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Abstract
Linear Programming problem (LPP)s with upper bounded variables can be solved using the Bounded Simplex method, without the explicit
consideration of the upper bounded constraints. One can consider the upper bounded constraints explicitly and perform the regular right-
hand-side parametric analysis of LPPs with bounded variables. This paper develops a method to perform the parametric analysis where the
upper bounded constraints are considered implicitly, thus reduce the size of the basis matrix.
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I. Introduction

Consider the LP problem with upper bounded variables

Max z = xcT

s.t. bAx  (1)

Ux 0
These problems have been solved by using the upper
bound simplex technique without increasing the size of
the problem (see: Murty1, Dantzig2). Wagner3 developed
the dual simplex method for LP with bounded variables,
which is further studied by     Maros4, 5.

However the data obtained to estimate the parameter
values (A, c, b, U) used in the above model often are
rather crude or nonexistent, so that the parameters in the
original formulation may represent deliberate
overestimates or underestimates to protect the interests of
the estimators. For these reason it is important to perform
a parametric analysis to investigate the effects on the
optimal solution provided by the simplex method (SM) if
the parameters take on other possible values. The
traditional way to evaluate any imprecision in the
parameters of an LP model is through a post-optimization
analysis, with the help of sensitivity analysis, shadow
prices and parametric programming. The method of
sensitivity analysis in SM is well developed on the
foundation of optimal basis, it requires little
computational effort, has been introduced in numerous
papers and text books so far (see, for example: Dantzig2, 6,
Gal7) and used in many LP codes.

In this paper we introduced a parameter  in the right
hand side vector b of (1). This parametric demand has
practical significance since the uncertainty in demand
requirements is commonly seen in locational decision
making environments. This paper presents an algorithm to
perform the parametric analysis of the above problem.

Panwalkar8 established a method for the parametric analysis of
LP problems with upper bounded variables, where the upper
bounds in (1) have been parametrized as VUx 0 ,
that provides an approximation to the maximum value of the
parameter  maintaining the feasibility of the problem. Later
Dahiya and Verma9 discussed the positive sensitivity analysis
(PSA) in LP with bounded variables within which the
components of a given optimal solution which are strictly
between their bounds remain strictly between bounds and
which are at their lower and upper bounds remain at lower and
upper bounds respectively.

In this paper, we consider the parametric programming where
the demand is allowed to vary as a linear function of the
parameter  within the given bounds of the variables. An
algorithm has been established that will find all possible
optimal solutions as a linear function of the parameter. Finally
a numerical example is provided.

II. RHS Parametric Analysis

Consider the LP problem with bounded variables

Max xcz T

Subject to bbAx   (2)

Ux 0

where nUxc ,, , mb  , nmjiaA  ][ is a matrix of
rank m. U is the vector of the upper bounds of the decision
variables and  is a real valued parameter. Let jc be the jth

component of the vector c, jA be the jth activity vector i.e. the
column of the coefficient matrix in the simplex tableau
corresponding to the variable jx , B and N denote the
submatrix of A in the simplex tableau corresponding to the
basic ( Bx ) and non-basic ( Nx ) variables respectively. Let

 iBU be the upper bound of the ith basic variable  iBx . Let
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},2,1,{ nJ  ,

 variable}basicais|{ ixJiI  . It is assumed that

problem (2) has an optimal solution for 0 . Then the
optimum simplex tableau of (2) for 0 has the form,

N
T
NB

T
B xcxcz  , (3)

bNxBx NB  (4)

Any variable that reaches at its upper bound, is replaced
by iii xux  , thus all the m basic variables are
nonnegative and the remaining (n – m) non-basic
variables are at zero level. To establish the method for the
parametric analysis we need the following result.

Theorem. Consider the problem described in (2). If  is
any real valued parameter then the solution obtained for

0 will remain optimal for UL   , where
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Proof. For any real valued parameter  the ith basic
variable  iBx can be written using equation (4) as,




 
IJj

jjiiiB xPbBbBx
|

11 )()()(  (5)

where NBPj
1 .

