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Abstract
Flexible robotic manipulators pose various challenges in modelling, design, structural optimisation and control. This paper presents
investigations into practical dynamic modelling of a flexible manipulator system using genetic algorithm (GA). Conventional genetic
algorithms (GAs) often converge prematurely to a suboptimal region and fail to provide effective solutions due to lack of diversity in the
population set as the algorithm proceeds. In order to improve and maintain diversity in the population set, a relatively new variant of GA,
namely, fitness sharing based replacement genetic algorithm (FSR-GA1) is employed where some individuals are replaced periodically
based on a fitness sharing method. The algorithm is utilised to extract dynamic model of 1-DOF (degree of freedom) motion of a flexible
manipulator system. A comparative assessment between FSR-GA and conventional GA is presented in the same application to highlight the
novelty of the used GA. Results show that the FSR-GA significantly improves the searching capability of the optimisation process compared
to conventional GA. Time domain and frequency domain results clearly reveal the potential of the proposed method in modelling flexible
manipulator systems.
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I. Introduction

Flexible robot manipulators are widely applied in
industrial practice. Dynamic modelling and identification
of flexible manipulator systems are of considerable
interest in many engineering and scientific
applications2,3,4,5. The structural flexibility leads to a high
degree of elastic vibration especially during high-velocity
manoeuvre of the manipulator. Also, some nonlinear
phenomena such as joint friction will play more important
role in the dynamics of a lightweight manipulator.
Furthermore, the dynamic equations of motion are
nonlinear and of large dimensions. These problems
aggravate the difficulty of the modelling and control of
flexible manipulators2.

Dynamic modelling is the model estimation process of
capturing system dynamics using measured data6. Since
soft computing algorithms are bio-mimetic-based
strategies and can handle qualitative techniques with no
mathematical model, they are easily applied to complex
systems. After David Goldberg7 gave a basic framework
of GAs in his popular book “Genetic Algorithms in
Search, Optimisation and Machine Learning”, there has
been growing interest among scientists and engineers in
the use of GAs. Although a large volume of work has
been reported in recent years in various application areas8,
little work has been reported in dynamic modelling of
flexible manipulator systems using GA5. Assuming that
only input–output measurements of unknown dynamic
systems are available; this paper presents a dynamic
modelling technique of flexible manipulator system using
fitness sharing based replacement genetic algorithm

(FSR-GA). A comparative assessment of FSR-GA with
conventional GA in modelling context is also presented.

II. Genetic Algorithm with Fitness Sharing Based replace-
ment policy

GAs, introduced by Holland9, are global, parallel, search and
optimisation methods, founded on the principles of natural
selection and population genetics. One of the most important
factors that determines the performance of the GA, especially
in multimodal problems, is the diversity of the population10. In
order to maintain higher diversity in the population set, a new
variant of GA algorithm, FSR-GA is proposed1.

Fitness sharing

Fitness sharing lowers the fitness of each element of the
population by an amount nearly equal to the number of similar
individuals in the population. Typically, the shared fitness if 
of an individual i with fitness if is simply10
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where im is the niche count which measures the approximate

number of individuals with whom the fitness if is shared.
The niche count is calculated as11:
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where N denotes the population size and ijd represents the

distance between  individuals i and j . The sharing function
(sh) measures the similarity level between two elements of the
population and is calculated as11:
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where s denotes the threshold of dissimilarity (the niche
radius) and  is a constant parameter which regulates the
shape of the sharing function. In most applications, an
 =1 or 2 is used and s must be set right to define the
niche size12. For phenotypic sharing, the Euclidean

distance ijd between two variable vectors )(X i and

)(X j can be calculated as11:
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Using normalised distance values11:
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where  U
kx and  L

kx are upper and lower limits of
parameters.

Replacement policy and period

In fitness sharing, individuals in the crowded region
reduce fitness values of one another and thus shared
fitness, if  , reduces significantly depending on the value

of niche radius, s . As a result individuals with lower
shared fitness values indicate that they belong to crowded
region in the solution space and larger shared fitness
values indicate that the individuals remain in less crowded
regions. A certain percentage of the population,
say repN , residing in the most crowded region are

identified based on the lower shared fitness value. Then
these individuals are removed and the same number of
new individuals is introduced in the population. These
newly introduced individuals (solutions) are evaluated in
the problem domain and corresponding objective
functions are calculated and the whole objective space of
the population is updated. This process is repeated after
every predefined number of generations, say repGEN .

