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Abstract

A general construction method of simultaneous confounding in p” ( p is prime) factorial experiment is proposed. The concept of matrix

method in the construction of factorial experiment with a single factorial effect confounded is used to develop the method. The procedure
may be extended for the construction of simultaneous confounding of factorial experiment with three or more factorial effects confounded.

I. Introduction

The researchers working with factorial experiments
experience difficulty especially when the number of
factors as well as the number of levels of each factor is
large. It becomes more difficult if we have no required
number of homogeneous plots in practice. In such
situations, we are bound to use a limited number of
homogeneous plots to analyze the factorial effects. As a
result, some factorial effects or interactions will be mixed
up with block effect, i.e. confounded. Since there is no
way to avoid this, the higher order interaction effects are
usually considered to be confounded.

Bose and Kishan (1940), Bose (1947) described the
construction of p” factorial designs using finite
geometries. The treatments are represented by » -tuples
(@, ,a,) where «; are elements of GF(p). The method
is available only when p is prime or prime power. A
system of simultaneous confounding in 2" factorial
experiment has been described, where an intrablock
subgroup is constructed with the common elements taken
from the factorial effects of two incomplete blocks, each
confounded with a single factorial effect (Kempthorne,
1947, 1952). Das (1964) described an equivalent method
of Bose in which some of the treatment factors are
designated as basic factors and the others as added
factors. Levels of added factors are derived by
combination of the levels of the basic factors over GF(p).
White and Hultquist (1965) extended the field method to
design with number of levels of treatment factors. John
and Dean (1975) described the construction of a particular
class of single replicate block designs, which they call
generalized cyclic designs. The essential feature of the
method is that the »-tuples giving the treatments of a
particular block constitute an Abelian group, the
intrablock subgroup. Patterson (1976) described a general
computer algorithm, called DSIGN, in which levels of
treatment factors are derived by linear combinations of
levels of plot and block factors. The method provides

finite-field, generalized cyclic and other designs. Mallick, S.
A. (1973 & 1975) developed two systems of designing
factorial effects with simultaneous confounding of two effects,
one for 3" and the other for 4" - factorial experiments. In
these systems of simultaneous confounding, the combination
of levels was based on some manipulating manner. Jalil, et. al.
(1990) developed a matrix method of designing a single
factorial effect confounded in a P" - factorial experiment,
where the level combinations are obtained by matrix
operations of the levels. Construction method of simultaneous
confounding has been developed independently for 3" and 5"
factorial experiments (Jalil and Mallick, 2010). The present
work is a general method of construction for simultaneous
confounding ina p” - (p is prime) factorial experiment.

I1. Notation and Definition

The formulae given below have been used in determining the
number of incomplete blocks or intrablocks (») and the
number of homogeneous plots in each incomplete block or
intrablock (k) for a single or simultaneously confounded
factorial experiment (symmetrical).

Let » be the number of incomplete blocks or intrablocks in a
confounded experiment; and & be the number of plots in each
incomplete block or intrablock. Then,

n n
p=-L — and k:p—r; where » is the number of factorial
p p

effects to be confounded.

For a single factorial effect confounding in p” factorial
experiment, the number of incomplete blocks is computed as,
n
b :%: p and the number of combinations of levels in each
p

n
incomplete block is given by, &k =£— = p"! .

p
For a simultaneous confounding (two factorial effects) in
p" factorial experiment, the number of intrablock subgroups is

p" 2

>=p° and the number of level

computed as, b=

p
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combinations in each intrablock subgroup is given by,

k= % _ pn—2 .

p
The general construction matrix with its intrablock
subgroups of simultaneous confounding in a p” factorial

experiment can be represented as,

By By Bip-1)p+1
By By Bp-1yp+2

: : 3 ; and
B, By, - B,

in particular, the construction matrices for 3" and 5"
factorial experiments are given respectively by,

Col.1 Col2 Col3 Col4 Col5
By Bg By Big By

B By By B, B, B, B+ B

B, Bs Bg|and | 22 7 12 17 p)

B B B B3 By Bi3  Big B3
3 Bg By

By By By By By
Bs  Big Bis By B

ITI. Construction Method of Simultaneous Confound-
ing in p" Factorial Experiments

In the construction of p" (p 1is prime) factorial
experiment with a single factorial effect confounded, we

can write the level combinations by the matrix method

described below (Jalil, et. al., 1990).
M=[M0>M1’M25"'>Mp—1]; (1)

where incomplete blocks M,;u=0,1,2,---,(p—1) is given
by:

1 -1 :
My =0i4p") oty - VP @] e, With

Vit ™= p"NOT iy OF oty -+, (p =11 -], each is
p p p
a column vector of dimension p"!.