Since the dual solution of (2) does not depend on  ,
therefore it remains dual feasible for any  . Thus if jx
in (5) remain non-basic, then the feasibility of the
problem remains unaffected i.e. the solution (5) will
remain optimum only if,

iBiiiB UbBbBx )()()()(0 11    (6)

The non-negativity condition of iBx )( is satisfied if,
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The condition iBiB Ux )()(  is satisfied if,
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Now combining (7) and (10) let us define
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Similarly using (8) and (9) let us define
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},min{
21 UUU   . Thus L and U become the lower

and upper bound for  respectively, for which the solution
remain optimum, hence the result.

Remark1. If all 0)( 1 
ibB , then let 

1L . Also if

corresponding to every 0)( 1 
ibB , the basic variable

iBx )( does not have a finite upper bound, then 
2L .
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Remark2. If all 0)( 1 
ibB , then let 

1U . Also

if corresponding to every 0)( 1 
ibB , the basic

variable iBx )( does not have a finite upper bound, then


2U Gass and Saaty10, 11 showed that there are a

finite number of such characteristic values.

In general if k
L represent the kth characteristic value of

 , then the lower bound at the kth stage is obtained as,
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In (11) and (12) the notation k
i)( denotes the ith term in

the column vector )( at the kth iteration and the optimum

solution at thk stage is given by
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Similarly if m
U represent the mth characteristic value of

 , then the upper bound at the mth stage is obtained as,
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The optimum solution at thm stage is given by (13) for
m
U

m
U  1 .

For problems without upper bounds the new basis can be
obtained by carrying out a simplex iteration. For problems
with upper bounds the algorithm for performing the
parametric analysis is described next.

III. Algorithm

Assume that the LP problem (2) with bounded variables
provides an optimum solution for = 0.
Step1. Solve problem (2) for = 0 using bounded simplex or
simplex method and obtain the optimum table.

Step2. Using theorem 1, determine the characteristic values

for i.e. k
L and k

U for k = 1, such that the optimum
solution obtained in step1 remains optimum.

Step3. For 0 , let L
k
L   denote the characteristic

value for the lower bound of  i.e. the value of  at which
the basis for optimum solution changes.

IF k
L , there is no characteristic value for the problem.

The basis at 0 will remain optimum for all k
U  and

GOTO Step 5.

ELSE If k
L is finite valued, then we have the following two

cases.

Case I. IF k
L

k
L 1
  , for i = r (say) I .

THEN rx becomes non-basic and a dual simplex iteration is
carried out to obtain the new basis as well as the new optimum

solution since for k
L  the basic variable rx becomes

negative and GOTO Step4.

IF the dual simplex iteration cannot be carried out THEN

there is no feasible solution for k
L  and GOTO Step 5.

Case II. IF k
L

k
L 2
  , for i = m (say) I .

THEN mx becomes non-basic at its upper bound as for
k
L  the value of mx violates the upper bound constraint.

Substitute mmm xux  and obtain the new basis
presenting a new optimum solution by carrying out a simplex
iteration GOTO Step4.

Step4. For = + 1, determine the new characteristic values
of and the corresponding optimum solutions using (11-13)
and repeat Step 3-4.

Step5. For 0 m
U , where 1

U
m
U   is obtained in

Step 2, the parametric analysis is performed as follows.
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Step6. IF m
U , THEN there is no characteristic

value for the upper bound of  . The basis at 0 will

remain optimum for all m
L  and the analysis

stopped.

ELSEIF m
U is finite valued, then we have the following

two cases.
Case I.

IF m
U

m
U 1
  , for i = r (say) I THEN rx becomes

non-basic and a dual simplex iteration is carried out to
obtain the new basis as well as the new optimum solution
GOTO Step 7.
IF the dual simplex iteration cannot be carried out then

there is no feasible solution for m
U  and the analysis

stopped at this stage.
Case II.

IF m
U

m
U 2
  , for i = n (say) I THEN nx becomes

non-basic at its upper bound, substitute nnn xux 
and obtain the new basis presenting a new optimum
solution by carrying out a simplex iteration and GOTO
Step 7.
Step7. For = + 1 evaluate the characteristic values
for as well as the corresponding optimum solutions
using (13-15) and repeat Step 6-7.
Stop.
IV. Numerical Example
Consider the problem

Max 321 253 xxxz 

Subject to  102 321 xxx

216342 321  xxx

40 1  x , 30 2  x , 30 3  x

Step1. At 0 the optimum solution can be obtained
easily and the optimum table is

Table. 1.

