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Abstract
In this paper an attempt has been made to select a model for time series forecasting of Average Exchange Rate (AER) of Bangladesh.  Our
decision through out this study is mainly concerned with Auto regressive Integrated Moving Average (ARIMA) Model, Holt’s Linear
Exponential Smoothing Model, Simple Linear Regression Model, Log-Linear Regression Model.  This project concerns and analyze on a
set of data based on AER during the period July 2003 to June 2007. We try to derive a unique and suitable forecasting model AER. From
our study we find that Holt’s Linear Exponential Smoothing with α=0.999 and β=0.018 gives less forecasting error than that of others. So
we propose that forecasting for the Average Exchange Rate of Bangladesh, one can use the Holt’s Linear Exponential Smoothing Model.
But before using this model one must verify the validation of the model in different time period, because a forecasting model may lose its
validity and suitability as time changes.

I. Introduction

Frequently, there is a time lag between awareness of an
impending event and occurrence of that event. If the lead
time is long, and the outcome of the final event is
conditional on identifiable factors, planning can perform an
important role. In such situation forecasting is needed to
determine when an event will occur or a need arise, so that
appropriate actions can be taken.   Forecasting is vital in
finance and in financial time series analysis. Opinions on
forecasting are probably as diverse as views on any set of
scientific methods used by decision makers.

For making valid forecasting, we have to make a choice
between a numbers of competing alternative models. The
model selection procedure largely depends on the process of
searching for a suitable specification. In forecasting point of
view,  the  best  model  is  that  one  which  fits  the
observed  data  well  and  for  which  the  forecast  error,  on
average,  is  minimum  in  some  sense.  For making valid
forecasting, we have to make a choice between a numbers of
competing alternative models. The model selection
procedure largely depends on the process of searching for a
suitable specification. In forecasting point of  view,  the
best  model  is  that  one  which  fits  the  observed  data
well  and  for  which  the  forecast  error,  on  average,  is
minimum  in  some  sense.

Forecasting of exchange rate is very necessary for us.
Because Bangladesh is very much depending on export and
import and we deal this with international currency such as
Dollar, Pound, Euro etc. Here we forecast on the exchange
rate of U.S.

Dollar. But unfortunately there is no forecasting model
adopted in Bangladesh Bank (BB) to see the future
performance of the rate of Dollar.

The price of one country's currency expressed in another
country's currency is known as exchange rate. In other
words, the rate at which one currency can be exchanged for

another. For example, if the U.S. exchange rate for the
Bangladeshi Taka is Tk.60.00, this means that 1 American
Dollar can be exchanged for 60.00 Bangladeshi Taka.

This study was conducted on the exchange rate of US
Dollar. Our main goal is searching a univariate forecasting
model for the average exchange rate of US Dollar, so we
had to work on one variable. We took ‘Exchange Rate’ as
our variable. In our data set have 48 observations during the
time period 2003-04 to 2006-07.

II. Arima Model

An autoregressive model of order p is conventionally
classified as AR(p). A moving average model with q terms
is classified as MA(q). A combination model containing p
autoregressive terms and q moving average terms is
classified as ARMA(p,q)(Gujarati(1995))). If the object
series is differenced d times to achieve stationarity, the
model is classified as ARIMA(p,d,q), where the symbol "I"
signifies "integrated." So the general  non-seasonal  model
is   as  ARIMA ( p,d,q ):

AR: p = order of the autoregression part, I: d= degree of
differencing involved MA: q= order of the moving average
part

The equation for the ARIMA ( p,d,q ) model is as follows:

Yt = C +f1Yt-1 +f2Yt-2 +....+fpYt-p + et -θ1et-1 -θ2et-2 -.....-θ qet-q

Or in backshift notation

(1-f1B -f2B2 -....-fpB p )Yt = c + (1-θ1B -θ2B2 -....- θqBq)et

Where, C = constant term, fi =  i th autoregressive
parameter, θj = j th moving average parameter, et =  the
error term at time t, Bk =  the k th order backward shift
operator

The Box-Jenkins (BJ) Methodology

To  identify  a  perfect  ARIMA  model  for  a  particular
data  series,  Box  and  Jenkins(Box and Jenkins(1976))
proposed  a  methodology  that  consists  of three  phases
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are  known  as  Box-Jenkins  methodology,  or  in  short  BJ
methodology.  The total process contains the following
phases, namely : Phase I: Identification. Phase II:
Estimation of Diagnostic Checking. Phase III: Application.

