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Abstract
In this study, we consider three different transformations for reducing collinearity in polynomial regression. In order to compare these
transformations, an extensive simulation study is conducted. The transformations are also applied to empirical data. Based on the
simulation study and real-data applications, it can be concluded that the transformation which yields the values of the independent variable
in the range of [-1,1] is the most effective in reducing collinearity, and allows the fitting of high-degree polynomial to data sets.
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I. Introduction
Mathematical modeling and simulation of physical
phenomena requires, in addition to an accurate model,
precise equations to pertinent physicochemical properties as
a function of temperature, pressure, composition, etc. Such
equations require fitting some parameters by regression of
experimental data. The accuracy of simulations of physical
phenomena critically depends on the accuracy of these
correlation equations.

Modern regression techniques allow derivation of equations
and parameters which can predict values within the
experimental error. Collinearity among the original
independent variables may prevent reaching this goal. The
problem of collinearity has been addressed by means of
variable transformation, ridge regression, principal
component regression, shrunk estimates, and partial least
squares (for a brief review and list of references for the
various methods, see for example Wold et al. 1984). Belsley
(1991), Bradley and Srivastava (1979), and Sever (1977)
discuss the problems that can be caused by colinearity in
polynomial regression and suggest certain approaches to
reduce the undersigned effects of collinearity.

Unfortunately, the effects of collinearity are not taken into
account in published correlations of various thermophysical
properties (see for example Daubert and Danner, 1987 or
Reid et al. 1977). As a result, the correlations may either
contain an insufficient number of parameters to represent
the data accurately or too many parameters. If there are too
many parameters, the correlation becomes ill-conditioned,
whereby adding or removing experimental points from the
data set may drastically change the parameter values. Also,
derivatives are not represented correctly, and extrapolation
may yield absurd results even a small range of extrapolation.

In this paper, we limit the discussion to polynomial
regression, but the results can be readily extended to other
forms of regression equations. The various transformations
have been compared through a simulation study. These

transformations have also been compared through empirical
data analysis.

In the following part of the paper, the collinearity in least
squares error regression has been reviewed in section II. In
section III, variance inflation factors and eigen-system
analysis for multicollinearity diagnostic measures have been
discussed. In section IV, several transformations which
reduce collinearity have been presented. In section V, the
result of the simulation study has been presented and the
detection of collinearity has been compared by these
procedures. Section VI contains a real-data analysis. Finally,
section VII is the conclusion.

II. Collinearity in Least Squares Error Regression

Let us assume that there is a set of N data points of a
dependent variable iy versus an independent variable .ix
An nth order polynomial fitted to the data is of the form:
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where n ,,,, 210  are the parameters of the model

and i is the error in .iy The vector of the estimated

parameters )ˆ,,ˆ,ˆ(ˆ
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T   is usually calculated via
least squares error approach, by solving the normal
equation:

.ˆ yXβXX TT  (2)

The rows of X are n
ii xxxi ,,,,1 2 ix and AXXT  is

the normal matrix. One of the assumptions of the least
squares approach is that there is no error in the independent
variables. However, this is rarely true. The precision of
independent variables is limited due to the limitations of the
measuring and control devices. Thus, the value of an
independent variable can be represented by
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where ix~ is the expected measured value of ix and i is
the error (or uncertainty) in its value. The least squares error
approach can be applied in a way that considers the error in
both the dependent and independent variables (Mandel,
1991), but this will usually have a very little effect on the
calculated values of .β̂ Nevertheless, the error of the
independent variable plays an important role in determining
the high-degree of the polynomial and the number of
parameters that can be fitted to the data.

Collinearity among the different variables can severely limit
the accuracy of a regression model. A typical consequence
of collinearity is that adding or removing a single data point
may cause very large changes in the calculated parameter
values. This effect is usually called “ill-conditioning” of the
regression equation.

A collinearity is said to be exist among the columns of
 n21 x,,x,x X if for a suitable small predetermined

0 there exist constants nccc ,,, 21  not all of which
are zero, such that (Gunns, 1984)

;22110  nncccc xxxx0  with .c  (4)

In the case of polynomial regression, .j
j xx  This

definition cannot be used directly for diagnosing collinearity
because it is not known how small  should be so that the
harmful effects of collinearity will show. Collinearity has
been traditionally expressed by the variance inflation factor
(VIF) and the conditioned number ( ) of the normal matrix
which are discussed in the next section.