1'x 3x 5x Solution

4x - ½ 5/4 -1/4 4

2x - ½ ¾ 1/4 2

½ 7/4 5/4 22

The basic variables in the tableau are 44 x , 22 x and

all the non-basic variables 1'x , 3x , 5x are at zero level. The

value of 1x is easily obtained as 4'111  xux . Thus

1x is at its upper bound and the value of the objective
22z .

Step2. Now 
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
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11

B , 
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4/10
4/111B , 




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


2
1

'b . So











2/1
2/3

'1bB .

Therefore }
2/1
2max{1

1


L = - 4, for i = 2, 1

2L

and }
2/3

4min{1
1 


U = 8/3, for i = 4,

}
2/1
23min{1

2


U = 2, for i = 2. Thus

},max{ 111
21 LLL   = - 4 = 1

1L with i = 2 and

},min{ 111
21 UUU   = 2 = 1

2U , with i = 2. Hence the

optimum solution of the problem is given by
















 

0
2/2

4
)'(1  bbBx , 

2
522 z , for

11
UL   , where 41 L , 21 U are the first

characteristic values of the lower and upper bound of 
respectively for which the solution is optimum.

Step3. 41 L =
1L with i = 2, thus 2x becomes non-

basic and substituted by 111' xux  and the optimum table

for
1L  is obtained by carrying out a dual simplex

iteration as

Table. 2.

2x 3x 5x Solution

4x - 1 ½ - ½ 2

1x 2 3/2 ½ 8

1 5/2 3/2 24

Step4. Using (12-14) for k = 2, we obtained

},max{ 222
21 LLL   = -8 = 2

1L with i = 1. The optimum
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solution of the problem is


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


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
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 
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0
0

8 
x , 324z ,

for 12
LL   , where 82 L . Now

1

2
LL   for

i = 1, as the dual simplex method cannot be applied
therefore the analysis stopped at this stage.

Step5-6. From Table 1, since 11
2UU   for i = 2,

therefore 2x becomes non-basic at its upper bound for
2
U  , substituted by 222 'xux  and the new

optimum basis is obtained by carrying out a simplex
iteration as

Table. 3.

1'x 2'x 5x Solution

4x 1/3 5/3 - 2/3 17/3

3x - 2/3 - 4/3 1/3 - 4/3

5/3 7/3 2/3 - 8/3

Step7. Using (14 – 16) for m =2, we obtained

},min{ 222
21 UUU   = 17/7 = 2

1U , with i = 4. The

optimum solution of the problem is given by
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3/23/4
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
x , 

3
4

3
73
z , for

21
UU   , where 7/172 U .

Following the same procedure described in the algorithm
we obtained the following optimum solutions.

Table. 4.

1'x 2'x 4x Solution

5x - ½ - 5/2 - 3/2 -17/2

3x - ½ - ½ ½ 3/2

2 4 1 3




















2/2/3
3
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
x ,  30z , for 32

UU   ,

where 33 U .

Table. 5.

2'x 3x 4x Solution

5x - 2 - 1 - 2 -10

1x - 1 2 1 7

2 4 3 21















 
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0
3

7 
x , 326z , for 43

UU   , where

74 U .

Table. 6.

1x 3x 4x Solution

5x - 2 - 5 - 4 -24

2x 1 2 1 10

2 8 5 21

















0

10
0
x , 550z , for 54

UU   , where

105 U .
As the dual simplex method cannot be applied therefore the
analysis stopped at this stage.
The optimum solutions thus obtained are given below
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
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



107,550
73,326

37/17,30
7/172,3/43/73

24,2/522
48,324

max









z and





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
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
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

107)0,10,0(
73)0,3,7(

37/17),2/2/3,3,4(
7/172),3/23/4,3,4(

24)0,2/2,4(
48),0,0,8(










x

which is identical to the solutions obtained by the regular
parametric analysis.
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V. Conclusions

In this paper an algorithm to perform the complete right-
hand side parametric analysis for LP problems with
bounded variables is developed. The upper bound
constraints are considered implicitly thus reduce the size
of the basis matrix greatly and the computation become
highly efficient than the regular parametric analysis. A
numerical example has solved in this regard that clearly
showed the efficiency of using the developed algorithm.
Besides one can build a computer program to perform the
parametric analysis using the same algorithm which is
necessary for large scale problems.
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