetilde{\nabla}$ are two symmetric connections such that $\nabla g = \widetilde{\nabla}g = 0$; for all $p \in M$, consider the map $\rho: T_p M \times T_p M \times T_p M \to \nabla$ given by

$$\rho(X, Y, Z) = g(t(X, Y), Z),$$

where *t* is the difference $\nabla - \widetilde{\nabla}$. Since *t* is symmetric, then ρ is symmetric in the first two variables. On the other hand, ρ is anti-symmetric in the last two variables

$$\rho(X,Y,Z) + \rho(X,Z,Y) = g(\nabla_X Y,Z) - g(\nabla_X Y,Z) + g(\nabla_X Z,Y) - g(\nabla_X Z,Y) = \nabla_g(X,Y,Z) - \nabla_g(X,Y,Z) = 0.$$

By Lemma 1, $\rho = 0$, hence t = 0, and thus $\tilde{\nabla} = \nabla$. Hence completes the proof.

 Arnold's V.I., 1978. Mathematical Methods of Classical Mechanics, Springer Verlag.

- 2. Brickell, F. and Clark, R.S., 1970. Differential Manifolds: An Introduction, Van Nostrand Reinhold Company, London.
- 3. Carno, M.P. do, 1992, Riemannian geometry, Birkh auser, Boston.
- 4. Chern, S.S. Chern, W.H., K.S., Law, Lectures on Differential Geometry.
- 5. Gupta, P.P. and Malik, G.S. 2000. Tensors and Differential Geometry, Pragati Prakashan, Meerut, U.P., India.
- Islam, J. Chrish, 1989. Modern Differential Geometry for Physicists, World Scientific Publishing Co. Pte. Ltd.
- Kobayashi, S. and Nomizu, K., 1996. Foundations of Differential Geometry, Volume 1, John Wiley and Sons, Interscience, New York.
- 8. Novikov, S.P. and Fomenko. A.T., Basic Elements of Differential Geometry and Topology.
- 9. Struik, D.J., 1950. Lectures on Classical Differential Geometry, Addition-Weslely Publishing Co., Inc.