Holt’s Linear Exponential Smoothing Method

In exponential smoothing procedures the weights assigned
to observation are exponentially decreased, as the
observations get older. Holt (1957)(Makridakis(1998))
extended single exponential smoothing to linear exponential
smoothing to allow forecasting of data with trends. The
forecast for Holt’s linear exponential smoothing is found
using two parameter smoothing constants, α and β with
values between 0 and 1, and three equations:

Lt = αYt + ( 1 – α ) (Lt-1 + bt-1) ………(1) bt = β(Lt - Lt-1) +
( 1 – β )bt-1 ………(2)

Ft + m = Lt + btm …………… (3)

Where, Lt is the estimate of the level of the series at time t,
bt is the estimate of the slope of the series at time t, Yt is  the
observation at time t, α and β are constants between 0 and 1,
Ft+m is forecasted value at period t + m, m is the number of
periods ahead to be forecast. To perform a Holt’s linear
exponential smoothing method we have to go through the
following three steps, namely: Step 1: Initialization
Step 2: Optimization Step 3: Forecasting

III. Forecasting with Simple Regression

Regression as Statistical Modeling  : The simple linear
regression model may be defined precisely as: Yi = α + βXi

+ εi , Where, Yi and Xi represent the ith observation of the
variables Y and X respectively, α and β are fixed ( but
unknown)parameter and εi is a random variable that is
normally distributed with mean zero and variance σ2

Log-linear Regression Model

However, it should be noted that many non-linear functions
can be transformed into linear functions. A few simple eases
can illustrate the point consider. W=ABX……… (1)

Equation (1) relates variable W to variable X and a plot of W
versus X would be non-linear. Our concern is with the
parameters A and B, which appear as a product (therefore
not linear) and B is raised to a power other then 1 (therefore
not linear). To fit this can be to a set data pairs (W, X) would
require an iterative procedure, unless logarithms are taken of
both sided: Log W= logA + (logB)X. Substituting Y =
logW, α =logA and β = logB gives Y= α + βX ………….(2)
Equation (2) is now a simple linear relationship since the
function is linear in α and β (It is also linear in X). Thus we
can use simple LS regression or Equation (2), solve α and β
and then recover A and B via antilogarithms to get the
parameter estimates for equati

IV. Measures of Forecast Error

The model that gives the minimum measures of forecast
error will be our expected model for further forecasting.

Suppose, Yi is the actual observation for time period t and Ft

is the one-step forecast  for  the  same  period,  which  is
calculated  using  data Y1,Y2,……...Yt-1 Then,  the  one-step
forecast error is denoted by et and defined as, et = Yt - Ft. If
there are observations and forecasts for n time periods, then
there will be n error terms, and the following standard
statistical measures can be defined:
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on (1).

V. Analysis of Data

Our  data  set  have  48  observations  during the  time
period  July  2003  to  June  2007. We divide the whole set
of observations into two segments, namely ‘the training
segment’ and ‘the test segment’. The training segment
contains first 40 observations and the test set contains the
remaining 8 observations. The idea behind this partition is
that  to  select  the  best forecasting model from
Autoregressive  Integrated  Moving  Average  (ARIMA)
model, Holt’s Linear Exponential Smoothing model, Simple
Regression model and Log-Linear Regression model using
the  training  segment  and  then  compare among these
models by applying them in the test segment.

Choosing an ARIMA Model: Identification: Stability in
Variance

At first we plot our data containing in training segment,
where the variable ‘Average Exchange Rate (AER)’ is
plotted against the period. From the time plot given in
Figure 1 we see that over the time period of study AER has
been increasing, that is showing an upward trend. This
perhaps suggests that AER series is not stationary.
Moreover,  it  seems  that  the  data  are  non-stationary  in
the  mean  level  only.  So  we  do  not  need  any
transformation  of  the  data  to  obtain  stability  in
variance.