{p/} = p/ - times repetitions of the elements of ¥;'s in
ascending ordered level;

u=012,,(p-1); i=1,2,3,,(n-1);
j=0,1,2,---,(p —1); with the restriction that i=;+1;
I,, - sum vector of dimension = ; and

ay =lay1, a2, -+, 4] s called the adjustment vector.
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From the equation (1), M, is called the key incomplete block

of a single factorial effect confounded in a p” factorial
experiment. For a plan of simultaneous confounding of two
factorial effects in a p”- factorial experiment, we are to
perform the following steps.

Step 1. Find the independent key incomplete blocks for the
factorial effects to be confounded simultaneously using
Equation 1. Let these key incomplete blocks be denoted by,
My, which represents the level combinations of the key
incomplete block for the first confounded factorial effect and
Mj represents the level combinations of the key incomplete

block for the second confounded factorial effect.

Step 2. Find the common elements of level combinations (row
vectors) of these two key incomplete blocks and form a
matrix, can be denoted by B,. B; is called the key intrablock

subgroup of level combinations of two factorial effects
confounded simultaneously. It can be seen that the key
intrablock subgroup contains the combination of the lowest
levels for all the factors.

Step 3. To find all other intrablock subgroups of the
construction matrix we will follow the computations
procedures described below.

The intrablock subgroups B,,5;,---, 8, , below the key block 5,

are obtained by adding the vectors (--0 ¢ 0); c=12,---,p with
each of the elements (row vectors) of the key intrablock
subgroup B; as described below.

B, 1is obtained by an addition of the vector (---010) with each
of the vector elements of B ;

B3 is obtained by an addition of the vector (---020) with each
of the vector elements of 5 ;

Bp

of the vector elements of B;.

is obtained by an addition of the vector (---0 p 0) with each

By, B,Bs,--, B, are the intrablock subgroups placed in the first
column of the construction matrix.

After having the intrablock subgroups in the first column we
will get the intrablock subgroups B,.;. B,.s.-. By, of the

second column, which can be computed as shown below.

Bp

each of the vector elements of B ;

41 1s obtained by an addition of the vector (---001) with

Bp

each of the vector elements of B, ;

42 1s obtained by an addition of the vector (--001) with
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Bp

with each of the vector elements of By ;

+3 1is obtained by an addition of the vector (---001)

B,, is obtained by an addition of the vector (---001) with

each of the vector elements of B, .

The intrablock subgroups B, ., B,,.2, . B3, Pplaced in

the third column can be computed as shown below.

By,41 is obtained by an addition of the vector (---002)

with each of the vector elements of B;;

By,4o is obtained by an addition of the vector (--002)

with each of the vector elements of B, ;

B3 s obtained by an addition of the vector (---002)

with each of the vector elements of By ;

B3, is obtained by an addition of the vector (---002) with

each of the vector elements of B, .

Proceeding in this way, we will get the intrablock
Subgroups  B(,_1yp+1. B(p-1yp+2: - B placed in the last

column of the construction matrix, which can be obtained
as:

B(p-1yp+1 18 obtained by an addition of the vector
(--00(p-1) with each of the vector elements of
Bp-2)p+1>

B(p-1yp+2 18 obtained by an addition of the vector

(--00(p-1) with each of the vector elements of

Bp-2)p+1 >

B, is obtained by an addition of the vector (---00 (p-1))

with each of the vector elements of B p—l)p s

Thus, in the construction matrix, we get p? intrablock
subgroups in p columns. The method is illustrated with
two examples described in the section below.

IV. Illustrations

Example 1. Suppose we like to construct the layout of a
3* - factorial experiment where the factorial effects
ABCD and ABCD? are confounded simultaneously.

The plan is given by matrix,

M=[My My Mjzlpx12 5
M, =043% 123"} 133%) ¢, ) u=0,1,2 ; with

N =101 119 219]p7x1 5 1243} =3[013 113 213157 and
739} =901 11} 2111751 -

The adjustment vector, a, =[a,; a,, - a,27] could be obtained

by solving the symbolic equation corresponding to the
factorial effect to be confounded.

