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Abstract

A general construction method of simultaneous confounding in np ( p is prime) factorial experiment is proposed. The concept of matrix
method in the construction of factorial experiment with a single factorial effect confounded is used to develop the method. The procedure
may be extended for the construction of simultaneous confounding of factorial experiment with three or more factorial effects confounded.

I. Introduction

The researchers working with factorial experiments
experience difficulty especially when the number of
factors as well as the number of levels of each factor is
large. It becomes more difficult if we have no required
number of homogeneous plots in practice. In such
situations, we are bound to use a limited number of
homogeneous plots to analyze the factorial effects. As a
result, some factorial effects or interactions will be mixed
up with block effect, i.e. confounded. Since there is no
way to avoid this, the higher order interaction effects are
usually considered to be confounded.

Bose and Kishan (1940), Bose (1947) described the
construction of np factorial designs using finite
geometries. The treatments are represented by n -tuples

),,( 1 naa  where ia are elements of )( pGF . The method
is available only when p is prime or prime power. A
system of simultaneous confounding in n2 factorial
experiment has been described, where an intrablock
subgroup is constructed with the common elements taken
from the factorial effects of two incomplete blocks, each
confounded with a single factorial effect (Kempthorne,
1947, 1952). Das (1964) described an equivalent method
of Bose in which some of the treatment factors are
designated as basic factors and the others as added
factors. Levels of added factors are derived by
combination of the levels of the basic factors over )( pGF .
White and Hultquist (1965) extended the field method to
design with number of levels of treatment factors. John
and Dean (1975) described the construction of a particular
class of single replicate block designs, which they call
generalized cyclic designs. The essential feature of the
method is that the n -tuples giving the treatments of a
particular block constitute an Abelian group, the
intrablock subgroup. Patterson (1976) described a general
computer algorithm, called DSIGN, in which levels of
treatment factors are derived by linear combinations of
levels of plot and block factors. The method provides

finite-field, generalized cyclic and other designs. Mallick, S.
A. (1973 & 1975) developed two systems of designing
factorial effects with simultaneous confounding of two effects,
one for n3 and the other for n4 - factorial experiments. In
these systems of simultaneous confounding, the combination
of levels was based on some manipulating manner. Jalil, et. al.
(1990) developed a matrix method of designing a single
factorial effect confounded in a nP - factorial experiment,
where the level combinations are obtained by matrix
operations of the levels. Construction method of simultaneous
confounding has been developed independently for n3 and n5
factorial experiments (Jalil and Mallick, 2010). The present
work is a general method of construction for simultaneous
confounding in a np - ( p is prime) factorial experiment.

II. Notation and Definition

The formulae given below have been used in determining the
number of incomplete blocks or intrablocks ( b ) and the
number of homogeneous plots in each incomplete block or
intrablock ( k ) for a single or simultaneously confounded
factorial experiment (symmetrical).

Let b be the number of incomplete blocks or intrablocks in a
confounded experiment; and k be the number of plots in each
incomplete block or intrablock. Then,

rn

n

p
pb


 and r

n

p
pk  ; where r is the number of factorial

effects to be confounded.

For a single factorial effect confounding in np factorial
experiment, the number of incomplete blocks is computed as,
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1 and the number of combinations of levels in each

incomplete block is given by, 1 n
n

p
p

pk .

For a simultaneous confounding (two factorial effects) in
np factorial experiment, the number of intrablock subgroups is

computed as, 2
2 p
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and the number of level
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combinations in each intrablock subgroup is given by,
2

2
 n

n
p

p

pk .

The general construction matrix with its intrablock
subgroups of simultaneous confounding in a np factorial
experiment can be represented as,
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; and

in particular, the construction matrices for n3 and n5
factorial experiments are given respectively by,
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III. Construction Method of Simultaneous Confound-
ing in np Factorial Experiments

In the construction of np ( p is prime) factorial
experiment with a single factorial effect confounded, we
can write the level combinations by the matrix method
described below (Jalil, et. al., 1990).

],,,,[ 1210  pMMMMM  ; (1)

where incomplete blocks )1(,,2,1,0;  puMu  is given
by:

npu
p

nu napVpVpVM 


 1]},{,},{},{[ 11
2

0
1  , with

])1(,,0,0[}{ )1()1()1(
11

ininin ppp
ii

i IpIIppV     , each is

a column vector of dimension 1np .

 jj pp }{ times repetitions of the elements of sVi ' in
ascending ordered level;

);1(,,2,1,0  pu  );1(,,3,2,1  ni 

);1(,,2,1,0  pj  with the restriction that 1 ji ;

mI : sum vector of dimension m ; and

],,,[ 21  upuuu aaaa  is called the adjustment vector.