Testing Stationarity

To test the stationarity we obtain the correlogram of AER.
From the correlogram, we observe that the autocorrelations
decline very slowly as shown in figure – 2 and most of the
spikes fall outside the 2-standard error limits. It indicates
that the data set is non-stationary. The ACF is calculated up
to 24 lags to see the seasonality. But there is no seasonal
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variation (i.e. at lag 12, lag 24), we conclude that there is no
seasonality in the data set.

The white noise test
For the autocorrelation values, rk, in figure -2, the Box-

Pierce Q statistic is computed as:Q = n 


h

k 1
rk

2
=

40


24

1k
rk

2
= 215.03 .Here we have used h = 24 and, since

were not modeled in any way. Hence the degree of freedom
is 24. Comparing this value to a chi-square distribution with
24 degrees of freedom, we get the p-value as 0.000. So, we
conclude that the values are significantly different from a
null set. Ljung- Box test, which is readily obtained by
computer programming, gives the value 294.308 with 24
degrees of freedom. This also indicates that the data set does
not follow a white noise series.

Obtaining Stationarity
Since, there is no seasonality in the data we simply take the
first difference to make it stationary. The time plot of the
first differenced series is given in figure - 3, which shows
that the values differ around a constant mean. Now the
series looks   just   like   a   white   noise   series,   with
almost   no   autocorrelations   or   partial autocorrelations
outside the 95% limits. The correlogram of the first
differenced data are given in figure - 4.  The Box-Pierce Q
statistic takes the value 16.23 and the Ljung- Box Q*

statistic is equal to 25.421 for these data when the maximum
lag being considered, h = 24 and the number of parameters
in the model, m = 0. Compared to a chi-square distribution
with 24 degrees of freedom, neither of these is significant.
Taking  differences  has  transformed  the  data into  a
stationary  series  which  resembles  white  noise.  As  we
take  only  one  difference to  make the original  data  series
to  a  stationary series so the value of the parameter d in the
model would be 1.
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Fig. 1. The time plot of AER

Auto- Stand.
Lag  Corr.   Err. -1 -.75 -.5 -.25   0   .25  .5   .75 1   Box-Ljung  Prob.


1   .956   .152                . *****.*************       39.343   .000
2   .893   .150                . *****.************        74.590   .000
3   .818   .148 . *****.**********         104.958   .000
4   .740   .146                . *****.*********          130.504   .000
5   .659   .144                . *****.*******            151.330   .000
6   .577   .142                . *****.******             167.779   .000
7   .495   .140                . *****.****               180.277   .000
8   .414   .138                . *****.**                 189.272   .000
9   .343   .136                 . ****.** 195.630   .000

10   .273   .134                 . *****                    199.817   .000
11   .209   .131                 . ****.                    202.348   .000
12   .151   .129                 . *** .                    203.717   .000
13   .085   .127                 . **  .                    204.165   .000
14   .012   .124 .    *    . 204.174   .000
15 -.065   .122                 .   * .                    204.459   .000
16 -.136 .120                 . *** .                    205.754   .000
17 -.203   .117                 .**** .                    208.776   .000
18 -.266   .114                 ***** .                    214.182   .000
19 -.320   .112 **.*** .                     222.370   .000
20 -.356   .109               ***.*** .                     232.987   .000
21 -.380   .106              ****.*** .                     245.776   .000
22 -.395   .104              ****.*** .                     260.360   .000
23 -.406   .101              ****.*** .                     276.613   .000
24 -.411   .098              ****.*** .                     294.308   .000

Plot Symbols:      Autocorrelations *     Two Standard Error Limits .
Fig. 2. The Correlogram of AER
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Fig. 3. The Time-Plot First Difference of AER

Auto- Stand.
Lag  Corr.   Err. -1 -.75 -.5 -.25   0   .25  .5   .75   1   Box-Ljung  Prob.