In FSR- GA, the percentage of total population to be
replaced, repN , and the of period of  generation for

replacement, repGEN should be chosen by trading-off

between performance and computational cost.

Algorithm pseudo-code: Algorithm pseudo-code for FSR-
GA is as follows:

1) Initialisation: Number of individuals = N (population
size), Maximum number of generation = MAXGEN
and initialise generation counter, 1iter , Number of
variables = NVAR , Number of binary bits to represent
each parameter = NBIT , Generation gap = GGAP ,
Probability of mutation mp , Probability of crossover,

cp
Initialise repN and repGEN

2) Generate a random binary population, CHROM of
size NBITNVARN 
3) Decode CHROM to real value within specified

range of  UL XX , and thus create real valued

population, PHEN
4) WHILE  MAXGENiter  DO
a) Evaluate objective function for every individual
(each row of PHEN )
b) Select GGAP % of fit individuals based on
stochastic uniform sampling method
c) Reproduce individuals using crossover (binary)
d) Mutation (binary)
e) Evaluate children
f) Reinsertion
g) Update population CHROM
h) IF  0repGENMODiter DO

(i) Decode CHROM to real value within  UL XX , to

form PHEN
(ii) Calculate the shared fitness of each individual using

equations (1) – (4)
(iii) Save the best individual (solution), found so far
(iv) Sort individuals based on their shared fitness values

in the ascending order.
(v) Identify the first ( %repN of N ) individuals

according to shared fitness values.
(vi) Generate a random binary population, repCHROM

of size   NBITNVARNN rep %
(vii) Decode repCHROM to real value within

 UL XX , to form repPHEN

(viii) Evaluate objective function of each individual of
repPHEN

(ix) Update population CHROM by replacing
individuals as identified in (v) with repCHROM ;

END
i) Increment generation counter iter := iter +1;
END WHILE
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III. Genetic Algorithms in Modelling
The basic schematic diagram is shown in Figure 1.
Generally a dynamic modelling or system identification
problem is formulated as an optimization task where the
objective is to find a model and a set of parameters that
minimize the prediction error between system output  ty ,
i.e. the measured data, and the model output  ̂,ˆ ty at each
time step t . The process consists of two subtasks; a)
structural identification of the equations in the model M,
and b) identification of parameters ̂ of the model. The
sum of squared error (SSE) is a commonly used measure
of the prediction error.
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Fig. 1. Basic schematic diagram for modelling
Dynamic modelling of a single-link flexible manipulator

The experimental rig, as shown in Figure 2, is equipped
with a U9M4AT type printed circuit motor driving the
flexible manipulator13. This motor drive amplifier (current
amplifier) delivers a current proportional to the input
voltage. It serves as a velocity/position controller as well
as a motor driver. The measuring devices used to record
the various responses of the manipulator are shaft
encoder, tachometer and accelerometer along the arm.
The shaft encoder is used for measuring the hub-angle of
the manipulator. A precision interface circuit PCL 818G
is used to interface the flexible manipulator system with a
computer.
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Fig. 2. Block schematic diagram of the experimental rig

The tachometer is used for measurement of the hub angular
velocity of the manipulator. The accelerometer is located at
the end-point of the flexible arm measuring the end-point
acceleration. In this study, an aluminium type flexible
manipulator of dimensions  900×19.008×3.2004mm3,
E=71×109N/m2, I=5.253×10-11m4, ρ=2710kg/m3, and
Ih=5.8598×10-4kgm2 is considered13.

Preliminary experiment

The flexible manipulator was excited with a sequence of
psudo-random binary signal (PRBS), within ±0.1 volts and
bandwidth (0-100Hz) so as to ensure that all system resonance
modes within this range of frequencies are captured3. The
system was run for 15s. and 1500 input-output data points
were recorded at a sampling rate of 0.01s. The input and
corresponding hub angle response are shown in Figures 3 and
4 respectively. Out of 1500 data points 300 are used for
modelling and the next 200 for validating the model.