From the equation (1), 0M is called the key incomplete block
of a single factorial effect confounded in a np factorial
experiment. For a plan of simultaneous confounding of two
factorial effects in a np - factorial experiment, we are to
perform the following steps.

Step 1. Find the independent key incomplete blocks for the
factorial effects to be confounded simultaneously using
Equation 1. Let these key incomplete blocks be denoted by,

0M , which represents the level combinations of the key
incomplete block for the first confounded factorial effect and

0M  represents the level combinations of the key incomplete
block for the second confounded factorial effect.

Step 2. Find the common elements of level combinations (row
vectors) of these two key incomplete blocks and form a
matrix, can be denoted by 1B . 1B is called the key intrablock
subgroup of level combinations of two factorial effects
confounded simultaneously. It can be seen that the key
intrablock subgroup contains the combination of the lowest
levels for all the factors.

Step 3. To find all other intrablock subgroups of the
construction matrix we will follow the computations
procedures described below.

The intrablock subgroups pBBB ,,, 32  , below the key block 1B

are obtained by adding the vectors pcc ,,2,1;)00(   with
each of the elements (row vectors) of the key intrablock
subgroup 1B as described below.

2B is obtained by an addition of the vector )010( with each
of the vector elements of 1B ;

3B is obtained by an addition of the vector )020( with each
of the vector elements of 1B ;



pB is obtained by an addition of the vector )00( p with each
of the vector elements of 1B .

pBBBB ,,,, 321  are the intrablock subgroups placed in the first
column of the construction matrix.

After having the intrablock subgroups in the first column we
will get the intrablock subgroups ppp BBB 221 ,,,  of the
second column, which can be computed as shown below.

1pB is obtained by an addition of the vector )100( with
each of the vector elements of 1B ;

2pB is obtained by an addition of the vector )100( with
each of the vector elements of 2B ;
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3pB is obtained by an addition of the vector )100(

with each of the vector elements of 3B ;



pB2 is obtained by an addition of the vector )100( with
each of the vector elements of pB .

The intrablock subgroups ppp BBB 32212 ,,,  placed in
the third column can be computed as shown below.

12 pB is obtained by an addition of the vector )200(

with each of the vector elements of 1B ;

22 pB is obtained by an addition of the vector )200(

with each of the vector elements of 2B ;

32 pB is obtained by an addition of the vector )200(

with each of the vector elements of 3B ;



pB3 is obtained by an addition of the vector )200( with
each of the vector elements of pB .



Proceeding in this way, we will get the intrablock
subgroups 2,,, 2)1(1)1( ppppp BBB  placed in the last

column of the construction matrix, which can be obtained
as:

1)1(  ppB is obtained by an addition of the vector
 )1(00 p with each of the vector elements of

1)2(  ppB ;

2)1(  ppB is obtained by an addition of the vector
 )1(00 p with each of the vector elements of

1)2(  ppB ;



2pB is obtained by an addition of the vector  )1(00 p

with each of the vector elements of ppB )1(  ;

Thus, in the construction matrix, we get 2p intrablock
subgroups in p columns. The method is illustrated with
two examples described in the section below.

IV. Illustrations

Example 1. Suppose we like to construct the layout of a
43 - factorial experiment where the factorial effects

ABCD and 2DABC are confounded simultaneously.

The plan is given by matrix,

1227210 ][  MMMM ;

2,1,0];}3{}3{}3{[ 2
3

1
2

0
1  uaVVVM uu ; with

1279991 ]210[1}1{  IIIV ; 1273332 ]210[3}3{  IIIV and

1271113 ]210[9}9{  IIIV .

The adjustment vector, ][ 2721  uuuu aaaa  could be obtained
by solving the symbolic equation corresponding to the
factorial effect to be confounded.