1   .361   .154                . *****.*                    5.473   .019
2 -.067   .152                .    * .                     5.669   .059
3 -.053   .150                .    * .                     5.793   .122
4 -.031   .148 .    * .                     5.837   .212
5 -.047   .146                .    * .                     5.943   .312
6 -.212   .144                . **** .                     8.130   .229
7 -.049   .141                . * .                     8.251   .311
8   .099   .139                . **   .                     8.759   .363
9 -.037   .137                 .   * .                      8.832   .453

10 -.047   .135                 .   * . 8.953   .537
11 -.025   .132                 .   * .                      8.989   .623
12 -.013   .130                 .    *    .                      8.999   .703
13   .081   .128                 . **  . 9.403   .742
14   .085   .125                 . **  .                      9.868   .772
15 -.020   .123                 .    *    .                      9.894   .826
16 -.058   .120                 .   * .                     10.131   .860
17 -.079   .117                 .  ** .                     10.584   .877
18 -.094   .115                 .  ** .                     11.256   .883
19 -.260   .112                 *.*** .                      16.665   .613
20 -.310   .109 **.*** .                      24.749   .211
21   .008   .106                  .   *   .                      24.755   .258
22   .072   .103                  . *  .                      25.239   .286
23 -.043   .100 .  * .                      25.421   .329
24   .002   .097                  .   *   .                      25.421   .383

Plot Symbols:      Autocorrelations *     Two Standard Error Limits .

Fig. 4. The Correlogram First Difference of AER
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Pr-Aut- Stand.
Lag  Corr.   Err. -1 -.75 -.5 -.25   0   .25  .5   .75   1



1   .361   .160                . *****.*
2 -.227   .160                .***** .
3   .071 .160                . *    .
4 -.061   .160                .    * .
5 -.023   .160                .     *     .
6 -.231   .160                .***** .
7   .156   .160                . ***  .
8 -.010   .160                .     * .
9 -.102   .160                .   ** .
10   .030   .160                . *    .
11 -.040   .160                .    * .
12 -.049   .160                .    * .
13   .134   .160                . ***  .
14   .042   .160 . *    .
15 -.132   .160                .  *** .
16   .016   .160                .     *     .
17 -.060   .160                .    * .
18 -.103   .160                .   ** .
19 -.236   .160                .***** .
20 -.126   .160                .  *** .
21   .086   .160                . **   .
22 -.106   .160                .   ** .
23 -.070   .160                .    * .
24   .033   .160                . *    .

Plot Symbols:      Autocorrelations *     Two Standard Error Limits .

Fig. 5. The Partial Correlogram First Difference of AER

Model Selection

As mentioned earlier, the plot of ACF and PACF can give a
primary guess about the order of the parameters, p and q for
ARIMA model. We  use  the  Akaike  Information  Criterion
(AIC)  to  choose  the  best  model  among the class of
plausible models. The model which has the minimum AIC
value is our model of interest.  For  different  values  of p
and q we  find  the  AIC  value  using  computer   program,
namely,   SAS   (Statistical   Assessment   Software) or R . It
gives   the minimum AIC value using the maximum
likelihood estimation.  The AIC values for different p and q
values for ARIMA (p,1,q) are given in Table 1.

Estimation and Diagnostic Checking
From  the  Table 1,  we  found  that  the  AIC  value  for  the
model  ARIMA  (0,1,1)  is  minimum. This model includes
no AR coefficients and one MA coefficient and takes the
form: /Y = et - θ1et-1, Or,  Yt - Yt-1 = et - θ1et-1, Or, Yt = Yt-

1 + et - θ1et-1

Where, θ1 is the i th MA coefficient, et is the error
term.
Now we have to test the significance of the parameters. The
coefficients  with  their  estimated

value  and corresponding  value  of  the z-statistic are
given  in  the  following Table 2:
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Table. 2. The significance test of the parameters of ARIMA (0,1,1)