Fig. 3. PRBS input (time domain)

Fig. 4. Hub angle response

Structure formulation

Considering performance and computation costs, an
autoregressive moving average (ARMA) structure is chosen to
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model the flexible manipulator from input to hub angle
response. This is expressed as6
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where ia , jb are denominator and numerator

coefficients, N and M are number of coefficients in the
denominator and numerator, y , u , y , and  are
measured output, input, predicted output and noise
respectively. The order of the transfer function depends
on N . Taking the values of N and M as 4 and 3 and
neglecting the noise term  , equation (6 ) can be
simplified as:
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In matrix form, the above equation can be written as:
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where T represents transposition. This can be further
simplified as:

   kky  
 … (9)

where 


is a row vector that contains the estimated
parameters of the model as indicated in Figure 1 and
expressed as ],,,,,,,[ 32104321 bbbbaaaa



whereas  k is a column vector that contains previous
output and input experimental data points as

 k =[-y(k-1, -y(k-2), -y(k-3), -y(k-4), u(k-1), u(k-2), u(k-
3), u(k-4)]T

Parameter Optimization

The GA optimisation process begins with a randomly
generated initial population called chromosomes.
Randomly generated binary codes of dimension 50×8×16
are created where the number of individuals and
parameters in each individual are 50 and 8 respectively.
Each parameter is encoded as 16 bit binary code which is
logarithmically mapped into real numbers as specified
within ranges of the real numbers are defined as -1 to +1,
i.e., the randomly generated 16 bit binary codes for each
parameter falls within -1 to +1 when converted into real
numbers. Each individual or row represents a solution
where the first four elements are assigned to 30 ,...,bb
and the next four to 41 ,...,aa as indicated in equation
(8). The predicted output y , at any sample instant, is

calculated based on equation (8) and taking the elements of
first chromosome, actual input and output data. Subsequent
predicted outputs are calculated in the same way with the same
parameters while taking consecutive input and output data.
The difference between the predicted and actual output is
recorded as error )()()( kykyke  , which in turn is used to
form the objective function  xf of the optimization process.
In this work, sum of absolute error is chosen as the objective
function. This is given as:
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where 300n . After evaluating all individuals in the
objective domain, fit individuals are selected based on
stochastic universal sampling selection technique to form the
mating pool12. The number of individuals in the mating pool
depends on the generation gap GGAP ; for example, if
GGAP = 80% and the number  of individuals in the
population set is 50, then 80% of the total individuals, i.e. 40
are selected for mating. Genetic operators such as crossover,
mutation and reinsertion are applied to form the new
population for the next generation. For selection, the stochastic
universal sampling technique is used whereas shuffle
crossover with reduced surrogate technique is used for
crossover14. The probability of crossover, cp , is set at 80%.
Binary uniform mutation is used where the probability of
mutation, mp , is set at 0.001%. In order to maintain diversity
in the population, shared fitness of all individuals of the
current population is calculated after every repGEN
generations. The shared fitness values become lower for
densely populated individuals whereas solutions that are
widely separated from each other have higher values. Then
solutions are sorted based on their shared fitness value and the
first repN % of solutions are identified with lower values.

These solutions are replaced with newly generated random
solutions as defined by the initial field descriptor14. These
solutions are evaluated and genetic operators are applied as
usual to continue the GA optimization process. It is mentioned
that the whole modelling process using GA optimization is
encoded and implemented in Matlab15 and GA toolbox14.

IV. Results: Effect of Niche Radius

The performance of fitness sharing based GA depends on
suitable selection of the niche radius ( s )10,12. The optimal
value of s is selected heuristically. Figure 5 shows the
convergence of FSR-GA algorithm with different s . In
order to compare the performance of FSR-GA with
conventional GA, the convergence of conventional GA in the
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same problem domain is shown in the same figure. It is
clearly evident from Figure 5 that, convergence of FSR-
GA varies with s and gives better performance with
niche radius of 0.9.

Selection of repN and repGEN

In FSR-GA, the percentage of total population to be
replaced, repN , and the period of  generation for
replacement, repGEN are two important parameters.
The optimum values of repN and repGEN are
selected based on a trade-off curve drawn in a two-
objective domain, namely, best objective function
obtained and central processing unit (CPU) execution
time of the optimisation process for a specific number of
generations. In this process, FSR-GA was run several
times with the same GA parameters, such as, number of
individuals, objective function, total number of
generations, crossover, mutation, niche radius ( s = 0.9)
etc but different values of repN , repGEN and  two
performance measures; best objective function and CPU
execution time were recorded. FSR-GA was run for a
maximum generation of 500.   In order to select optimum
values of repN and repGEN , a trade-off curve is
introduced (see Figure 6) where all runs of FSR-GA are
presented in a two-dimensional space where CPU
execution time is plotted along the horizontal axis and
best objective function is plotted along the vertical axis.
The circles in Figure 6 represent the location of solution
and associated numbers indicate the run number. It is
clearly evident that, solutions for run-5, run-15, run-12
and run-16 dominate other solutions in the 2-dimensional
performance space. From Figure 6, it is easier to select a
particular solution under a specific trade-off condition
between the two performance measures. In this work, the
values of repN and repGEN correspond to run-5 are
selected and for run-5, both the values of repN and

repGEN are 10, i.e. 10% of the total individuals in the
population set to be replaced after every 10 generations in
FSR-GA.