Step 1. Find the matrices 0M and 0M  , which  are the key
incomplete blocks confounded with ABCD and 2CDAB

respectively in a 43 - factorial experiment.
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0M

Step 2. Selecting the common vector elements from 0M and

0M  , we will get the key intrablock subgroup 1B , which is
given by
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Step 3. Add the vector )0100( to each of the vector elements
of the key intrablock subgroup, we get,
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2B

To obtain the third intrablock subgroup 3B , add the vector
)0200( to each of the vector elements of the key

intrablock subgroup. Thus,







































0122
0212
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0020
0110
0200

3B

The intrablock subgroups 65,4 , BBB of second column and

987 ,, BBB of the third (last) column can be computed as
shown below.

4B is obtained by adding the vector )1000( to each of the
row vectors of 1B ;

5B is obtained by adding the vector )1000( to each of the
row vectors of 2B ;

6B is obtained by adding the vector )1000( to each of the
row vectors of 3B ; and

7B is obtained by adding the vector )2000( to each of
the vectors of 1B ;

8B is obtained by adding the vector )2000( to each of
the vectors of 2B ;

9B is obtained by adding the vector )2000( to each of
the vectors of 3B ;

Thus, we have the complete layout of nine intrablock
subgroups as shown below.
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BBB
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It is easy to verify that,

)(.)(.)( 987654321 BBBVsBBBVsBBB  ; confounds the
1st effect, ABCD ; (column comparison)

)(.)(.)( 963852741 BBBVsBBBVsBBB  ; confounds the
2nd effect, 2DABC ; (row comparison)

)(.)(.)( 843762951 BBBVsBBBVsBBB  ; confounds the
1st generalized effect, ABCDABCABCD  2 (comparing I-
totals); and

)(.)(.)( 753942861 BBBVsBBBVsBBB  ; confounds the 2nd

generalized effect, DDABCDABC  22 )( (comparing J-totals).

Example 2. Suppose we are to construct a 35 - factorial
experiment where the factorial effects ABC and 2ABC are
confounded simultaneously.

Solution. First, we find the two incomplete blocks 0M and /
0M

corresponding confounded effects ABC and 2ABC .

The key incomplete block 0M confounded with ABC is given
by,

35
1

2
0

10 1]},5{},5{[  nuaVVM , with

]43210[5}5{ 55555
00

1  IIIIIV ; ]43210[5}5{ 11111
1

2  IIIIIV and
the adjustment vector ua can be obtained by solving the
symbolic equation 0321  xxx mod 5 , taking first two
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values of 1x and 2x from the vectors 1V and 2V
respectively for ABC .

Similarly, the key incomplete block /
0M confounded with

2ABC is given by,

35
1

2
0

1
/
0 1]},5{},5{[  nuaVVM , with

]43210[5}5{ 55555
00

1  IIIIIV ; ]43210[5}5{ 11111
1

2  IIIIIV

and the adjustment vector ua can be obtained by solving
the symbolic equation 02 321  xxx mod 5 , taking first
two values of 1x and 2x from the vectors 1V and 2V

respectively for 2ABC .
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Step 1.

Select the common elements (vectors) of 0M and 0M  to
find the key intrablock subgroup 1B , as shown below.
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Step 2.

We get the second intrablock subgroup 2B by an addition of
the vector )010( to each of the vectors of the key intrablock

subgroup; 2B is placed just below (column side) the key block 1B .

Similarly, we get the third, fourth and fifth intrablocks 43, BB

and 5B by addition the vectors )030(),020( and )040( to each
of the vectors of the key intrablock subgroups respectively,
shown below.

Step 3.

After getting the intrablock subgroups, ,1B 5432 ,, BandBBB we
get the intrablock subgroups 109876 ,,, BandBBBB by an
addition of the vector )100( to each of the vector elements
(row vectors) of 54321 ,,, BandBBBB respectively.

Similarly, an addition of the vector )200( to each of the
vector elements of 54321 ,,, BandBBBB will produce the
intrablock subgroups 14131211 ,,, BBBB and 15B .

An addition of the vector )300( to each of the vector elements
of 54321 ,,, BandBBBB will produce the intrablock subgroups

19181716 ,,, BBBB and 20B ; and

An addition of the vector )400( to each of the vector elements
of 54321 ,,, BandBBBB will produce the intrablock subgroups

24232221 ,,, BBBB and 25B , which completes the plan, shown
below.
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V. Conclusion

In this article, a general construction method has been
developed for simultaneous confounding in np ( p is
prime) factorial experiment. The construction of
simultaneous confounding in np factorial experiment
becomes easier and rewarding. The method is restricted to

np factorial experiment when p is prime and it can be
extended for a simultaneous confounding of three or more
factorial effects.
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