Coefficients Parameters Standard error z-value Decision

θ1 0.5214 0.1534 3.40 Significant

From the above table we see that the p-values corresponding
to the coefficients θ1 less than  0.05,  which  leads  to  the
conclusion  that  these   parameter  are significant. So, the
revised model becomes, Yt =  Yt-1 + et - 0.5215et-1

And the estimated model is , tY
^

= Yt-1 - 0.5214et-1

Hence, this is our ARIMA model that we select for
forecasting the average exchange rate of Dollar.
For diagnostic checking, we have to look at the figure 6,
which shows the behavior of  the  residuals  left  over  after
fitting  the  ARIMA   (0,1,1)   model.   The   plot   of   the
standardized residuals shows that most of the standardized
residuals are within the 95% limits. The plot of ACF of
residuals is given. In both cases, all the spikes are in the
95% limits and near to zero. The plot of p-values of the
Ljung-Box statistic  indicates  that  the  residuals  left  over
after  fitting  the  model  is  white  noise.  All these
diagnostic check support that our selected model is not only
have the smallest AIC value but also the better behaved
residuals. As we obtain an appropriate ARIMA model for
forecasting, we use it to predict the future values in the test
set.

Estimation of Holt’s Linear Smoothing Parameter
In order to select a Holt’s linear method for forecasting, we
take the first value of the original series as initial value i.e.
L1 = Y1.and the difference between the first and second
observation of the original series as an estimate of the slope
of the series. i.e. b1 = Y2 – Y1

We  consider  different  values  for  the  smoothing
parameters α and β  ranging from 0 to 1 and calculate the
forecasted series for each value of α and β. Now through
computer programming, we obtain the set of value α and β
as smoothing parameter which gives the minimum Mean
Square Error (MSE). Following this procedure we obtain the
value of α = 0.999 and β = 0.018 which minimizes the MSE.
Thus, our Holt’s linear model becomes,

Lt = 0.999Yt + ( 1 – 0.999) (Lt-1 + bt-1)= 0.999Y t +
0.001 (Lt-1 + bt-1)

bt = 0.018(Lt - Lt-1) + ( 1 – 0.018 )bt-1=
0.018(Lt - Lt-1) + 0.982bt-1

and, Ft + m = Lt + btm m = 1,2,3,…………………
Using   m = 1. We get Ft + m = Lt + bt .   This model is used
to forecast 8 values in the test set.

Fig. 6. The diagnostic checking of ARIMA (0,1,1) model of AER

Fitting of Simple Regression Model

We have assumed that a linear relationship exists between
the dependent variable Average Exchange Rate (Y) and
explanatory variable time period ( t ). We have a sample of
40 observations. We can write

Yi = α + βti + εi i = 1,2,3,……………40
The coefficients are unknown and our problem is to obtain

estimates of these unknown. From the analysis, we get
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ANOVA table for Simple Linear Regression b

595.768 1 595.768 407.931 .000 a

55.498 38 1.460
651.265 39

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), PERIODa.

Dependent Variable: AERb.

Coefficients a

56.218 .389 144.355 .000
.334 .017 .956 20.197 .000

(Constant)
PERIOD

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: AERa.

Hence the fitted model is,
^
Y = 56.218 + 0.334 ti

Fitting of Log-linear Regression Model

Let us consider a non-linear function of parameters as: Yi =

eα + βt
i

Taking logarithms to base e of both side yields LogYi = ( α

+ βti )Logee= α + βti

Which is now a linear form, so that α and β can be estimated
directly. From the analysis we get

ANOVA table for Log-linear Regression b

.148 1 .148 442.967 .000 a

.013 38 .000

.161 39

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), PERIODa.

Dependent Variable: LOGAERb.

Coefficients a

4.034 .006 684.627 .000
.005 .000 .960 21.047 .000

(Constant)
PERIOD

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: LOGAERa.