Step 1. Find the matrices M, and Mm{, which are the key
incomplete blocks confounded with 4BCD and 4BCD?

respectively in a 3 - factorial experiment.

[0 0 00 0000
001 2 0011
00 21 0022
010 2 0101
01 11 01 1 2
0120 0120
020 1 020 2
0210 0210
0222 0221
1002 1001
1011 1012
1020 1020
1101 1102
My=[1 110 Mh=|1110
1122 1121
1200 1200
1212 1211
1221 1222
200 1 200 2
2010 2010
20 2 2 20 21
2100 2100
211 2 211 1
21 21 21 22
220 2 220 1
2211 221 2
2 2 2 0] 2 2 2 0

Step 2. Selecting the common vector elements from M, and
My, we will get the key intrablock subgroup B;, which is
given by

By =

NN N === O O O
N = O N = O N = O
N O = O =N = O
S O O O O O O O O

Step 3. Add the vector (0010) to each of the vector elements
of the key intrablock subgroup, we get,
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0010
0100
0220
1000

By=|1 120
1210
2020
2110

2 2 0 0]

To obtain the third intrablock subgroup B;, add the vector

(0020) to each of the vector elements of the key
intrablock subgroup. Thus,

s3]
)
Il
NN === O O O
D= O D= O N = O
N O N O = O =N
S O O O O O O O O

The intrablock subgroups B, Bs, Bs of second column and
B, By, By of the third (last) column can be computed as
shown below.

B, 1s obtained by adding the vector (000 1) to each of the
row vectors of B;;

Bs is obtained by adding the vector (0001) to each of the

row vectors of B, ;

Bg is obtained by adding the vector (00 01) to each of the
row vectors of B;; and

B; is obtained by adding the vector (0002) to each of
the vectors of By;

Bg is obtained by adding the vector (0002) to each of
the vectors of B, ;

By 1s obtained by adding the vector (0002) to each of
the vectors of B3 ;

Thus, we have the complete layout of nine intrablock
subgroups as shown below.
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[B1] [B4] [B7]

NN~ - =0 o O
N — O N~ o N = O
IS R S SR
coc oo oo o oo
NN~ = =0 o O
N — O N = o N = O
N o == N =N O
cococooc oo o oo
N — O N~ o N~ O
N o = o == O
RN NN NN NN

[B2] [B5] (B8]

NN~ —~ — O o o
N - O N~ o N — O
O =N =N o N o —
o oc o oc oo o oo
S R S - =)
N - O N~ o N — O
O =N =N oo —
NN -~ —- O o O
N — O N~ o N~ O
O =N =N oo —
(ST I S R SR C R C I SR Y

[B3] [B6] [B9]

NN -~ - O o O
N - O N~ o N~ O
—_— N o N O~ O =N
c oo oo oo oo
NN - - =0 o O
N - O N~ o N — O
— N o N O~ O =N
NN~ — - O o O
N — O N~ o N~ O
— N o N O = O = N
RN NN NN NN

It is easy to verify that,
(By + By + B3)Vs. (B4 + Bs + Bg) Vs. (B7 + Bg + By) ; confounds the

1™ effect, 4BCD ; (column comparison)

(By + B4 + By)Vs. (By + Bs + Bg) Vs. (B3 + Bg + By) ; confounds the

2" effect, 4BC D?; (row comparison)

(B + Bs + Bg)Vs. (By + Bg + B7) Vs. (B + B4 + Bg) ; confounds the

1 generalized effect, ABCDxABCD? =A4BC (comparing I-
totals); and

(B, +Bg + Bg) Vs.(By + By + Bg) Vs. (B3 + Bs + By) ; confounds the 2™
generalized effect, 4BC D x (4BCD*)? =D (comparing J-totals).
Example 2. Suppose we are to construct a 5°- factorial

experiment where the factorial effects 4BC and 4BC? are
confounded simultaneously.

Solution. First, we find the two incomplete blocks A and Mé
corresponding confounded effects 4BC and 4BC?.