III. Variance Inflation Factor and Eigen-system Analysis
of A

In this section, we review the collinearity diagnostic
measures Variance inflation factor VIF, and eigen-system
analysis produced the conditioned number  of .A
(a) Variance Inflation Factor (VIF): The diagonal
elements of the 1AC  matrix are very useful in detecting
collinearity. The jth diagonal element of C can be written
as

,)1( 12  jjj RC (5)

where 2
jR is the coefficient of determination obtained when

jx is regressed on the remaining 1n regressors. If jx is

nearly orthogonal to the remaining regressors, 2
jR is small

and jjC is close to unity, while if jx is nearly linearly

dependent on some subset of the remaining regressors, 2
jR

is near unity and jjC is large. Since the variance of the jth

regression coefficient is ,2jjC we can view jjC as the

factor by which the variance of j̂ is increased due to near

dependencies among the regressors. jjC is called the
“variance inflation factor” (VIF) (Marquardt, 1970). The
VIF for each term in the model measures the combined
effect of the dependencies among the regressors on the
variance of that term. One or more large VIFs indicate
collinearity. In some writings, specific numerical guidelines
for VIF values are seen, but they are essentially arbitrary.
Practical experience indicates that if any of the VIFs
exceeds 5 or 10, it is an indication that the associated
regression coefficients are poorly estimated because of
collinearity (Montogomery and Peak, 1982).

(b) Eigen-system analysis of A : The eigenvalues of A ,
say, n ,,, 21  , can be used to measure the extent of
collinearity in the data. One or more small eigenvalues
imply that there are near linear dependencies among the
columns of .X The one commonly used in numerical
analysis and statistical analysis is the maximal eigenvalue
(Belsley, 1991) in which case  is the ratio of the largest
eigenvalue  max to the smallest eigenvalue  min , i.e.,

.
min

max




  (6)

Stronger collinearity is indicated by a higher value of 
which, in turn, causes amplification of the errors i and i
in the calculation of the parameter values of the regression
equations. Ideally,  should be close to 1, but in regression,
using the different functions of the same independent
variable,  is usually larger by several orders of magnitude.
Thus, errors in the data are amplified considerably. For large
values of , a small and insignificant change in the data
may cause a very large change in the calculated parameter
values.  Generally, if  is less than 100, there is no serious
problem with collinearity.  s between 100 and 1000 imply
moderate to strong collinearity, and if  exceeds 1000,
severe collinearity is indicated.

IV. Transformation to Reduce Collinearity

Shacham and Braunar (1977) discussed several
transformations to reduce collinearity in polynomial
regression. The one which is routinely used is division of
the values of ix by ,maxx where maxx is the point with the
largest absolute value. Thus, ,/ maxxxv ii  where iv is
the normalized of ix value. If all the ix are of the same sign
(say )0ix , then the normalized value will vary in the
range .10 min  ivv This transformation can
considerably reduce the VIF and .

The transformation    minmaxmin / xxxxw ii  yields

values in the range .10  iw For this transformation, the
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maximal range is   5.0~max0wwi  and .1max w Using
such transformation yielded most accurate correlations for
vapor pressure (Wagner, 1973).

The transformation    minmaxminmax /2 xxxxxz ii 
yields variable distribution in the range of .11  iz
Similar transformations are widely used and highly
recommended by statisticians (Seber, 1977).

In the following section, the effects of the various
transformations on collinearity are studied.

V. Simulation Study

Case A: Assuming that ix is distributed uniformly, the
elements of the normal matrix can be evaluated. Equation 1
is used to compute VIF and  . To compare v, w and z
transformations, independent samples of size 100N were

generated from simulation.  For each simulated data set, the
VIF and  were computed using v, w and z transformations.

To summarize the simulation results, the averages of VIF
and  were computed over 1000 different samples each of
size 100 up to 6th order polynomials. Fig. 1(a) and Fig. 1(b)
show the average (over 1000 different data sets) of VIF and
 respectively versus polynomial order for the various
transformations on a semilogarithmic scale. It can be seen
that for a particular transformation, log(VIF) and )log(
can be presented approximately by a straight line as a
function of the order of the polynomial. It is observed that
the slope is the smallest for the  1],1z transformation and
increases with a narrowing of the range. Thus, the z-
transformation offers the most significant reduction of the
VIF and  and is superior to the other transformations in
this respect.

Fig. 1. Uniform data and simple polynomial. —v[.5,1] transformation, --*--v[.3,1] transformation, --- w[0,1] transformation, and
…O… z[-1,1] transformation.