So, the fitted model is, log
^

iY = 4.034 +0.005 ti ,
^

iY = e4.034+0.005t
i

Comparison among ARIMA, Holt’s Linear, Simple Linear Regression, Log-linear Regression models

We calculate different measures of error and the summary measures are listed in the table below:

Table. 3. Comparison among ARIMA, Holt’s Linear, Simple Linear Regression, Log-linear Regression models

Measures of

error

ARIMA model Holt’s linear model Simple Linear Regression

model

Log-linear Regression

model

ME -0.002244 -0.010220 0.0063995 0.383711

MAE 0.402896 0.429813 0.906627 0.975295

MSE 0.411922 0.453091 1.387493 1.513052

MPE -0.006641 -0.018089 -0.021802 0.556585

MAPE 0.626526 0.668101 1.436760 1.521674

From the above table we see that for all measure of errors, Holt’s Linear method with α = 0.999 and β = 0.018 gives the best
results over ARIMA (0,1,1) model, Simple Linear Regression model and Log-linear Regression model.

Forecasting for the period November-2006 to June-2008
(Out of sample)
Now to see the performance of these models in out-of-
sample  forecasting,  we  derive  the  forecasted  value  of
Average Exchange Rate  using  these    models  for  the

period  November  2006 – June  2008 and compare with the
actual value of Average Exchange Rate during the period
November 2006 to June 2007. The following table gives
four forecasted series obtained by the four models as well as
the actual data set.
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Table. 4. The forecasted and actual value of average exchange rate during the period November 2006- June 2008

Period Average
Exchange Rate

(AER)

Forecasted
AER by
ARIMA
(0,1,1)

Forecasted AER by
Holt’s Linear with
α = 0.999 and β =

0.018

Forecasted AER by
Simple Linear

Regression

Forecasted AER
by Log-Linear

Regression

November-06 69.912115 67.21118 67.31038 69.912 69.338

December-06 69.458654 70.45731 70.17317 70.246 69.686

January-07 69.694200 69.56222 69.71018 70.580 70.035

February-07 69.017500 69.93273 69.94474 70.914 70.386

March-07 68.940563 69.13102 69.25228 71.248 70.739

April-07 68.935288 69.14060 69.16912 71.582 71.094

May-07 69.108148 69.13356 69.15956 71.916 71.540

June-07 68.938942 69.32789 69.33132 72.250 71.8080

July-07 ………. 69.11529 69.15539 72.584 72.168

From the above table, we see that the forecasted value for each month in the time period  can be obtained by ARIMA (0,1,1)
model, Holt’s Linear method with α = 0.999 and β = 0.018, Simple Linear Regression model and Log-linear Regression
model. Comparing this out-of-sample forecast, Holt’s Linear method with α = 0.999 and β = 0.018 gives the
best result compared to the others.

VI. Conclusion

The basic aim of this paper was to select a model for
forecasting Average Exchange Rate of Dollar in
Bangladesh.  In this context we took our interest on
ARIMA, Holt’s Linear method, Simple Linear Regression
Model and Log-linear Regression Model. We obtained the
forecast error for all the models and found various measures
of forecast error, which are listed in Table 3. From this
table,

we found that Holt’s Linear method with α = 0.999

and β = 0.018 gave less average forecasting error than
others. The  comparison  shows  that  the  forecasting
performance  of  Holt’s Linear method

with α = 0.999 and β = 0.018 is better  than that of ARIMA
model with order (0,1,1),  Simple Linear Regression model
and Log-linear Regression model.

On  the  basis  of  the  above  comparison,  we  can
conclude  that,  to   forecast  monthly average exchange rate
of Dollar in Bangladesh  one can easily use  the Holt’s
Linear method with α = 0.999 and β = 0.018.

It should also be borne in mind that a good forecasting
technique for a situation may become bad technique for a
different situation. The validation of a particular model
must be examined as time changes.

-------------------------

1. Box, G.E.P. and Jenkins G. M.(1976), Time Series Analysis
Forecasting and Control,  Holden-Day.

2. Makridakis S.G., S.C.Wheelwright and R. J.Hyndman
(1998),  Forecasting:  Methods and Application, John
Wiley & Sons, Inc., New York.

3. Gujarati D. N. (1995). Basic Econometrics, McGraw-
Hill Book Co, New York.

4. www. Bangladesh-bank. org. bd