The key incomplete block a7, confounded with 4BC is given
by,

My =[Vl{50}’ VZ{Sl}yau]S"*1X3 5 with

11459 =501015 115 215315 4157 V{5'y = 5[0 11 21,31 457 and
the adjustment vector g, can be obtained by solving the

symbolic equation x;+x,+x3=0 mod 5, taking first two
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values of x and x,
respectively for 4BC.

from the vectors 7 and 7,

Similarly, the key incomplete block Mé confounded with

ABC? is given by,

My =% 1254, 15015 » With

s =500015 115 215315 4151 5 Va{S'y=5[01; 11y 21y31) 41T
and the adjustment vector «, can be obtained by solving
the symbolic equation x +x, +2x3 =0mod 5, taking first
two values of x and x, from the vectors ¥; and 7,

respectively for 4BC?.

oS O © o O
B WO = O
L LS I N )
S O © o O
AW N = O
W= BN

—_ = =
B S
S = N W A
—_ = = =
AW NN = O
S W o~ A~ N

(=1
I
LSER SIS SR
B WO = O
A O = N W
=
Il
LSER SRS ISR
AW N = O
N O W =

W oW W W W
B S
W oA O = N
W W W W W
AW NN = O
B S R

B I S
B WO = O
N W RO~
B I S
AW O = O

AN O W

Step 1.

Select the common elements (vectors) of M, and M to
find the key intrablock subgroup B, as shown below.

=
Il
AW NN = O
— N W Ao
(=Rl i =1

Step 2.

We get the second intrablock subgroup B, by an addition of
the vector (010) to each of the vectors of the key intrablock

subgroup; B, is placed just below (column side) the key block 5 .

Similarly, we get the third, fourth and fifth intrablocks B;,B4
and Bs; by addition the vectors (02 0), (03 0) and (0 4 0) to each
of the vectors of the key intrablock subgroups respectively,
shown below.

Step 3.

After getting the intrablock subgroups, B, B,, B3, B4 and Bs We

get the intrablock subgroups B, By, Bg, By and B;y by an
addition of the vector (001) to each of the vector elements

(row vectors) of By, By, B3, B4 and Bs respectively.

Similarly, an addition of the vector (002) to each of the
vector elements of By, By, B3, B4 and Bs Wwill produce the
intrablock subgroups By, B>, Bi3,B4 and Bs.

An addition of the vector (00 3) to each of the vector elements
of By, By, By, B4 and Bs will produce the intrablock subgroups
BIG’ Bl7’ BIS’BI9 and 320 5 and

An addition of the vector (00 4) to each of the vector elements
of By, By, By, B4 and Bs will produce the intrablock subgroups
By, By, By3,Boy and Bys, which completes the plan, shown

below.
[ 000 001 00 2 003 0 0 4]
1 40 1 41 1 4 2 1 43 1 4 4
B 230 Bg 231 B 23 2 Bg 233 By 234
320 321 322 323 32 4
4 10 4 1 1 4 1 2 4 1 3 4 1 4
010 011 01 2 01 3 01 4
100 101 102 103 10 4
By 240 By 2 41 Bp 2 4 2 By 2 43 By 2 44
330 331 332 333 3 3 4
420 4 21 4 2 2 4 23 4 2 4
020 021 022 023 0 2 4
110 111 11 2 113 11 4
By 2 00 Bg 2 01 B3 202 Bg 203 Bz 2 0 4
340 3 41 342 3 43 3 4 4
430 4 31 4 3 2 4 33 4 3 4
030 0 31 03 2 033 0 3 4
120 121 122 123 12 4
B4 21 0 B9 2 1 1 Bg 21 2 Bg 21 3 Byy 21 4
300 301 302 303 304
4 4 0 4 4 1 4 4 2 4 4 3 4 4 4
040 0 41 04 2 0 43 0 4 4
130 131 132 133 13 4
Bs 2 2 0 Blgp 2 21 Bs 2 2 2 By 2 2 3 By 2 2 4
310 311 31 2 313 31 4
| 400 4.0 1 4.0 2 403 4 0 4]
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V. Conclusion

In this article, a general construction method has been
developed for simultaneous confounding in p" (p is
prime) factorial experiment. The construction of
simultaneous confounding in p” factorial experiment
becomes easier and rewarding. The method is restricted to
p" factorial experiment when p is prime and it can be

extended for a simultaneous confounding of three or more
factorial effects.
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