Fig. 5. Convergence of convention GA and FSR-GA for different

values of s

Fig. 6. Trade-off curve of different solutions of FSR-GA

V. Model Formulation and Validation of Flexible
Manipulator

The FSR-GA was run for 500 generations with 50 individuals.
Considering the convergence to minimum objective function,
parameters of GA optimisation process for niche radius of 0.9
has been selected to formulate the model hub angle response
of the flexible manipulator. To improve and maintain higher
density in the population set, a replacement policy based on
fitness sharing technique is invoked, as discussed, where repN

and repGEN are set at 10, i.e., 1/10th of the total solutions

(population set) is replaced after every 10 generations. Using
eight parameter values, b0,…,b3 and a1,…,a4 obtained at the
end of maximum generations and employing relevant Matlab15

functions the transfer function is formed. The discrete transfer
function for input to hub angle output of the flexible
manipulator at a sampling time of 0.01sec is as follows:
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The derived model was validated with a separate input-
output data set, and the actual and one-step-ahead
predicted outputs are shown in Figure 7. Time domain
tracking reveals that the predicted output follows the
actual output very well. The frequency domain plots
(Figure 8) of the predicted and actual outputs indicate that
the model has successfully captured the system dynamics,
especially the first three main dominance modes. The
pole-zero diagram (Figure 9) shows that all poles lie
inside the unit circle while some zeros remain outside.
This indicates that the model is stable and non-minimum
phase.

Comparative Assessment

A comparative assessment is presented in this section
where performance of the FSR-GA, is compared with
conventional GA. The performance measure considered
here is based on the best objective function at the end of
certain number of generations and convergence of the
algorithm. Both algorithms were run several times with
same parameters. Firstly, each algorithm with a
population of 50 individuals was run 10 times, each time
with a maximum of 500 generations. In each run, the best
objective function and CPU execution time at the end of
generation were recorded. Figure 10 shows performance
measures of different GAs at generation 500. It is
observed that the values of best objective function values
obtained with conventional GA were quite higher
compared to FSR-GA. It is noted that, in all runs the best
objective function values obtained with FSR-GA were
lower than conventional GA.

Fig. 7. Actual and predicted output of hub angle response (time
domain)

Fig. 8. Actual and predicted output of hub angle response
(frequency domain)

The convergence curves for the two algorithms at different
runs are shown in Figure 11. It is observed that the
conventional GA converged slowly to higher value in the
objective domain. It is noted that FSR-GA converged faster
and to lower value compared to conventional GA. The
improvement in convergence compared to conventional GA
was much higher and this is clearly noted in Figure 11. This
better convergence of FSR-GA may be attributed to the
additional diversity introduced due to fitness sharing based
replacement policy.

Fig. 9. Pole-zero diagram
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VI. Conclusion

A relatively new variant of GA, namely, FSR-GA has
been employed and tested in dynamic modelling of
flexible manipulator system. In FSR-GA, a replacement
policy based on fitness sharing technique is incorporated
with conventional GA operators. The percentage of total
population to be replaced and the period of generation for
replacement are selected heuristically generating trade-off
curve between two conflicting objectives; best objective
function obtained and CPU execution time. Results
showed that the FSR-GA yielded good result when both
parameters were set at 10. i.e. 10% of total population to
be replaced after every 10 generations.

Fig. 11. Convergence of different GAs for different runs at
generation 500

In this work, modelling of motion has been formulated as
minimization problems with 8-dimentional searching
space where FSR-GA has been used to estimate
parameters of the model so as to minimize the prediction
error between system output, i.e., the measured data, and
the model output at each time step. From modelling
results, it is evident that the algorithm, with same
parameters, can extract stable and satisfactory model for
hub angle response of a single-link flexible manipulator.
The time-domain and frequency-domain results of
modelling have clearly revealed the effectiveness of the
modelling approach and the FSR-GA in characterising
flexible manipulator system. The performance of FSR-GA
has been assessed in comparison with conventional GA. It
has been observed that FSR-GA can significantly improve
the search ability in terms the objective function and the
convergence in the search space compared to
conventional GA.
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