Case B: Forsythe (1957) derived the expression for w
transformation:

  ,
1


sr

N
rsXXA T (7)

where r and s are the row and column indexes
respectively. The elements of the normal matrix, as shown
in eq 7, are N times the elements of the Hilbert matrix,
which is known to be ill-conditioned for large .N

For the v transformation, assuming iv is distributed

approximately uniformly on  1,minv , where ,10 min  v
the elements of the normal matrix are given by

   
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For the  1,1z transformation,
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Thus, in this case, the elements of the normal matrix are the
same as the Hilbert matrix elements except that every other
term is replaced by zero.
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Assuming that ix is distributed uniformly and N is large
enough, the elements of the normal matrix can be evaluated.
Eq 7-9 can be used to compute VIF and  . To compare v, w
and z transformations, 1000 different independent samples
each of size 100N were generated from simulation. For
each simulated data set, the VIF and  were computed

using v, w and z transformations. Fig. 2(a) and Fig. 2(b)
show the average (over 1000 different data sets) of VIF and
 respectively versus polynomial order for the various
transformations on a semilogarithmic scale. These figures
also clarified that the z-transformation is superior to the
other transformations.

Fig. 2. Uniform data and Hilbert matrices. —v[.5,1] transformation, --*--v[.3,1] transformation, -- w[0,1] transformation, and
…O… z[-1,1] transformation.

Case C: Orthogonal and Legendre Polynomials

One of the approaches often suggested to reduce collinearity
in polynomial regression is carrying out the regression with
orthogonal polynomials (Seber, 1977). The basic property of
orthogonal polynomials  x is

    0xx s
T
r  for all .,, srsr  (10)

Because of this property, orthogonal polynomials yield
diagonal normal matrices; consequently, the calculated
parameter values of the correlation equation are independent
of each other. There are several ways to generate orthogonal
polynomials (for example, Seber, 1997, and Box and
Draper, 1987). In order for most methods to give truly
orthogonal polynomials, the data must be evenly distributed.
Shachan and Cutlip (1966) described a method which
generates orthogonal polynomials, independent of the
original data distribution and can be easily carried out with
an interactive regression program.

Since in regression with orthogonal polynomials, the normal
matrix is a diagonal matrix, the singular values of the matrix
are the diagonal elements. With a proper normalization of
the data 1max  and .min j

T
j   Thus, the condition

number is given by

  .1
 j

T
j  (11)

Similarly, the VIF is same as .

For large N which are evenly spaced in the z[-1,1]
transformation, Legendre polynomials provide an
orthogonal set (Abramovitz and Stegun, 1972), and can be
integrated over the [-1,1] interval to yield the VIF and  .
Legendre polynomials can also be used to obtain any
specified interval [a,b], and in particular, for the w[0,1] and
v[vmin,1] transformations. Figs. 3(a) and 3(b) present the VIF
and  respectively versus polynomial order for the various
transformations on a semilogarithmic scale. These figures
also indicted that z transformation is superior to the other
transformations.
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Fig. 3. Evenly distributed data, Legendre polynomials. —v[.5,1] transformation, --*--v[.3,1] transformation, --- w[0,1] transformation,
and …O… z[-1,1] transformation.

VI. Example

In this section, a real data set was used to demonstrate the
problems associated with collinearity. A data set presented
in problem 5.2 was used (Montogomery and Peak, 1982).

The covariate is the months since production. The response
variable is the weight loss in kg. Though this analysis may
not be of particular scientific interest, it will demonstrate the
reduction behavior of collinearity for the v, w and z
transformations. Figs. 4(a) and 4(b) present the VIF and 
respectively versus polynomial order for the various

transformation on a semilogarithmic scale. These figures
also indicted that z transformation is superior to the other
transformations. The conditioned number ( ) and variance
inflation factor (VIF) for 4th order polynomials is shown in
Table 1.  and VIF and their corresponding logarithm
values are the smallest for the  1,1z transformation.
Thus, the z -transformation offers the most significant
reduction of the condition number as well as variance
inflation factor, and hence it can be generally concluded that
this transformation is superior to the other transformations.

Fig. 4. Real data, Legendre polynomials. —v transformation, --- w[0,1] transformation, and …O… z[-1,1] transformation.
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Table. 1. Conditioned Numbers and Variance Inflation Factors for 4th order Polynomials and )(1 og , and log(VIF)
Versus Polynomial order

transformation  )(1 og VIF log(VIF)

v[0.18,1] 6.077722 × 104 4.783741 6.070319 × 103 3.78321148

w[0,1] 2.617945 × 104 4.417960 2.613073× 103 3.41715156

z[-1,1] 1.055396 × 101 2.0234153 1.0207317 × 101 1.0089116

VII. Summary and Conclusions

The simulation study and a real data analysis have been used
to investigate the various effects of collinearity in
polynomial regression. The use of orthogonal polynomials
and the v[vmin,1], w[0,1] and z[-1,1] transformations for
reducing the effects of collinearity have been described. The
simulation study and a real data analysis have been shown
that the z[-1,1] minimizes the effects of collinearity. The
z[-1,1] transformation yields the smallest variance inflation
factor as well as the smallest condition number for the same
data and the same polynomial order. That is, it offers the
most significant reduction of the collinearity to the other
transformations.
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